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Abstract: We reintroduce the problem of finding square *1-
matrices, denoted c-H(n), of order n, whose rows have non-zero
inner product c. We obtain some necessary conditions for the
existence of c-H(n) and provide a characterization in terms of
SBIBD parameters. Several new c-H(n) constructions are given and
new connections to Hadamard matrices and D-optimal designs are
also explored.
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1. Introduction

A Hadamard matrix of order 4n is a square t1-matrix such that the
inner product of any two rows is zero. A Bhaskar Rao design (BRD) is a {0,
1, -1}-matrix whose rows also have inner product zero [2,3] such that
when the -1’s are changed to +1’s, the resulting matrix is the incidence
matrix of a BIBD. Dey and Midha [6] extended the idea of BRD’s to
generalized balanced matrices, what the present authors termed c-BRD's.
These are matrices with entries {0, 1, -1} whose inner products are a
constant value c, an integer not necessarily zero but whose underlying
matrix is still that of a BIBD. We showed that the necessary conditions are
sufficient for the existence of all c-BRD(v,3,A) [7,8,9]. Analogously, in
[9] we defined a c-Hadamard matrix of order k and index ¢, denoted c-H(k),
to be a square matrix of 1’s and -1's such that every row inner product is the
integer c. Put another way, every X = ¢c-H(n) satisfies XXT = (n-c)I + cJ
where I is the identity matrix and J is the matrix of all ones. A Hadamard
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matrix is thus a 0-H(k). It is proved in [9] that if c-H(k) exists, then ¢ = k
(mod 4). This generalizes the well-known result that for every Hadamard
matrix of order k > 4, k = 0 (mod 4). Raghavarao [15,16] with different
terminology studied c-H(n) for ¢ = 1, 2, and proved in any case that,
necessarily, ¢ 2 -1.

In Section 2 we give general necessary conditions on ¢ and n, and
we prove a new generalization to the Menon class of symmetric BIBD's. In
Sections 3 and 4 we study the cases ¢ = 1 and ¢ = -1 especially. In Section 4
we apply these ideas to construct D-optimal r-by-r matrices for r = 2 (mod
4). Sections 5 and 6 deal with higher ¢ values, and we show there are only
finitely many c-H(n) if c+1 is an odd square. This last result also implies
the non-existence of some symmetric designs.

For results on Hadamard matrices see [17] and the references
therein. Any column sum of a Hadamard matrix is even, and the column
sums are always congruent to each other mod 4 [1]. The sum of all the
entries in a Hadamard matrix H is denoted o(H) and is called the excess of H.
Best [1] showed that

n

n?27" /2) <on) s n’'?
where o(n) = max { 6(H) : H is a Hadamard matrix of order n}. There are few
results on the excess of a c-H(n). We return to the topic of excess briefly in
Section 7.

2. Necessary conditions on ¢ and n.

We now determine exactly which ¢’s are allowed for a given n, by
generalizing a well-known result for ¢ = 0.

Theorem 1. A necessary condition for the existence of c-H(n) is that

(n+ cn—c)n—- ¢~ ! beasquare.

Proof: Let X = c-H(). Now XXT = (n- o)l + ¢J, and | XX 1 = | X 2.
Thus, one can see that

IX P = n@-0" " + ca-0"! + .. + -0,

and this reduces to the stated form.
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A consequence of Theorem 1 is that ¢ must be > -1, reproving
Raghavarao’s result. A consequence of the proof is that, if ¢ = -1, then n
must be odd, which also follows from the requirement that ¢ = n (mod 4).
The following theorem is implicit in Raghavarao [16] only for ¢ = 1, 2.
We give the general result.

Theorem 2. Suppose X = c-H(n). If n is odd and ¢ # -1, then

c + . .
n = Tﬁ Jor some integer y. If n is even, then,

clc+ 2) + 44(c + Db% + c*

2(c + 1)

n

Jor some integer b.
Proof: Suppose n is odd. Recall ¢ =n (mod 4). Then the exponentn - 1 in
Theorem 1 is even. It follows that n + cn - ¢ = y2, for some integer y.
Hence,n=(c + yz)/(c+1). Now suppose n is even. Then, by Theorem 1, ¢
# -1, and for some b,

(@ +cn-c)n-c)=b?

(1+c)n? - (2 + 20)n + ¢ = b,
Solving for n, the result follows.

