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ABSTRACT

For an integer k > 1, a vertex v of a graph G is k-geodominated
by a pair z, y of vertices in G if d(z,y) = k and v lieson an z—y
geodesic of G. A set S of vertices of G is a k-geodominating
set if each vertex v in V — § is k-geodominated by some pair
of distinct vertices of S. The minimum cardinality of a k-
geodominating set of G is its k-geodomination number gx(G).
A vertex v is openly k-geodominated by a pair z,y of distinct
vertices in G if v is k-geodominated by z and y and v # z,y.
A vertex v in G is a k-extreme vertex if v is not openly k-
geodominated by any pair of vertices in G. A set S of vertices
of G is an open k-geodominating set of G if for each vertex v
of G, either (1) v is k-extreme and v € S or (2) v is openly
k-geodominated by some pair of distinct vertices of S. The
minimum cardinality of an open k-geodominating set in G is its
open k-geodomination number ogg(G). It is shown that each
triple @, b, k of integers with 2 < a < b and k > 2 is realiz-
able as the geodomination number and k-geodomination num-
ber of some tree. For each integer ¥ > 1, we show that a pair
(a,n) of integers is realizable as the k-geodomination number
(open k-geodomination number) and order of some nontrivial
connected graph ifandonlyof 2<e=nor2<a<n—-%k+1.
We investigate how k-geodomination numbers are affected by
adding a vertex. We show that if G is a nontrivial connected
graph of diameter d with exactly £ k-extreme vertices, then
max {2,£} < gx(Q) < 09x(G) < 3gx(G) — 2¢ for every integer k
with 2 < k < d.
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1 Introduction

For vertices z and y in a connected graph G = (V, E), the distance d(z, y) is
the length of a shortest # —y path in G. The diameter of G is the maximum
distance between any two vertices of G and is denoted by diamG. An z—y
path of length d(z, y) is called an z — y geodesic. A vertex v is said to lie in
an z — y geodesic P if v is an internal vertex of P, that is, v is a vertex of P
distinct from z and y. We refer to the book [4] for graph theory notation
and terminology not described here. The closed interval I[z, y] consists of
z, y, and all vertices lying in some z — y geodesic of G, while for S C V,

181= | Iz, 4.
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A set S of vertices is a geodetic setif I[S] = V, and the minimum cardinality
of a geodetic set is the geodetic number g(G). A geodetic set of cardinality
9(G) is called a g-set.

The closed intervals in a connected graph G were studied and charac-
terized by Nebesky [9, 10] and were also investigated extensively in the
book by Mulder [7], where it was shown that these sets provide an impor-
tant tool for studying metric properties of connected graphs. The geodetic
number of a graph was introduced in [1, 6] and further studied in [2]. It
was shown in [6] that determining the geodetic number of a graph is an
NP-hard problem. Closed intervals and geodetic numbers of digraphs were
introduced and studied in [5]. Geodetic concepts were first studied from
the point of view of domination by Chartrand, Harary, Swart, and Zhang
in [3], where a pair z, y of vertices in a nontrivial connected graph G is said
to geodominate a vertex v of G if v € I[x,y], that is, if either v € {z,y}
or v lies in an z — y geodesic of G. In [3], geodetic sets and the geodetic
number were referred to as geodominating sets and geodomination number
and it is this terminology that we adopt in this paper.

The link of a vertex v is the subgraph induced by its neighborhood. A
vertex with a complete link is called link-complete (or extreme). In particu-
lar, every end-vertex in G is link-complete. Obviously, every link-complete
vertex in a graph belongs to every geodominating set. In fact, if v is a
link-complete vertex that lies on an ¢ — y geodesic, then £ = v or y = v.
Hence every geodominating set of a graph contains all of its link-complete
vertices. In [3], a pair &, y of distinct vertices of a graph G is said to openly
geodominate a vertex v if v lies in an x — y geodesic in G. A set S is an open
geodominating set of G if for each vertex v, either (1) v is link-complete and
v € S, or (2) v is openly geodominated by some pair of vertices of S. An
open geodominating set of minimum cardinality is an og-set, and this cardi-
nality is the open geodomination number og(G). The following observation
appeared in [3].
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Observation 1.1  Every geodominating set of a graph G contains every
link-complete vertex of G. In particular, if the set W of link-complete ver-
tices is a geodominating set of G, then W is the unique g-set and the unique
og-set of G and so g(G) = og(G) = |W|.

