PERFECT (k,7)-LATIN SQUARES.

KEVIN HARE

ABSTRACT. A perfect (k,r)-latin square A = (a;,;) of order n
with m elements is an n X n array in which each element occurs in
each row and column, and the element a; ; occurs either k times in
row i and r times in column j, or occurs r times in row ¢ and k
times in column j. In 1989, Cai, Kruskal, Liu and Shen studied the
existence of perfect {k,r)-latin squares. Here, a simpler construction
of perfect (k,r)-latin squares is given.

1. INTRODUCTION AND DEFINITIONS.

Definition 1 (Perfect (k,r)-latin square). A perfect (k,r)-latin square
A = (ai;) of order n with m elements is an n x n array in which each
element occurs in each row and column, and the element a;; occurs either
k times in row i and r times in column j, or occurs r times in row i and k
times in column j.

It was shown in [1] that the above definition implies m = % Fur-
ther, it was shown that for any k, r and h that there exists a perfect
(k,r)-latin square of order n = 2hkr(k + r). The goal here is to show how
to construct a perfect (k,r)-latin square of order n in a simpler manner
than the construction presented in [1]). First a few definitions are needed.

Definition 2 ({(k,r)-pattern). A (k,r)-pattern A = (a; ;) of order n with
m elements is an n X n array in which each element occurs in each row and
column, and if the cell (i,7) is not empty, then a;; occurs either k times
in row i and r times in column j, or occurs r times in row i and k times
in column j.

Row and column permutations of {(k,r)-patterns and perfect (k,r)-latin
squares are (k, r)-patterns and perfect (k, r)-latin squares respectively. Note
also that if a (k, r)-pattern has no empty cells, then it is a perfect (k,r)-latin
square.

Definition 3 (Disjoint). Two n x n arrays are said to be disjoint if, when-
ever cell (i,j) of one is non-empty, then in the other array this cell is
empty.
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The definition of disjoint (k,r)-pattern will be useful, as disjoint (k,7)-
patterns can be combined together to form new (k,r)-patterns. If enough
(k,r)-patterns can be combined together, then a perfect (k,r)-latin square
will result. For this, a means to combine (k, r)-patterns is needed.

Definition 4 (“+”). Let A = (a; ;) and B = (b;;), be two disjoint (k,r)-
patterns, define A+ B = (ci ;) so that c;j = a;,; if cell (i,5) of A is not
empty, c¢;j = b;j if cell (i,j) of B is not empty, and if cell (i,5) of A and
B are both empty, then so is cell (i,j) of A+ B. (Notice as A and B are
disjoint then a; j and b; j cannot both be non-empty.)

Next, some special arrays will be studied. These arrays have the property
that they can be combined together to form disjoint (k,r)-patterns. These
disjoint (k,r)-patterns can be further combined together to form perfect
(k,r)-latin squares.

Definition 5 (Type H array). Define H(n,k,p, (i1,...,1))) (where Aln and
k|n) to be an nxn array, wherei,, 1 < u < A, is in cell (At+u, p+s+At+u)
with0<t < §—1,0<s< k—1 and empty otherwise (where addition is
taken on the residues 1,2,...,n).

Definition 6 (Type V array). Define V(n,k,p, (i1,...,ix)) (where Ajn and
k|n) to be an n x n array, where iy, 1 <u < A, is in cell (s + At +u,p +
k+X+u—1) with0 <t < %-1,0<s<k—1 and empty otherwise
(where addition is taken on the residues 1,2,...,n).

Pictorially, think of a type H array as a diagonal strip of thickness k
which is composed of horizontal strips. A type V array is similar, but
instead of horizontal strips in the diagonal, it has vertical strips.

It is worth noting that there are kX = kn non-empty cells in both the
type V, and type H arrays.

Example 7. The example of H(12,2,0,(1,2,3)) + V(12,2,6,(3,1,2)) is
given below:

11 2 3
2 2 3 1
3 3 1 2
11 2 3
2 2 3 1 type V array
2 3 3 1
2 3 11
31 2 2
1 2 3 3
2 3 11
31 2 2 type H array
3 1 2 3
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Observe that H(12,2,0,(1,2,3)) + V(12,2,6,(3,1,2)) is a (2,1)-pattern.