[

In the even case, the plus sign in front of the radical may not be
replaced by a negative sign since, in order that the numerator be positive, it
follows that c? > b%. From this and the second equation in the proof, it
follows that n < c(c + 2)/(c + 1), an impossibility. The following main
theorem is new. Recall that a regular matrix has equal row (and column)
sums.

Theorem 3. Suppose ¢ =n (mod 4). If there exists a symmetric balanced
incomplete block design S = SBIBD(n, (n £y)/2, (c + n +2y)/4), where yz
=n + cn - ¢, then there exists X = c-H(n). Conversely, if a regular X = c-
H(n) exists, then there is a symmetric S = SBIBD(n, (n £y)/2, (c + n +
2y)/4) where y2 =n+cn-c

Proof: We hypothesize a symmetric BIBD, say S, with the parameters
given, and want that when the (’s in S are replaced by minus ones, the
result is X = c-H(n). Suppose we form X by replacing the zeros with minus

51



ones. Suppose Row i and Row j are any rows of X, i # j, and suppose
<Row i, Row j> = c. Let A be the number of overlaps with +1 in each of
Rows i and j. Let t denote the number of +1’s in Row i that overlap -1's in
Row j, and let u be the number of minus ones that overlap in each row.
Then

c= A+u-2tand

n= A+u+2t
Subtracting these gives

n-c=4t
Butk = A +t, by counting plus ones. So, t =k - A. Thus, t (and hence ¢
and u) is independent of the rows selected. These conditions on inner
products give us

n-4k+4A=c. (1)
Now, as A = k(k - 1)/(n - 1) for any symmetric BIBD, we substitute into (1)
and get

n- g+ D _

n-1

Now we clear the equation of fractions and solve for k.

42—k +n’—(c+ Dn+c=0,

k = 4nf:44/(c+ I)n—-c¢
8 1]

C.

- =y
k = > 2)
Now substituting (2) into () and solving for A we get
1= c+nzxly )
4

Conversely, by the regularity hypothesis we may assume there are
k plus ones in each row (and column). Let us consider any two rows R; and

R;,i# j.Let A denote the number of plus ones in R; that overlap plus ones
in R;. Let t denote the number of plus ones in R; that overlap minus ones in
R; (t will also equal the number of minus ones in R; that overlap plus ones
in R; since the number of ones in each row is by regularity the same,
namely A+t). Let u denote the number of minus ones that overlap in R; and
R;. Since <R;, Rj> = ¢, we have

c=A+u-2t
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n=A+u+2t.
Subtracting, we get

n-c=4t
This shows t is independent of i and j. Now k = A + t. Thus

A=k-(n-c)4.
Thus, A is independent of i and j as well. It follows that u is also
independent of the rows chosen. Now form S from X by changing all minus
ones to zeros. It follows by what we have done that

SST=(k-MDI+AJ
from which we infer that S = SBIBD(n, k, A). For any symmetric BIBD, A
=k(k - 1)/(n - 1). Into this we substitute the previous expression for A just
above, and, simplifying, we get

42 -dkn+nt-cn-n+c=0.
Now, by hypothesis X = c-H(n), and from Theorem 1 it follows that y is an
integer where y2=n+ cn - ¢. Thus,

42 -gkn+n?-y? =0.
Solving for k we get k = (n £ y)/2. From this, A = (n + c + 2y)/4.

|

Theorem 3 is a generalization of the well-known result for ¢ = 0
[12, p.371]: A Menon design SBIBD(4u?, 2u? - u, u? - u) exists if and only
if a regular 0-H(4u?) exists.

Theorem 4. Suppose niseven, c=n(mod4)andy = (n + cn — c)ll2

is an integer. Then the symmetric design (v, k, ) = (n, (n-y)/2, (c+n-2y)/4)
fails to exist if n - ¢ is not a perfect square.
Proof: Suppose the design exists but n - ¢ is not a square. By Theorem 3,
the c-H(n) exists, but by Theorem 1, the c-H(n) fails to exist.
|

Theorem 4 is an unusual version of the well-known
Schutzenburger’s Theorem or the Bruck-Ryser-Chowla Theorem [11] for
even n, i.e., that when v is even, k - A is a square (and of course, heren - ¢
= 4(k - A) from the proof of Theorem 3). For applications of Theorem 4:
there is no symmetric BIBD for the parameters (134, 57, 24) or (162, 70,
30) although the conditions of Theorem 3 are met - here ¢ = 2 and in each
case y is an integer, but n - 2 is not a square.