For a graph G and an integer k£ > 1, a vertex v of G is k-geodominated
by a pair z,y of distinct vertices in G if v is geodominated by z, y and
d(z,y) = k. A set S of vertices of G is a k-geodominating set of G if
each vertex v in V — S is k-geodominated by some pair of distinct vertices
of S. The minimum cardinality of a k-geodominating set of G is its k-
geodomination number gx(G). A k-geodomination set of cardinality gx(G)
is called a gg-set of G. If a vertex v is k-geodominated by a pair 2,y of
vertices in G and v # =, y, then v is said to be openly k-geodominated by z
and y. A vertex v is a k-extreme vertez if v is not openly k-geodominated
by any pair of distinct vertices of G. A set S of vertices of G is an open
k-geodominating set if for each vertex v of G, either (1) v is k-extreme and
v € S, or (2) v is openly k-geodominated by some pair of distinct vertices
of S. The minimum cardinality of an open k-geodominating set of G is
its open k-geodomination number ogr(G). An open k-geodominating set of
cardinality ogx(G) is an ogy-set. The following observation is useful.

Observation 1.2  For an integer k > 1, every k-geodominating set of a
graph G contains every k-extreme verter of G. In particular, if the set W
of k-extreme vertices is a k-geodominating set of G, then W is the unique
gi-set and the unique ogy-set of G and so gi(G) = ogx(G) = |W].

Consider the graph G of Figure 1, which has diameter 6. The vertices
u and v are the only two vertices in G with d(u,v) = 6. Since the vertex
z does not lie in the u — v geodesic in G, it follows that z is a 6-extreme
vertex of G. Moreover, the set S = {u,v,w, z} of all 6-extreme vertices of
G is a 6-geodominating set and so gg(G) = oge(G) = 4 by Observation 1.2.

w

Uue O O O O O o v
Figure 1: An example to illustrate Observation 1.2

For every graph G, the vertex set V is always both a k-geodominating
set and an open k-geodominating set of G for all £ > 1. Hence gx(G)
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and og (G) exist for every graph G. Moreover, if G is a connected graph
of order n and diameter d, where d < k, then every vertex of G is k-
extreme. Thus V is the only k-geodominating set of G as well as the only
open k-geodominating set in G, implying that gix(G) = ogx(G) = n for all
k > diam G. Certainly, every open geodominating set is a geodominating
set and, for each k > 1, every k-geodominating set is a geodominating set.
These observations give the following.

Proposition 1.3 Let G be a graph of ordern > 2 and let k > 1 an integer.
Then

(a) 9(G) < 0g(G) and gx(G) < 0g:(G),

() 9(G) < gi(G) and 0g(G) < 0gi(G), and

(¢) 2<9(G),09(G),9x(G), 09x(G) < m.

These concepts are illustrated using the graph G of Figure 2a, where the
solid circles in the graph indicate a g-set in Figure 2b, an og-set in Figure
2¢, a go-set in Figure 2d, and an ogs-set in Figure 2e. Hence, g(G) = 2,
0g(G) = 4, g2(G) = 3, and 0g2(G) = 5. Thus, these four geodomination
parameters are distinct for the graph G of Figure 2a.

Obviously, a geodominating set of a disconnected graph is the union of
geodominating sets of its components. Hence it suffices to consider con-
nected graphs only.