This example shows a type V array and a type H array combine together
to form a (k, r)-pattern. These (k,r)-patterns are important building blocks
for perfect {(k,r)-latin squares.

2. A PERFECT (k,1)-LATIN SQUARE.

Here, an examination of a simpler problem, that of perfect {k, 1)-latin
squares, will give an introduction to the techniques used for the problem
of constructing perfect (k,r)-latin squares. The idea of this section is to fit
various type H and type V arrays together to get (k, 1)-patterns and then
fit these (k, 1)-patterns together to get a perfect (k, 1)-latin square.

Notice that a (k, 1)-pattern must have the property that 2k(k + 1)|n by
the comments in the previous section. So by considering n = 2k(k+1) then
the following is true.

Lemma 8.

H(2k(k + 1)3 k, 0, (01, 021 ey 0k+1)) +
V(2k(k + 1), k, k(k + 1), (Ox41, 01,02, ..., 0x))

is a (k, 1)-pattern.

Proof: Consider element 0,, 1 < u < k + 1. Element 0, occurs in cells
((k + 1)t +u, s + (k+ 1)t + u) of the type H array and cells (s + (k+ 1) +
u+1,k(k+1) + k+ (k+ 1)t +u) of the type V array, where 0 < s < k-1
and 0 < ¢t < 2k — 1. Next it is shown that this sum satisfies the conditions
of a (k, 1)-pattern for the element O,.

0, will occur in every row, as it occurs in rows s + (k+ 1)t +u +1, and
also in rows (k+ 1)t +u, where 0 < s < k—1and 0 <t < 2k—1. Similarly,
0, will occur in every column.

Consider an element 0,, from the type H array in cell (((k+ 1)t +u,s +
(k + 1)t 4+ u). Then in this row, there will be k occurrences of 0y; and in
this column 1 occurrence of 0,. The type V array cannot contribute to this
rowas (k+1)t+u#Es+(k+1)t' +u+1 (modk+1),for0<s<k-1
and 0 < t,¢' < 2k — 1. Further the type V array cannot contribute to this
column as k(k +1) + k4 (k+ 1)t +u # s + (k + 1)’ + u (mod k + 1) for
0<s<k—-1and0<tt <2k-1

A similar argument can be made for the 0, that are elements of a type
V array.

Hence this is a {k, 1)-pattern.
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Corollary 9.
H(zk(k + 1)1 k)p7 (017 023 aeey 0k+l)) +
V(2k(k + 1)7 k7p + k(k + 1)7 (0k+11 01) 02: ey Ok))
is a (k, 1)-pattern.
Here it is worth observing that the non-empty cells of a type V array
coincide with those of a type H array if and only if the arrays have the same

n, k and p values. It follows that whether two arrays are disjoint depends
only on the n, k and p values and not on the types of the arrays.

Lemma 10. The array

(1) H(2k7‘(k +7‘),k, ika(ily'-')ik+r))
ts disjoint from
(2) H(2k7’(k + T)’krjka (jlv”’)jkiﬂ'))

Jori#jand0<i,j<k+r-1.

Proof: This follows by noting that there are elements in cells ((k+7)t+
u,ik+s+(k+r)t+u)for0<t<2kr—1,0<s<k-1linarraylandin
cells (k+r)t+u,jk+s+(k+r)t+u)for0<t<2%kr-1,0<s<k-1
in array 2. So given a particular row, (k + 7)t + u, t and u become fixed.
As i # j, the columns of non-empty cells in this row are distinct. Hence
these two arrays are disjoint.

In the following theorem and the subsequent results it is convenient to
increment i; etc. along with ¢ so that, in the following case, the resulting
array is defined on the symbols {01, ...,0k41, 11,0y Liryeees K1y eoey K1 -

Theorem 11.
k
Z(H(zk(k + 1)1 k) ’lk, (il: i27 cery ik+l)) +
=0
V(2k(k + 1)k, k(k + 1) + ik, (ik+1,7%1, 82, -y Tk )))
is a perfect (k,1)-latin square.

Proof: Taking r = 1 in Lemma 10, ensures that this sum is well defined.
The number of non-empty cells in a type V, or type H array is kn =
2k%(k+1). As there are k+ 1 type V arrays, and k+ 1 type H arrays, there
are 4k%(k +1)? cells covered in this sum (which is the total number of cells
in the array). Lemma 8 gives that this is a (k, 1)-pattern and since there
are no empty cells it is a perfect (k, 1)-latin square.
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3. A PERFECT (k,7)-LATIN SQUARE.