We include Table 1 and Table 2 at the end showing the current state
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of knowledge for ¢ = 1 to ¢ = 17, in each case, for small k, listing the line
in [12] which confirms the SBIBD. When n = c, the corresponding design
is J, the matrix of all 1's. [In Table 1 and Table 2, we actually list
parameters for the design complemantary to J which consists of all zeros
since we use the minus sign in the formulas from Theorem 3 which
correspond to k and A.] When ¢ = n - 4, the design is the identity matrix I.
UNK means the design was previously considered (i.e., listed in [12]), the
necessary conditions are met, but the existence is still unknown. NL means
the necessary conditions are met but the design is not listed, i.e., not known
to exist or parameters too large for inclusion in [12]. DNE means the
necessary conditions are met, but the design was previously indicated in
[12] as not existing.

DNE BCR, used for odd n only, means the necessary conditions
herein are met but the design does not exist because the parameters do not
satisfy the diophantine equation required by the Bruck-Ryser-Chowla
Theorem [11], (abbreviated alphabetically as BCR).

For all n, we examined values beyond n = 3500 such that y in
Theorem 3 is an integer. Of course, when y is an integer, k and A will also
be integers. For each odd n, there are many admissible parameter sets. For
even n, however, it is further necessary that n - ¢ be a square. Admissible
sets of parameters for even n are thus rare. We list odd and even c separately
with a column for n-c in the latter case. For brevity, we list odd c,n only up
to the first few cases too large to be in [12]. For even n, however, we list
all cases for which the necessary conditions are met up to n = 10000. Thus,
for the even case, designs not listed do not exist bcause the necessary
conditions do not hold, and we use ?? to indicate the c-H(n) and
corresponding design might exist.

3. The connection between ¢ = 0 and ¢ = -1.

Row inner products are unaffected by interchanges of rows or
interchanges of columns or, when ¢ = 0, by multiplying a row or column
by -1. Similarly, a c-H(n) with ¢ non-zero remains a c-H(n) if a column is
multiplied by -1 but not when a row is multiplied by -1. Two c-Hadamard
matrices are called equivalent if one is obtained from the other by a sequence
of such operations which leaves row inner products unaffected. Every 0-
Hadamard matrix is equivalent to one in standard form, i.e., such that the
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first row and first column have only +1 in each entry. Every c-H(k) is
equivalent to a c-H(k) with all 1’s in the first row. Such a c-H(n) is said to
be normalized.

Suppose H is a 0-Hadamard matrix of order 4n in standard form.
Then every row after the first has 2n plus ones and 2n minus ones;
otherwise, the row inner product of Row x with Row 1 would fail to be
zero, for 2 < x < 4n. Now, if we delete the first row and first column of
any standard form 0-H(n) forming a matrix, say X, then the inner product of
each pair of rows of X is -1. Thus, in X we have created a (-1)-H(4n-1).
Conversely, suppose a (-1)-H(4n-1) exists; then we construct a 0-H(4n) as
follows. Add a beginning column of 1's to the (-1)-H(4n-1). We have a
matrix with 4n columns and 4n-1 rows and each pair of rows is orthogonal.
By a theorem of Shrikhande and Bhagwandas [18], we can complete the
matrix to a 0-H(4n). This proves the following characterization of all (-1)-
H(k) matrices.

Theorem 5. A 0-H(4n) exists if and only if a (-1)-H(4n-1) exists.

The Hadamard Conjecture is that there exists 0-H(4n) for every n =
1,2, ... . The existence of (-1)-H(4n-1) is thus equivalent to the existence of
0-H(4n). At present, 0-H(4n) exist for all 4n up to 424 according to [17],
and of course for infinitely many other multiples of 4.

4. The case ¢ = 1 and D-Optimal Matrices.

We would like to determine if a construction like that in the
previous section for ¢ = -1 exists in the case ¢ = 1. Curiously, one can find a
natural construction, but the situation for ¢ = 1 turns out to be as different
as possible from that of ¢ = -1 since the natural construction leads to only
one example.

A 1-H(5) is easily constructed by placing minus ones on the
diagonal of Js, the 5-by-5 matrix of all ores. A 0-H(4) can be similarly
constructed. The constant diagonal of minus ones with plus ones elsewhere
leads to the next two easily proved theorems.

