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Abstract

A graph G without isolated vertices is said to be set-magic if its
edges can be assigned distinct subsets of a set X such that for every
vertex v of G, the union of the subsets assigned to the edges incident
with v is X; such a set-assignment is called a set-magic labeling of
G. In this note, we study infinite set-magic graphs and characterize
infinite graphs G having set-magic labelings f such that |f(e)| = 2
for all e € E(G).
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Graphs considered in this note are without loops, multiple edges and iso-
lated vertices. We refer to [4] for graph theoretic terminology. For set
theoretic terminology and results, we refer to (2, 3, 6.

Let G be a graph. For any vertex v in G we denote its neighborhood
by N(v) and its degree by degv. If an edge e of G is incident with v, we
sometimes write e ~ v. An edge with end-vertices z and y is denoted by
zy. If an end-vertex of an edge e is of degree 1, then e is called a pendant
edge of G. For any set X, let P(X) be the set of all subsets of X and Py(X)
be the set of all finite subsets of X.

Let G = (V,E) be a graph and X be a set. A map f: E — P(X) is
said to be a set-magic labeling of G by X if f is injective and for allv € V,
U f(e) = X. A graph is said to be set-magic if it admits a set-magic

e~y

labeling. This notion was introduced by Sedlaéek [5]. (His definition of
set-magic labeling does not exclude isolated vertices; however graphs with
isolated vertices which are set-magic according to his definition are trivial;
any such graph can have at most one edge to which only the empty-set
can be assigned.) He also has found out when a graph is set-magic. (His
result—A graph G is set-magic if and only if G has at most one vertex
of degree 1—is inaccurate. K, has two vertices of degree of 1; but it is
set-magic.)

Theorem 1 A graph G is set-magic if and only if it has at most one pen-
dant edge.
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Proof. Let e be any edge of G. Assign E(G) to e if it is a pendant edge;
let E(G) \ {e} be assigned to e otherwise. If G has at most one pendant
edge, it is clear that this assignment is a set-magic labeling of G by E(G).

Conversely, if G is set-magic, then obviously G has at most one pendant
edge. |

The labeling given by the proof of Theorem 1 in the case of finite graphs
G satisfies—as one may like to have—the following.

|f(e)| < oo for all e € E(G). e (1)
A natural question to ask is the following.

(A) When does an infinite graph G have a set-magic labeling f which
satisfies (1)7? ‘

Sedlaéek has also constructed in [5] connected infinite graphs G with
set-magic labelings f which satisfy (1). Such a labeling f for a complete
graph, by its vertex-set can be given as follows: for any edge e, f(e) = {u,v}
where u and v are the end-vertices of e. (Finding infinite set-magic graphs
G which cannot have set-magic labelings f for which (1) holds, is also not
difficult; for example, it can be easily seen that no infinite path G has a
set-magic labeling f which satisfies (1). A simple necessary condition for
an infinite graph G to have a set-magic labeling f which satisfies (1) is that
degv is infinite for all v € V(G)—see Lemma 5 for more details.)

In the case of infinite graphs G the labeling given by the proof of The-
orem 1 satisfies the following. (Note that E(G) is infinite, since G has no
isolated vertices.)

|f(e)| is same for all e € E(G). -+ (2)

It can be verified that a finite graph G # K, which has one pendant edge
cannot have a set-magic labeling f by a finite set, which satisfies (2). (Of
course it can have a set-magic labeling f by an infinite set, which satisfies
(2). But this kind of labeling is quite uninteresting and unnatural.)

For infinite graphs G we can ask the following questions:

(B) When does G have a set-magic labeling f such that |f(e)| = # for all
e € E(G) where 7 is a positive integer?

(C) In particular, determine when G has a set-magic labeling f such that
|f(e)l =2 for all e € E(G). NG

In (C), if we replace the constant 2 by 1, then the answer is trivial: there is
no such infinite graph. (Among finite graphs, K, is the only graph which
has such a labeling.)
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B. D. Acharya brought question (A) to the second author’s attention
when the latter was visiting Mehta Research Institute, Allahabad, India in
1984. This was settled in [7]. B. D. Acharya has also raised the following
question in [1].

Determine the graphs (finite and infinite) which admit set-magic labelings
f such that | f(e)| = | f(e')| whenever e, e’ are edges in the same (connected)
component of G.

This question, as such, is answered by the preceding discussion; so in-
stead of this, we can ask the following one:

(D) When does an infinite graph G have a set-magic labeling f which
satisfies (1) such that |f(e)| = |f(e')| whenever e,e’ are edges in the
same (connected) component of G 7

In this note our aim is to settle the questions (B), (C) and (D). In the
sequel, we need the following three set theoretic results.