2 Geodomination and k-Geodomination

Certainly, if a connected G is not complete, then diam G > 2. Moreover, if
G is a connected graph of order n and diameter 2, then gx(G) = n for all &
with & > 1 and k # 2 by Observation 1.2. We show next that g»(G) = g(G)

for every a connected graph G of diameter 2.

Proposition 2.1  If G is a connected graph of diameter 2, then g2(G) =
9(G).

Proof. Since g(G) < g2(G) by Proposition 1.3, we need only show that
92(G) < g(G), that is, that every g-set in G is a go-set. Let S be a g-set
of G. If S = V, then g(G) = ¢g2(G) = |V| by Proposition 1.3. So we may
assume that S # V. Let v € V — S. Since S is a g-set, it follows that v is
geodominated by some z,y € S. So v lies in an £ —y geodesic in G. Because
diam G = 2, it follows that d(z,y) = 2. Thus S is a 2-geodominating set of
G and so S is a gz-set by Proposition 1.3. [

Certainly, the condition that the graph G in Proposition 2.1 has diam-
eter 2 is necessary as the graph G of Figure 2 shows. Also, note that the
converse of Proposition 2.1 is not true. For example, in the graph G of
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Figure 2: Geodomination parameters

Figure 3, the set consisting of the four end-vertices of G is a g-set as well
as a go-set. Thus ¢>(G) = ¢g(G), but diamG = 3. This example can be
extended to show that, for each integer d > 1, there exists a connected
graph G of diameter d such that g2(G) = g(G).

By Proposition 2.1, if G is a connected graph of diameter 2, then
92(G) = g(G). However, in general, gx(G) # g(G) for an integer k with
2 < k < diamG. As an example, we consider those connected graphs with
diameter at least 3 and geodomination number 2.

Proposition 2.2 Let G be a connected graph of order n > 3, with
diam G > 3 and g(G) = 2 and let k > 1 be an integer. Then gx(G) = g(G)
if and only if k = diamG.

Proof. Let diamG = d and let S = {z,y} be a g-set of G. Then z and
y are antipodal, that is, d(z,y) = d. Thus S is a d-geodominating set and
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Figure 3: A graph G of diameter 3 with g2(G) = ¢(G)

so g4(G) = 2. It remains to verify the converse. If k =1 or k > d, then V
is the only geodominating set of G and so gx(G) = n > 3 > g(G). So we
assume that 2 < k < d — 1. Note that every k-geodominating set of G is
also a geodominating set. Since g(G) = 2, every g-set S of G contains two
antipodal vertices and so S is a d-geodominating set. Since k < d, it follows
that S is not a k-geodominating set. Thus no 2-element subset of V is a
k-geodominating set. Therefore, gx(G) > 3> g(G) forall2<k<d-1. =

We have seen that 2 < g(G) < gx(G) for every connected graph G and
every integer k > 1. If k = 1, then g(G) = gx(G) = |V| for every connected
graph G. Thus if a and b are integers with 2 < a < b, then there exists no
graph G with g(G) = a and ¢1(G) = b. On the other hand, next we show
that for k > 2, every pair a,b of integers with 2 < a < b is realizable as
the geodomination number and k-geodomination number for some tree. In
order to do this, we first state the k-geodomination numbers of paths P,
of order n > 3 for all k > 1. We omit the proof since it is routine.

Lemma 2.3 Let P, be a path of order n > 3. Then g,(Pn) =n and

92(Pn) = [n; 1] :

For each integer k with3< k< n-—2,

n

gk (Pn) = [;J + ¢,

where

2 if n=0,2 (modk)
3 otherwise.

1 if n=1 (modk)
lz{

Moreover, gn—1(Pn) = 2 and gx(P,) =n for all k > n.