Theorem 6. IfX =I-H(5) is in standard form (i.e., Row 1 consists of all
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1’s), then there is a column with four minus ones. (There is one equivalence
class for 1-H(5).)

Theorem 7. A k-H(k+4) exists for every k 2 -1.
Proof: LetH=17J-2I.-
|
Now we investigate the other key feature referred to above -
constant row sums. Any matrix for 0-H(4) is equivalent to one with -1 on
the main diagonal and 1 elsewhere. These have constant row sum of 2. Such
matrices give our natural construction.

4n
Theorem 8. If A = 0-H(4n) satisfies ), a;; = 2 for each i, then the
ji=1
matrix
-1 1 1
1
1 A
1

gives a 1-H(n).
]
A 1-H(9) can not be formed by the method of Theorem 8. From
Theorem 1, if A = 1-H(n), then, since det(A) = (n — 1)@~ ' dm-1
is an integer, 2n - 1 is a square, say (2q + 1)2. Then n = 2¢* + 2q + 1, and
9 is not of this form. This new argument is stronger - it shows, in fact,
that a 1-H(9) does not exist at all. Admissible n for 1-H(n) are recognizable
as the hypotenuses of a class of primitive pythagorean triples (29 + 1, 2q2 +
2q, 2q2 + 2q + 1). The question arises: are there other examples with
constant row sum 2 which would lead to other 1-H(n)? In fact, the useful
idea of constant row sums, critical in the study of excess, has been studied
quite fully and will answer our question. In the Menon class of SBIBD’s
mentioned just after Theorem 3, one can say: [17, p.525] Constant row
sums occur in 0-H(v) if the SBIBD(4N?, 2N? + N, N* % N) exists and v =
4n?. Conversely, constant row sums can occur in 0-H(v) only if v = 4N?
and the constant sum is + 2N. This shows that, surprisingly, constant row
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sum of 2 can occur only for N=1andv=4.

A few 1-H(4k+1) and 2-H(4k+2) were exhibited by Raghavarao
[15] (see also [16, pp.318-319]): a 1-H(n) for for n = §, 13, and 25,
corresponding to y2 = 32, 52, and 72; and 2-H(6). These were studied in the
context of various optimality conditions for weighing designs. One can
apply the 1-H(n) to D-optimal {1, -1}-matrices, as shown by Yang [22].
Suppose n =2 (mod 4), and A and B are commuting matrices with elements
1, -1 such that

AAT 4+ BBT = (n - 0, + 21,

A B
_BT AT
among all n-by-n =1 matrices. These are called D-optimal, and their
construction is an ongoing problem; see [10] and [20]. A list of known D-
optimal designs of order n < 200 is given by Koukouvinos [10]. Now
suppose X = 1-H(n/2). Then the Y constructed as above with X = A =B is
D-optimal. For example, the (61, 25, 10)-design gives a 1-H(61) which in
turn gives a D-optimal design for n = 122 [14].

There are infinitely many n such that a 1-H(n) might exist as for
any odd square, y2, just take n = (1 + y2)/2, from Theorem 2. In fact,
Whiteman [20], using that, for any prime power q, an SBIBD, say A,
exists, with

A = SBIBD(2q"+2¢"'+...+2q+1, ¢, (@~ ¢"")/2),
formed such a matrix A with h=2,v= 2q2 +2q+ 1L, k= q2, A= (q2 - q)/2.
Then he replaced the 0’s in A by -1’s to get X. It follows that XXT = 4(k -
M+ (v-4&-A))=2q2+ QPI+J = (n-DI+]J. Thatis, X is a 1-H(n).
Then the D constructed as above is D-optimal.

The family of examples used by Whiteman is due to Brouwer [5].
In this same family, the case q = 22 gives the example SBIBD(41, 16, 6)
which corresponds to a 1-H(41); see [4,19,21]. When q = 5, one gets
SBIBD(61, 25, 10).

Then the n-by-n matrix Y = [ I has maximum determinant

Theorem 9. [20] There are infinitely many 1-H(n) where n = 2q2 + 2¢q
+ 1 for q = 2, 4, or an odd prime power.
|
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5. codd, ¢ 2 3.