Proposition 2 If X is any infinite set, then |Po(X)| = | X|.

Proposition 3 If {A, : a € I} is a collection of finite sets where the
indexing set I is infinite, then IU Aal < |-
24

Proposition 4 If A and B are two sets such that one of them is infinite
then |AU B| = max{|Al,|B|}.

For the proofs of Propositions 2, 3 and 4, the reader is referred to [2, 6].

The following result gives a necessary condition for an infinite graph
G to have a set-magic labeling which satisfies (1). (This was proved in
[7] as a part of its main theorem; here we prove it again for the sake of
completeness.)

Lemma 5 If an infinite graph G has a set-magic labeling f which satisfies
(1) then
degv = |V(G)| for allv e V(G). e (4)

Proof. Let f be a set-magic labeling of an infinite graph G by a set X,
which satisfies (1). Then for any v € V(G),
degv < |V(G)|

=| U {=z,y}| (since G has no isolated vertices)
zy€E(G)

< |E(G)| (by Proposition 3)

< |Po(X)| (since f(E(G)) C Po(X) and f is injective)
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= |X| (by Proposition 2)
U 5|

e~y

< degv (by Proposition 3).
Thus (4) holds. ]

Now let us state the main theorem of this note.

Theorem 6 Any infinite graph G which satisfies (4) has a set-magic la-
beling f which satisfies (3).

To prove this theorem, we need one more set theoretic result.

Lemma 7 Any non-empty set X can be endowed with a well-ordering <
such that for alla € X, |{z € X : z < a}| < |X|.

Proof. Let < be a well-ordering of X. For any a € X, let S, = {a: €X:
z < a}. If |Sq] < |X| for all a € X, then < has the required property;
so assume that {a € X : |S,| = |X|} is non-empty; let & be the smallest
element of this set. Since |S,| = |X]|, there is a bijection 8 : X — S,. Now
define a relation < on X as follows: for any z,y € X,z <y < 0(z) <
6(y). It is easy to see that < is a well-ordering on X with the required
property. [ ]

Proof of Theorem 6. By Lemma 7, we can define a well-ordering < on
V(G) such that
Hz e V(G):z<a}| < |V(G) forallac V(G). e (5)

For any v € V(G), let T(v) = {z € N(v) : £ > v} and R(v) = {z €
V(G) : z > v}. It is easy to see by Proposition 4 and (5) that |[T'(v)| =
[V(G)| = |R(v)|; therefore there exist bijective maps ¢, : T(v) = V(G)
and v, : V(G) = R(v). Let us denote for any z € T(v), its image under
év by ¢(v,z) and for any z € V(G), its image under ¥, by ¥(v,z).

Now define a map f : E(G) — P(V(G)) as follows. For any uv € E(G)
with u < v, f(uwv) = {@(u,v),¥($(u,v),u)}. Let us show that f is a
set-magic labeling of G.

Suppose uv,zy € E(G) such that f(uv) = f(zy); assume that u < v
and z < y. Then by the construction of 1,

¢(u,v) <Y(¢(v,v),u) and ¢(z,y) < Y(¢(z,y),z).

Therefore

¢(u’v) = ¢(z,y) and ¢(¢(u1 v),u) = z/)(¢(x,y),:c). Tt (6)
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Since Py(u,v) is injective, it follows from (6) that u = z; this implies again
by (6) that v = y, since @, is injective. Thus it follows that f is injective.

Next let u € V(G). Let us show that |J f(e) = V(G). Let w € V(G).
Since ¢, is surjective, for some v € T'(u), eqSN(:z, v) = w whence w € f(uv) C
el;Ju f(e). Thus we have egu f(e) = V(G). This completes the proof. |

Now let us summarize what we have done so far:

Theorem 8 For an infinite graph G = (V, E), the following are equivalent.
(i) G has a set-magic labeling f such that |f(e)| < oo for alle € E.

(ii) G has a set-magic labeling f such that |f(e)] < o foralle € E
and |f(e)| = |f(e')| whenever e,e' are edges in the same connected
component of G.

(iii) G has a set-magic labeling f such that |f(e)| =n for alle € E where
7) 18 a positive integer.

(iv) G has a set-magic labeling f such that |f(e)| =2 for alle € E.
(v) ForallveV,degv=|V|.

Proof. Theorem 6 is (v) = (iv). (iv) = (iii) = (ii) = (i) is obvious.
Lemma 5 is (i) = (v).
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