Theorem 2.4 Let k > 2 be an integer. For each pair a, b of integers
with 2 < a < b, there ezists a tree T with g(T') = a and gx(T) = b.
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Proof. First, assume that b = a. For k = 2, let T be the star K 4. Since
diamT = 2, it then follows from Proposition 2.1 that go(T) = ¢(T) = a.
So we may assume that k& > 3. Let T be obtained from the path Py :
vy, Vg, - -+, Ux by joining the a — 1 new vertices uy, ug,- -+, uq—; to v;. Since
the set {vg,u1,us, -, uq-1} of the end-vertices is a k-geodominating set
of T, we obtain g(T") = gx(T) = a by Observations 1.1 and 1.2. Next we
assume that a < b. We consider two cases.

Case 1. b=a+ 1. For each i with 1 < i < a, let T; : v;1,vi2,- -, vik
be a copy of the path Py of order k. Then the tree T is obtained from
the trees T; (1 < ¢ < a) by joining a new vertex v to each vertex v;; for
all 1 < i< a. Let S = {vig,vak, -, Vak} be the set of the end-vertices
of T. Then g(T) = |S| = a by Observation 1.1. Certainly, S is not a
k-geodominating set of T as d(z,y) = 2k for all distinct z,y € S. Since
S’ = SU{v} is a k-geodominating set of T', it follows that S’ is a gx-set of
T. Thus gx(T) =a+1=0b.

Case 2. b = a+ j for some j > 2. By Lemma 2.3, the path Pj :
vy, V2, - -, vjx Of order jk has the k-geodomination number j + 2. If a = 2,
then g(Pjx) = 2 and so Pj; has the desired property. So we assume that
a > 3. Let T be obtained from Pj; by joining the a — 2 new vertices
Uy, Uz, - -+, Ug—2 to va. Again, T has a end-vertices and so g(T) = a. More-
over, k(T =(G+2)+(a-2)=j+a=b ]

It was shown in [2] that for each pair a,n of integers with 2 < a¢ < n,
there exists a connected graph G of order n and geodomination number a.
However, it is not true for k-geodomination number. Next we determine, for
each integer k& > 1 those pairs (a,n) of positive integers that are realizable
as the k-geodomination number and order of some nontrivial connected
graph.

Theorem 2.5 Let k > 1 be an integer. A pair (a,n) of integers is realiz-
able as the k-geodomination number and order of some nontrivial connected
graph ifand only if2<a=nor2<a<n—k+1.

Proof. We first show that if G is a connected graph of order n > 2, then
either gx(G) = n or 2 < gx(G) < n — k + 1. Assume that gx(G) < n. Let S
be a gi-set of G. Thus |S| < n. So there is a vertex v € V — S such that v
is k-geodominated by some pair z,y of distinct vertices in S, where ¢ # v
and y # v. Hence v lies in an z —y geodesic P : £ = vg,vy,--+, U = yin G,
where k > 2. Since then §' =V — {v,v2, -+, vk-1} is 2 k-geodominating
set of G, it follows that gx(G) < |S'|=n—-k+ 1.

For the converse, we show that for every pair (a, n) of integers such that
either 2 < a=nor2 < a< n—k+1, there is a connected graph G of
order n with gx(G) = a. For a = n > 2, the complete graph K, has the
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desired properties. So we may assume that 2 < a<n-—k+ 1. Let G be
the graph obtained from the path Pyy; : vo,v1,---,vx of order k + 1 by
(1) adding the a — 2 new vertices uj,uz,- -+, ug~2 and joining each of u;
(1 < i< a-2) to vg_y and (2) adding the n — k — a + 1 new vertices
wy, Wy, -+, Wn_k—a41 and joining each of w; (1 < j<n—-k—a+1)to
both vy and vz. The graph G is shown in Figure 4. Then the order of G
is n. Since the set {vo, vk, u1,u2, -, Us—2} of k-extreme vertices of G is a

k-geodominating set, it follows that gi(G) = a. ]
Vo Uy ) V3 Vgp—1 Uk
O @ O — e e @
Uy
ot U2
Ug—2
Wn—k—a+1

Figure 4: A graph G of order n with gx(G) = a

Arguments similar to the ones used in the proofs of Theorems 2.4 and
2.5 give the realization results for the geodomination number and open k-
geodomination number of a graph for all k > 2. So we only state these
facts in the next two results and omit their proofs.