Theorem 10. Suppose there exists S = SBIBD(q® + q + 1, (¢* - 92, (¢°
-3q+2)/4),with q = 1 (mod 4). Then a 3-H(n) exists withn = qz +q+1
Proof: Let X be the matrix obtained by replacing 0’s in S by -1. Then X
is a 3-H(n) since, on the one hand, 4(k - A) = 4[(q2 -Qf2- (q2 -3q+2)/4]=
q*+q-2=q*+q+1-3,and on the other,

XXT = 4k -V 1+@-4&A)T = (n-3)+3].

|

These designs are known to exist for q = 1, 5 (n = 3, 31 in Table

1), and include balf of the admissible parameter sets for c = 3.

Theorem 11. Suppose c and q are odd and suppose there exists
S = SBIBD((c + 1)g* + 2q + 1, [(c + D)@ - (c-1)q}/2, [(c + D -
2cq +c-1]/4).
Then there exists X = c-H(n) derived from S.
Proof: First, y is an integer since n+cn-c=(c + l)2q2 +2(c+1q+1
=[(c+ 1)q + 112 =y Also,
n-y=@C+Dg+2q+1-[c+1)q+11=(c+1)g®+2q+1-
cq-q-1
=(Cc+ 1)q2+q-cq=2k.
Thus, k = (n - y)/2. Next,
m+c-2y)=(c+1g2+2q+1+c-2[c+ g+ 1l=(c+
¥ +2q+1+c-2cq-2q9-2
=(c+1)q2-2cq+c-1=4A
Hence, A = (n + ¢ - 2y)/4. Finally,
4k- M)=4{(n-y)2-(m+c-2y)4)=n-c.
Thus XXT = (n - ¢)I + ¢J, and X is a c-H(n).
[ |
For example, if ¢ = 1, we get the examples due to Whiteman and
Brouwer, and for the case ¢ = 5, it follows that =1, 3, 5 given =9, 61,
161 in Table 1. [In fact, ¢ may be even in the theorem. Analysis shows that
¢=n =0 (mod 4) and q = 1 (mod 4) may occur in the theorem - see Table
2: wheneverc=4jandn=4j+4,orwhenc=12andq=35.]
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6. ¢ even, ¢ = 4.

For even c, admissible parameter sets must satisfy two quadratic
equations and hence are more sparse than for odd c. But the case ¢ = 8 seems
exceptionally sparse (see Table 2). This is no accident as the two trivial
designs 8-H(8) and 8-H(12) are all there are forc = 8.

Theorem 12. If ¢ is even and if ¢ + 1 is a square, then there are only
Jinitely many c-H(n) associated with symmetric designs as in Theorem 3.
Proof: We have y2 = (c+1)n - ¢ and x% = n - ¢ from Theorems 3 and 4.
Combining gives
y> = c+Dn-c = ¢+ 1) +0)-¢c = (c+ ) x%+c?
y2 = v+
where v2 = (c+1)x2. Now as is well-known, there are only finitely many
Pythagorean triples with a fixed leg size c since there are only finitely many

integer factorizations of ¢® = (y + v)(y - V).

|
For ¢ = 8, write 64 = y2 -v: = (y + v)(y - v). Only integer
factorizations of 64 giving an integer pair (y,v) are relevant. As may be
checked, 64x1 = (y + v)X(y — V) givesy+v=64,y-v=1, and y = 32.5,
not an integer. Similarly, 32x2 gives y = 17 - but y is necessarily even (as
nand c are even). 16x4 gives y = 10 and n = 12, Finally 8x8 gives x =0
and n = 8. As there are no more factorizations of 64, the only two examples
of 8-H(n) are the obvious (trivial) ones.
For ¢ = 24, there are only three possible designs, the two obvious
ones (c=n=24,and ¢ +4 =n=28) and (v, k, 1) = (220, 73, 24). In the
latter case, y = 74,

Theorem 13. Suppose ¢ = 4m and 4m + 1 is a square. Suppose
m' +2m* + m+ 1
4m + 1
A)= (4N, 2N - m? - 1, N - m? + m - 1), then the associated X = c-H(4N)

exists.

= 4N. If an SBIBD exists with parameters (v, k,

|
With m = 6 in the theorem, we get the example for ¢ = 24.
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7. Variation of excess.
We start this section with an application of Theorem 1.