This section proceeds much the same as Section 2, but investigates the
more general case of (k,r)-patterns.

It can easily be seen that if k¥ and r are not relatively prime, then the
problem can be solved for k' and 7', (k' = gc—df‘m, r = md'k—,r;) and
expanded to solve the problem for £ and r by Kronecker products. (See
Corollary 16 for a more detailed description of this.)

Lemma 12. Assume k and r are relatively prime. Choose j; such that
Ji=-l (mod k+7), i =0 (mod k), and y =! (mod r) for 0 <I<r-1.
Set j; = ji +rk(k +r). Then
r—1
> (H(2kr(k + 1), k, jt, (O 4r—t41, Okgr—t42, -, Oktr, 01, 02, ooy Oy rt))
1=0

+V(2kr(k + 1), k,jl', (Ok+1,0k42, .., Oktr, 01,02, ..., Op)))

is a (k,r}-pattern.

Proof: First, observe that such 7; can be chosen from the Chinese Re-
mainder Theorem, as r, k and r + k are relatively prime. Also Lemma 10
guarantees that this sum is well defined.

Consider an element 0,,. It lies in cell: ((k+7)t+u+l, ji+s+(k+r)t+u+l)
from the type H array, and (s+ (k+r)t+u+rjj+k+(k+r)t+u+r—1)
from the type V array, 0<s<k-1,0<t<2kr~-land 0<I<r—-1.

Consider row (k +r)t +u +{. This contains k occurrences of 0,,, namely
in cells, ((k+7)t +u+ 1,51 + s+ (k+7)t +u+1), from the type H array.
No type V array can contribute a 0,, to this row as ¢’ + (k+7)t' +u+r 2
(k+r)t+u+! (mod 2kr(k+71)),for0< s’ <k—1and 0 <t,t' <2kr—1.
A type H array with a different ! value cannot contribute to this row as
k+r)t+u+lZ(k+r)t' +u+l (mod k+7), for 0 <t t' < 2kr—1.

Consider column jj, + s+ (k+r)t+u+1{y. There are r occurrences of 0,
here, namely, in cell ((k+7)t; +u+1,ji+ s+ (k+r)ti +u+1) from the type
H array, for each I, and appropriate values of ¢;. (Notice that 5; +1 =0
(mod k + r), hence tj can be chosen such that jy + s+ (k+r)ti +u+!=
Jio +8+ (k+r)t+u+lo.) The type V array does not contribute to this sum
because jy+s+ (k+r)t+u+l Zj, +k+(k+r)t' +u—1+r (mod k+7).

Similarly, checking rows s + (k + )t + u + r and columns j| + k + (k +
r)t + u — 1 gives that 0, occurs r and k times respectively.

Lastly, 0, will occur in every row. To see this, consider a row a. If
a—u=0,1,..,7—1 (mod k + r), then it will be found in a type H array
of row value (k+r)t+u+!l. Ifa—u=r,r+1,....,7r+k—1 (mod k+r),
then it will be found in a type V array of row value s + (k+r)t +u+r with
s=a—u—r (mod k+r). Similarly, it can be shown that 0, will occur in
every column.
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Hence this is a {(k, r)-pattern.

Corollary 13. Assume that k and r are relatively prime. Select j; as be-
fore. Then

r—1
D (H(2kr(k + 1), k,p + jt, (Oksr—t41, Obr—t42, vy Oty 01, 02y oeey O —y))
1=0

+V(2kr(k +7),k,p + 3l (Oks1,0k42, oy Ok gr, O1, Oz, ..o, 0%)))

is a (k,r)-pattern.
The following theorem is equivalent to Theorem 3.1 of [1].

Theorem 14. Assume k and r are relatively prime. Pick ji,j| as above.
Then:

k+r—1r-—1
Z Z(H(2kr(k + T)) k) tkr + jl) (ik+r—l+ly 2.k+!'—l+27 aeey ik-{-r,
=0 I[=0

61592, ey bktr—t)) + V(2kr(k +7), k,ikr + 7, (ka1 bk42y s ks

il’i'lv "'aik)))

is a perfect {k,r)-latin square.