Theorem 2.6 Let k > 2 be an integer. For each pair a, b of integers with
2 < a < b, there exists a tree T with g(T') = a and ogx(T) = b.

Theorem 2.7 Let k > 1 be an integer. A pair (a,n) of integers is
realizable as the open k-geodomination number and order of some nontrivial
connected graph if and only if2<a=nor2<a<n—k+1.

3 How k-Geodomination Numbers Are
Affected by Adding a Vertex

A fundamental question in graph theory concerns how the value of a pa-
rameter is affected by making a small change in the graph. So we consider
how the k-geodomination number of a connected graph is affected by the
addition of a single vertex (at least one edge incident with this vertex). It
was shown in [8] that if a pendant edge is added to a connected graph,
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then the geodomination number of the resulting graph can stay the same
or increase by at most 1, but cannot decrease. We state this fact as follows.

Theorem 3.1 If G' is a graph obtained by adding a pendant edge to a
connected graph G, then g(G) < 9(G') < 9(G) + 1.

We now consider how the k-geodomination number of a connected graph
is affected by the addition of a pendant edge. Let G’ be the graph obtained
from a connected graph G by adding a pendant edge uv, where u is not a
vertex of G and v is a vertex of G. If S is a gi-set of G, then SU {u} is a
k-geodominating set of G’, implying that gx(G’) < |SU {u}| = gx(G) + 1.
Thus, we obtain an upper bound for gx(G’) in terms of gx(G) similar to
the one described in Theorem 3.1.

Proposition 3.2 If G’ is a graph obtained by adding a pendant edge to a
connected graph G, then gr(G') < gx(G) + 1.

Note that it is possible that gx(G’') = gi(G) + i for each ¢ € {0,1} in
Proposition 3.2. To illustrate this fact, consider the graphs G,G’, and G”
of Figure 5, where G’ is obtained from G by adding the pendant edge vzz
and G” is obtained from G’ by adding the pendant edge zy. The solid
circles in each of the graphs G, G’, and G" indicate a gx-set in that graph.
Hence gx(G) = a, g&(G') = 9x(G)+1 = a+1, and g¢(G") = gx(G") = a+1.

Uz
ul ®e, ua-2
U1 V2 U3
G: . C C O— ¢ o 'Uk+2
X * .
G - ® C\} O— & oo
U3
Y
X
Gll. [ O O O— o o o

Figure 5: Graphs G,G’, and G” with gx(G) = q,
ge(G)=a+1,and gx(G") =a+1
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We have seen in Theorem 3.1 that if G’ is a graph obtained by adding
a pendant edge to a connected graph G, then ¢(G) < g(G’). However, in
general, it is not true for k-geodomination number. In fact, the addition
of a pendant edge to a connected graph G can produce a graph whose k-
geodomination number is strictly smaller than that of G. We saw that if
G is a connected graph of order n and diameter d and k > d is an integer,
then every vertex of G is k-extreme and so gx(G) = n. However, adding a
pendant edge to G may increase the diameter of the graph and then decrease
the k-geodomination number. For example, let G = Cap : V1,02, ,V2p, V1
for some integer p > 2. Since diamG = p, it follows that g,11(G) = 2p.
Let G’ be the graph obtained from G by adding the pendant edge uvp41.
Then diam G’ = p+ 1 and v; and u are antipodal vertices of G’. Since the
set {v1,u} is a (p + 1)-geodominating set in G’, it follows that gp+1(G') =
2. Moreover, in the case when k is less than the diameter of a graph G,
the addition of a pendant edge to G can also produce a graph whose k-
geodomination number is strictly smaller than that of G. For example,
consider the graphs G and G’ of Figure 6, where G’ is obtained from G by
adding the pendant edge uve. Since the set {vo, va, vs, Vs, Vo, £, y} is a g5-set
of G, it follows that gs(G) = 7. On the other hand, the set {u,vo,vs, 2,9}
is a gs-set of G’ and so gs(G’) = 5. In fact, this example can be extended
to show that, in the case when k is less than the diameter of a graph G, the
addition of a pendant edge to a connected graph G can result in a graph
whose k-geodomination number is significantly smaller than that of G.