Theorem 14. Suppose ¢ 2 1, and X = c-H(n) is in normalized form. Then
o(X) is a square.
Proof: After the first row, each row sum is ¢. So 6(X) = n + (n - 1)c. By
Theorem 1, 6(X) = y2.

|

What can one say in general about the distribution of the excess? Is
it possible that every multiple of 4 between +o(H) will occur for some
member in the equivalence class of a given H? As a partial answer to this
open question, we have the following result.

Theorem 15. Every 0-H(4n) is equivalent to a Hadamard matrix, say H,
such that o(H,) = 4x for some x with -n £x <n.
Proof: Suppose 0-H(4n) is a normalized form Hadamard matrix. Its excess,
the sum of all the entries, is 4n since after the first row of all ones, each
row sums to zero. Consider the left-most column. It contains only plus
ones. Multiply this left-most column by -1. Now o(H) = - 4n (we lost 4n
plus ones and gained 4n negative ones). Now each row after the first has
row-sum of -2. In general, multiplying a column by -1 changes each row
sum by 2 or -2. Multiplying a row by -1 changes each column sum by 2 or
-2. Starting with the matrix with excess of -4n, suppose we next multiply
each row by -1 starting with the bottom row. Then the excess gains 4 over
the previous excess after each multiplication because each row-sum switches
from -2 to 2. In this way the value of 6(H) equals every multiple of 4 from
-4n to 4n. Note the excess will be exactly zero after the bottom n rows have
been multiplied by -1.

]
Acknowledgement: The authors wish to thank Malcolm Greig for
supporting calculations in Table 1 and a helpful reading of the manuscript.

References;
1. M.R. Best. The excess of a Hadamard matrix, Indag. Math. 39 (1977),
357-361.

60



2. M. Bhaskar Rao. Group Divisible Family of PBIBD Designs, J. Indian
Stat. Assoc. 4 (1966), 14-28.

3. M. Bhaskar Rao. Balanced orthogonal designs and their application in the
construction of some BIB and group divisible designs, Sankhya (A) 32
(1970), 439-448,

4. W.G. Bridges, M. Hall Jr, and J.L. Hayden. Codes and designs, J.
Combin. Theory Ser. A. 31 (1981), 155-177.

5. AE. Brouwer. An infinite series of symmetric designs, Math. Centrum
Amsterdam Report ZW 202/83, 1983.

6. A. Dey and C.K. Midha. Generalized Balanced Matrices and Their
Applications, Utilitas Mathematica 10 (1976), 139-149,

7. S.P. Hurd and D.G. Sarvate. On c-Bhaskar Rao Designs (to appear, J.
Stat. Planning and Infer.).

8. S.P. Hurd and D.G. Sarvate. All c-Bhaskar Rao Designs with block size
3 and ¢ = -1 exist (to appear, Ars Comb.).

9. S.P. Hurd and D.G. Sarvate. On c-Bhaskar Rao designs with block size 3
and negative c, (to appear, JCMCC).

10. Christos Koukouvinos. On D-optimal first order saturated designs and
their efficiency, Utilitas Mathematica 52 (1997), 113-121.

11. E.S. Lander. Symmetric Designs: An Algebraic Approach, London
Math. Soc. Lect. Notes Ser. v. 74, Cambridge Univ. Pr., Cambridge, 1983.
12. Rudolf Mathon and Alexander Rosa. 2-(v, k, A) designs of small order,
3-41, The CRC Handbook of Combinatorial Designs, edited by Charles J.
Colbourne and Jeffrey H. Dinitz, CRC Press, Boca Raton, 1996.

13. I. Matulik-Bedenic, K. Horvatic-Baldasar, and E. Kramer. Construction
of new symmetric designs with parameters (66, 26, 10), J. Combin. Des. 3
(1995), 405-410.

14. M.-O. Pavcevic and E. Spence. Some new symmetric designs with A =
10 having an automorphism of order 5, Discrete Math. 196 (1999), 257-
266.

15. D. Raghavarao. Some optimum weighing designs, Ann. Math. Stat. 30
(1959), 295-303.

16. D. Raghavarao. Constructions and Combinatorial Problems in Design
of Experiments, Dover Publications, New York, 1988.

17. J. Seberry and M. Yamada. Hadamard matrices, sequences, and block
designs, 431-560, Contemporary Design Theory: A Collection of Surveys,
Edited by J. Dinitz and D. Stinson, J. Wiley and Sons, 1992.