Proof: From Lemma 10 this sum is well defined.

There are r(k + ) type H arrays, and r(k +r) type V arrays. There are
2kr(k + r)k cells covered by each of the type H and type V arrays. Hence
there are 4k%r2(k + r)? cells covered in total, which is equal to the total
number of cells in the 2kr(k + r) x 2kr(k + r) array. Lemma, 12 gives that
this is a (k,r)-pattern and since there are no empty cells it is a perfect
(k,r)-latin square.

Example 15. Consider k =3, r = 2. Then jo =0, j1 = 4, jj = 10 and
J1 = 14. So teking i, to be the i(k+1) + u letter of the alphabet, the perfect
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(k,r)-latin square above is realized as:

aaavwz fffeceekkkjjjpppooouuvutttbedyyyghibedimnghigrsimnvwzqrs
tbbbwzrygggaaalllfffgqqqkkkvvvpppcdeunuhijcdemnohijrstmnowzyrs
tpcccxyuhhhbbbmmmgggrrrillwwwggqqdeavvvijfdcanokijfstpnokzyus
tpgqdddyuviiicccnnnhhhsssmmmzzzrrreabwwwj fgeabokljfgtpqoklyuv
wpgreecuvwjjjdddoooiiittitnnnyyysssabezxxfghabekimfghpgrkimuv
wrqgrsaasavwz fffeeckkkjjjpppooouuvutttbcdyyyghibecdimnghigrsimnv
wrzyrstbbbwzygggacalllfffagqqkkkvvvpppcdevuuhijcdemnohijrstmno
kxyustpccczyuhhhbbbmmmgggrrrillwwwggqdeeavvvijfdeanokijfstpno
klyuvtpgdddyuviiicccnnnhhhsssmmmzzzrrreabwwwj fgeabokljfgtpgo
klmuvwpgreeevvwjjjdddoooiiitttinnnyyysssebezzzfghadbekimfghpqr
slmnvwzrqrseaavwz fffeeekkkjjjpppooovuntittbedyyyghibedimnghigr
stmnowzyrstbbbwarygggeaalllfffgqgqkkkvvvpppcdenvuuvhijcdemnohijr
stpnokrzyustpccczyuhhhbbbmmmgggrrrillwwwgqqdeavvvijfdeanokijf
gtpgoklyuvipgqdddyuviiicccnnnhhhsssmmmzzzrrreabwwwj fgeabokljf
ghpgrkimuvwpqreecuvwjjjdddoooiiittitnnnyyysssabezzzfghabeckimf
ghigrsimnvwrgrsaaavwzfffeeekkkjjjpppooounutttbedyyyghibedimn
ohijrstmnowzyrstbbbwrygggaaalll fffaqqkkkvvvpppcdevuuhijcdemn
okijfstpnokzyustpccczyuvhhhbbbmmmgggrrrillwwwqgqqdeavvvijfdean
okljfgtpgqoklyuvtpgqdddyuvviiicccnnnhhhsssmmmzzerrreabwwwj fgead
ckimfghpgrklmuvwpqreecenvvwjjjdddoooiiitttnnnyyysssabeczzzfghabd
cdimnghigrsimnvwzqrsaaavwzfffeeekkkjjjpppooouvuutttbedyyyghid
cdemnohijrstmnowzyrstbbbwzygggaaalllifffqqqkkkvvvpppcdeununuhij
fdeanokijfstpnokzyustpccczyuhhhbbbmmmgggrrrillwwwqgqqdeavvvij
fgeabokljfgtpgqoklyuvtpgqdddyuviiiccennnhhhsssmmmzzzrrreabuwwwj
foghabecklmfghpgqrklmuvwpqreeeuvvwjjjdddoooiiitttnanyyysssabeczzz
yghibcdimnghigrsimnvwzqrsaaavwzfffeeekkkjjjpppooouvutttbedyy
vvhijcdemnohijrstmnowzyrstbbbwzygggaaalllfffqqqkkkvvvpppcdeu
vvvijfdeanokijfstpnokzyustpccczyuvhhhbbbmmmgggrrrlllwwwgqqdea