Vo V1 V2 V3 V4 Vs Ve V7 Vs Vg
G : - Oo—=C0 o—o—@® @ 9
X
Yy
Vo Vs Vg
G *—O0—O0——0 —O —&
u

Yy
Figure 6: Graphs G and G’ with gs(G) =7, and g5(G") =5
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Moreover, the addition of a vertex v to a connected graph G such that
more than one edge is incident with v can result in a graph whose k-
' geodomination number is same as G, or is significantly larger or smaller
than that of G, where 2 < k < diamG.

Theorem 3.3  For every pair k, N of positive integers with k > 2, there
exist

(a) a connected graph Ty with diamTy > k and a graph Go such that Gy
is obtained from Ty by adding a vertexr v with more than one edge
incident with v and gx(Tp) = gx(Go),

(b) a connected graph T with diamT; > k and a graph G, such that G,
is obtained from T1 by adding a vertex v with more than one edge
incident with v and gx(T1) — gx(G1) = N,

(¢) a connected graph Ty with diamT> > k and a graph G, such that G2
is obtained from T, by adding a verter v with more than one edge
incident with v and gx(G2) — gx(T2) = N.

Proof. First we verify (a). Let Tp be the path Pagyq : vo,v1,v2,: -+, Ukq
of order ak + 1. By Proposition 2.3, gx(Tp) = a + 1. Now the graph Gy
is obtained from Ty by adding a new vertex u and joining u to vg, v2, and
vik41 for all 1 < i < a — 1. The graph Gy is shown in Figure 7 for k = 4
and a = 3. It can be verified that the set {vo} U {vix : 1 < k < a}isa
gx-set of Go and so gx(Go) = a+ 1 as well.

Vo v V2 U3 2 vs Vs U7 Ug Vg Vo Y11 V12
O O O @

u

Figure 7: The graph Go for k=4 anda =3

Next we verify (b). For each integer ¢ with 1 < ¢ < N, let F; :
Vi1, vi2,- -, Vik—1 be a path of order k — 1. Then the graph 7; is ob-
tained from the paths F; by adding a new vertex v and joining v to each
of the vertices vy for all 1 < i < N. It can be verified that the set
{vigk-1:1<i < N}U{v11,v21} is a gk-set of G and so gx(T1) = N + 2.
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Let G, be obtained from T} by adding a new vertex u and joining u to
each of the end-vertices v; x—1 for all 1 < ¢ < N. Then d(u,v) = k. More-
over, {u,v} is a k-geodominating set of G, and so gx(G1) = 2. Therefore,
9(T1) —gx(G1) = (N +2)-2=N.

Finally, we verify (c). Let the graph T5 be obtained from the N + 2
paths F; (1 < i < N + 2) described in (b) by adding a new vertex v and
joining v to each of the vertices v;; for all 1 < i < N +2. Thus gx(T2) = 2.
Now let G2 be obtained from T, by adding a new vertex w and joining w
to both u and v. The graphs T2 and G are shown in Figure 8 for k = 4
and N = 2.

Gz!

w

Figure 8: The graph Gz for k=4 and N =2

It can be verified that the set {vi; : 1 < ¢ < N+ 1} U {vnp24-1}is a
gr-set of G2 and so gx(G2) = N + 2. The solid vertices in the graph G2 of
Figure 8 indicate a gs-set described above and so g4(G2) = 4. Therefore,
9x(G2) —gx(T2) = N. .