61



18. Shrikhande, S.S. and Bhagwandas. A note on embedding for Hadamard
matrices, Essays in Probability and Statistics, 673-688, Univ. of North
Carolina Press, Chapel Hill, N.C., 1970.

19. E. Spence. Symmetric (41,16,6) designs with a nontrivial
automorphism of odd order, J. Combin. Des. 1 (1993), 193-211.

20. AL. Whiteman. A family of D-optimal designs, Ars Comb. 30
(1990), 23-26.

21. Tran van Trung. The existence of symmetric block designs with
parameters (41,16,6) and (66,26,10), J. Combin. Theory Ser. A. 33 (1982),
201-204.

22. C.H. Yang. Some designs for maximal (+1, -1)-determinant of order n =
2 (mod 4), Math. Comp. 20 (1966), 147-148.

62



Table 1: Design Paramoeters for c-H(n), ¢ odd
c=1 c=9
n y | k Comment n y | k| A | Comment
1 1 0 J 9 9i0/[o0 J
5 3 1 | 13 [11]1]0 |
13| 5 | 4 3 37 [19] 9] 2 39
251 7 |9 40 45 121/12] 3 84
41 9 |16 172 85 {29[28| 9 | UNK 568
61| 11|25 443 97 [31]33]|11] UNK779
85| 13|36 UNK 976 153 | 39| 57| 21 NL
113 1549 [5] 169 (41| 64] 24 NL
145]| 17 | 64 [5])
c=11
c=3 11 [11] 0 J
3 3|]0fo0 J 15 |13] 1 |
7 5 110 | 31 |19( 6 12
31 ] 11]10( 3 54 71 [29] 21 310
43 | 13[15( 5 | DNE 141 103 | 35| 34 UNK 813
91 (19 /36 DNE 361 115 (37|39 DNE 1073
111] 21 [ 45 NL 155 | 43|56 NL
183| 27 (78 DNEBCR 235 | 53| 91 DNEBCR
c =5 c=13
5 5 0 J 13 |13 0 J
9 7 1 | 17 [15] 1 |
21 (11| 5 6 §3 | 27|13 DNE 96
29 /13| 8 DNE 28 61 |29[16 170
49 |17 )16 171 121 | 41|40 1170
6111921 DNE 311 133 [ 43| 45 NL
89 | 23|33 DNE 780 217 | 5581 NL
105]| 25|40 UNK 1171
141} 29[ 56 DNEBCR c=15
161| 31 65 DNEBCR 15 |15] 0 J
19 [17] 1 |
c =7 139 |47 46 NL
7 710 J 151 |49 51 NL
11 9 1 |
67 | 23|22 DNE 338 c=17
79 | 25127 513 17 |17/ 0} 0 J
191/ 39|76 NL 21 |19 1] 0 |
211 41|85 DNEBCR 69 |35[(17} 4 185
77 [37]20| 5 | DNE 271
157 | 53| 52| 17| DNEBCR
169 | 55|/57(19 NL




Table 2: Design Parameters for c-H(n), ¢ even

n y sqrt{n-c) k A Comment
c=2 2 2 0 0 0 J
6 4 2 1 0 |
66 14 8 26 10 |[Trung, 21
902 52 30 425 | 200 7?
c=4 4 4 0 0 0 J
8 6 2 1 0 |
40 14 6 13 4 97
260 36 16 112 | 48 2?
1768 | 8836 42 837 | 396 ??
c=6 6 6 0 0 0 J
10 8 2 1 0 |
70 22 8 24 8 407
330 48 18 141 | 60 ??
1606 | 106 40 750 | 350 2?
c=8 8 8 0 0 0 J
12 10 2 1 0 |
¢=10| 10 10 0 0 0 J
14 12 2 1 0 |
266 54 16 106 | 42 7
910 100 30 405 | 180 7?
3146 | 186 56 1480( 696 7?
c=12| 12 12 0 0 0 J
16 14 2 1 0 |
112 38 10 37 12 UNK 995
336 66 18 135 | 54 2?
1036 | 116 32 460 | 204 2?
c=14| 14 14 0 0 0 J
18 16 2 1 0 I
78 34 8 22 6 337
210 56 14 77 28 ??
590 94 24 248 | 104 7?
4370 | 256 66 2057 968 2?
c=16 16 16 0 0 0 J
20 18 2 1 0 |
160 52 12 54 18 ??
416 84 20 166 | 66 2?