bwwwj fgeabokljfgtpgqoklyuvitpgdddyuviiicccnnnhhhsssmmmzzzrrrea
bexzzfghabekimfghpgqrklmuvwpgreeenvwjjjdddoooiiitttnnnyyysssa
becdyyyghibedlmnghiqrsimnovwzqrsaaavwzfffeeekkkjjjpppooounuttt
pcdeuvuvhijecdemnobijrstmnowzyrstbbbwzygggaaalllfffgqqkkkvvvpp
ggdeavvvijfdeanokijfstpnokzyustpccczyuhhhbbbmmmgggrrrlillwwwg
rrreabwwwj fgeabokljfgtpgoklyuvitpgdddyuviiiccennnhhhsssmmmezz
ysssabczrxzfghabekimfoghpgrklimuvwpqreeeuvwjjjdddoooiiitttinnnyy
vutttbedyyyghibedimnghigrsimnvwzgrsaaavwzfffeeekkkjjjpppoooun
vvvpppedenvushijcdemnohijrstmnowzyrstbbbwrygggaaalll fffagqekkk
fwwwqgqgqdeavvvijfdeanokijfstprokzyustpcccazyuhhhbbbmmmgggrrril
mmzzrrrrreabwwwj fgeabokljfgtpgoklyuvipgdddyuviiiccennnhhhsssm
nanyyysssabcrrxfghabeckImfghpgqrklmuvwpgqreeceuvwjjjdddoooiiittt
pooouuutttbedyyyghibedlmnghiqreslmnvwzqrsaaavwzfffeeekkkjjjipp
qqkkkvvvpppcdeuvuuvhijcdemnohijrstmnowzyrstbbbwzrygggaaalllfffq
rrrillwwwqgqqdcavvvijfdeanokijfstpnokzyustpccczyvhhhbbbmmmggg
hsssmmmzzzrrreabwwwj fgeabokl jfgtpgqoklyuvipgqdddyuviiicccnnnhh
iitttnnnyyysssabeczrzfghabeckimfghpgrklmuvwpqreeevvwjjjdddoooi
jiipppooouuvutttbedyyyghibedlmnghigqrsimnvwzqrsacavwzfffeeekkk
lfffgqakkkvvvpppcdevuuhijcdemnohijrstmnowzyrstbbbwzygggaaall
mmgggrrrillwwwgqqdeavvvijfdeanokijfstpnokzyustpccczyuhhhbbdbbm
nnnhhhsssmmmzzrrrreabwwwj fgeabok!ljfgtpgqoklyuvtpgdddyuviiicce
doooiiitttnnnyyysssabeczxxzfghabekimfghpgqrklimuvwpgreeenvwjjjdd
eekkkjjjpppooounutttbedyyyghibedlmnghigrsimnvwzqrsaaavwzfffe
aaalllfffqqqkkkvvvpppcdeuvuvuvhijcdemnohijrstmnowzyrstbbbwzyggyg
hbbbmmmgggrrriliwwwqqqdeavvvijfdeanokijfstpnokzyustpccczyuhh
iicccnnnhhhsssmmmrzzrrreabwwwj fgeabokljfgtpgoklyuvtpgdddyuvi
jjjdddoooiiitttnnnyyysssabezzzfghabekimfghpqrklimuvwpgqreeenvvw
zfffecekkkjjjpppooounvutttbecdyyyghibedimnghigrsimnvwzgrsacavw
zygggaaalllfffqqgkkkvvvpppcdeuvuvuhijcdemnohijrstmnowzyrstbbbdbw
zyuhhhbbbmmmgggrrrillwwwggqgdeavvvijfdeanokijfstpnokzyustpecce
dyuviiiccennnhhhsssmmmzzzrrreabwwwj fgeabokljfgtpgqoklyuvipqgdd
ceuvwjjjdddoooiiitttnnnyyysssabezzzfghabeckimfoghpgriklimuvwpqgre

The following Corollary is equivalent to Corollary 3.3 of [1].

Corollary 16. For k andr, Let g = ged(k,r), and k' = k/g and ' =1/g.
Then there ezists a perfect (k,r)-latin square of order N = 2hgk'r' (k' +1')

Proof: Consider a perfect (k’,7')-latin square A, of order 2k'r' (k' + 1)
(by Theorem 14). Taking the Kronecker product of A with B = (bi,j)g,‘c:l,
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