The addition of a pendant edge to a connected graph has similar affect
on k-geodomination number of a graph. An argument similar to one given
proceeding Proposition 3.2 shows that if G’ is a graph obtained by adding
a pendant edge to a connected graph G, then ogx(G’) < ogx(G) + 1. Also,
it is possible that ogx(G') < 0gx(G). Moreover, the addition of a vertex v
to a connected graph G such that more than one edge is incident with v
can result in a graph whose open k-geodomination number is same as G,
or is significantly larger or smaller than that of G. The proof of the next
result is similar to the proof of Theorems 3.3 and is therefore omitted.



Theorem 3.4  For every pair k, N of positive integers with k > 2, there
exist

(a) a connected graph Ty with diamTy > k and a graph Go such that Gy
is obtained from Tp by adding a vertex v with more than one edge
incident with v and ogi (To) = ogr(Go)

(b) a connected graph T with diamT > k and a graph G, such that G4
ts obtained from T\ by adding @ verter v with more than one edge
incident with v and ogi(T1) — ogx(G1) = N,

(¢) a connected graph Ty with diamT, > k and a graph G such that G,
is obtained from T» by adding a vertex v with more than one edge
incident with v and ogi(G2) — ogr(T2) = N.

4 Bounds for k-Geodomination Numbers

In this section, we present upper and lower bounds for gix(G) and ogx(G)
in terms of the number of k-extreme vertices in G, which are similar to the
bounds for ¢(G) and og(G) established in [3].

Theorem 4.1 If G is a nonirivial connected graph of diameter d with
ezactly £ k-extreme vertices and 2 < k < d is an integer, then

max {2, £} < gx(G) < 0gx(G) < 39x(G) — 2¢.

Proof. Certainly, gx(G) > 2 for every nontrivial connected graph G.
Since every k-extreme vertex belongs to every k-geodominating set of G
by Observation 1.2, it follows that max {2, £} < gx(G). By Proposition 1.3,
9x(G) < 0gx(G) for every nontrivial connected graph G. Thus it remains to
verify the upper bound for ogx(G). Let gx(G) = p. If £ = p, then £ > 2 and
the result follows from Observation 1.2. Thus we may assume that £ < p.
We consider two cases.

Case 1. £ # 0. Let S = {uy, ug, ---, ug} be the set of k-extreme
vertices of G and let T = SU { vy, v2, : -, vp—s} be a gg-set of G. For
each j with 1 < j < p — £, since v; is not a k-extreme vertex, v; lies in
some vj; — v;2 geodesic for some vertices v;1,v;52 in G with d(vj1, vj2) = k.
Let TV = T U {vj1,vj2 : 1 < j < p—£}. We show that T" is an open -
geodominating set. It suffices to show that every vertex v € V — S is openly
k-geodominated by two vertices of T”. Assume first that v ¢ T. Since T
is a k-geodominating set of G, it follows that v is k-geodominated by some
pair z, y of vertices in T', which implies that v is openly k-geodominated by
a pair of vertices in 7”. If v € T and v = v; for some j with 1 < j < p—¢,
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then v is openly k-geodominated by vj; and vj2. Hence T is an open
k-geodominating set in G. Therefore,

0gx(G) < |T'| < p+2(p— £) = 3p— 26 = 3gx(G) — 2.

Case 2. ¢ = 0. the proof follows in an identical manner with 7' = {v;,
vy, -+, Up} in Case 1 and is therefore omitted. =

It was shown in [3] that if a nontrivial connected graph G contains no
link-complete vertices, then og(G) > 4. Since 0g(G) < ogk(G) for all k > 1
and a link-complete vertex is a k-extreme vertex, it follows that ogx(G) > 4
for every nontrivial connected graph G containing no k-extreme vertices.
Note that 0g(Cax) = ogi(Cak) = 4 for all cycles Cyi of order 2k with k > 2.
Therefore, by Theorem 4.1 we obtain the following bounds for the open
k-geodomination number of a graph G without k-extreme vertices.

Corollary 4.2  Let k > 2 be an integer. For every connected graph G
without k-extreme vertices,

max{g(G), 4} < ogk(G) < 39x(G)-
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