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ABSTRACT. In this paper we introduce the edge-residual num-
ber p(G) of a graph G. We give tight upper bounds for p(G)
in terms of the eigenvalues of the Laplacian matrix of the line
graph of G. In addition, we investigate the relation between
this novel parameter and the line completion number for dense
graphs. We also compute the line completion number of com-
plete bipartite graphs K, ,, when either m =n or both m and
n are even numbers. This partially solves an open problem of
Bagga, Beinecke and Varma [2].

1 Introduction

There are a lot of papers in the literature dealing with the concept of line
graph and its generalizations. See, for instance, papers of Broersma and
Hoede (5], Chartrand (7], Behzad (3}, Harary and Norman [9] and Fiol and
Lladé [8].

One of the most recent generalizations of this concept is the super line
graph introduced by Bagga, Beineke and Varma (1, 2].

Given a graph G, the super line graph of index r, £,.(G), is defined as
the graph whose vertices are the r-subsets of E(G), and two vertices S and
T are adjacent in £.(G) if and only if there are edges s € S and t € T that
share exactly one vertex in G. When r = 1 then £,(G) is the usual line
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graph L(G) of G. In [1, 2] the authors give several results concerning to
this novel generalization. For example,

Theorem 1. ([1], Theorem 6) Let G be a graph with g edges.

a) If G is a subgraph of H, then L.(G) is an induced subgraph of
L.(H).

b) For r < 4, L,(G) is isomorphic to a subgraph of L,(G). ]

Clearly, if two r-subsets of edges S and T are adjacent in £,.(G), then each
pair of (r+ 1)-subsets S’ and T” such that S C S’ and T C T” are adjacent
in £y41(G). Thus, if £,(G) is a complete graph, then so is £,41(G). Note
that, if G contains at least two incident edges, then £,_;(G) is the complete
graph K,, where q = |E(G)|.

Motivated by the above facts, the authors of [1] define the line completion
number, lc(G) of a graph G with at least two incident edges as the minimum
index r for which £.(G) is a complete graph.

In this paper we introduce the edge-residual number p(G) of a graph G
and show its connection with lc(G). The edge residual number of G is de-
fined in Section 2, where tight spectral upper bounds are obtained. Next,
following a previous work of the authors [10], we investigate the relation-
ship between the edge-residual number and the line completion number for
complete bipartite graphs and for dense graphs, i.e., graphs with minimum
degree 6(G) > |V(G)|/2. We obtain tight spectral upper bounds for lc(G)
and compute its value for complete graphs and complete t-partite graphs
among other examples. Finally, we consider the computation of lc(G) for
bipartite complete graphs. This computation was proposed as an open
problem in [2], where the authors suggest that a closed formula for this
parameter is unlikely to exist. We obtain the value of lc(Kp, m) when either
n = m or both n and m are even numbers as a first step to solve this
problem.

2 The edge-residual number

Let A be a subset of edges of graph G. We denote by B (A) the set of edges
of G which have at least one vertex in common with some edge in A. In
other words, By, (A) is the set of vertices of the line graph L(G) at distance
at most one of a vertex in A. The eztertior of A is ez(A) = E(G)\BL(A).
We define the edge-residual number p(G) of G as

p(G) = Arcnggcc){lfll: lez(A)] > |A]}.

The edge residual number and the line completion number of a graph are
related by the following easy Lemma.
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Lemma 2. For a graph G,
Ic(G) 2 p(G) + 1.

Proof: Let A C E(G) be a set of edges with cardinality p(G) such that
lez(A)] 2 |A|. Let A’ C ex(A) with cardinality |A|. The pair of sets A, A’
are two non adjacent vertices in £,(g)y(G), which is thus different from the
complete graph. O

We shall derive a spectral upper bound for p(G). A subset T of edges is
an edge bisector of a simple connected graph G if E(G)\T can be partitioned
into two subsets A, A’ with the same cardinality such that Br(A)NA’ = 0.
Recall that the Laplacian matrix L of G is defined as L = D — A, where
D is the diagonal matrix of the degrees of the vertices in G and A is the
adjacency matrix of G. We denote by 0 = po(G) < p1(G) < --- < up(G)
the eigenvalues of the Laplacian matrix of G. The following bound for the
edge bisector of G was obtained in [11].

Theorem 3. ([11], Theorem) Let T be an edge bisector of a connected
simple graph G with m edges. Then,
m(L(G))
TI2 ™ (TG
where L(G) is the line graph of G. O
From the above result we can deduce the following.
Theorem 4. Let G be a connected simple graph with m edges. Then.

po < 3 (1- 238,

(I(0)) M)

The bound is tight.

Proof: Let A be a subset of edges of G of cardinality p(G). Let A’ C ez(A)
such that [A/| = |A|. Then, T = E(G)\(AU A’) is an edge bisector of G
and, by Theorem 3,

#1 (L(G))
which implies inequality (1).
To see that the above bound is tight, take G = K, ,,. We have p,(L(Kp )
=nand pp(Knn) = 2n. By (1), p(Knn) < l%’.J On the other hand, let

W) be a subset of one of the stable sets of K, » with |_12‘-J vertices and Wy
a subset of the other stable set with [3] vertices. Then the set A of edges
of the subgraph of K, ,, induced by W; U W, and its exterior ex(A) have

both cardinality l J Therefore, p(Knn) = I_"T:J a
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8 The line completion number of dense graphs

In this Section we show that, for dense graphs, that is, graphs of order n
and minimum degree 6(G) > n/2, there is equality in Lemma 2. This fact
is used to obtain spectral bounds for the line completion number and actual
values of this parameter for specific classes of graphs.

We use the following notation. For a set A of edges of a graph G, we
denote by (A) the set of vertices which are incident to some edge in A.
Let X, Y be two sets of vertices. We denote by G[X] the subgraph of G
induced by X and e(X,Y’) denotes the edges of G which join one vertex in
X with one vertex in Y.

Theorem 5. Let G be a graph of order n > 2 and minimum degree
8(G) > n/2. Then,
le(G) = p(G) +1.

Proof: By Lemma 2, it suffices to show that lc(G) < p(G) + 1.

Set » = p(G) +1 and suppose that £.(G) is not the complete graph. We
show that this assumption leads to a contradiction.

Let m be the smallest integer such that there are two non adjacent ver-
tices A, A’ in £-(G) such that |[AN A'| =m.

Note that m = 0 implies A’ N B (A) = 0. Therefore A’ C ex(A). But
then |ez(A)| > |A’| = |A| > p(G) contradicting the definition of the edge
residual number. Hence, m > 0. Note that since A and A’ are nonadjacent
in £,.(G), then ANA’ must consist of m independent edges. Let X = (A\A’")
and Y = (A'\A).

Suppose that there is an edge e € E(G)\(AUA’Ue({A), (A"))). Then the
two end vertices of e are either contained in V(G)\(A) or in V(G)\(4'). We
may assume that e € V(G)\(A”). Let ue AN A’. Then (AU {e}\{u}) and
A’ are two non adjacent vertices in £,.(G) whose intersection has cardinality
less than m, a contradiction. Hence,

E(G) = AUA'Ue({A), (A).

In particular, since 6(G) > 0, the set of vertices of the graph is the disjoint
union V(G) = XUCUY, where C = (AN A’). Since the graph is connected
then e(C, X)Ue(C,Y) # 0. Moreover, e(C,X)NA=¢(C,Y)N A" =0.
Suppose that there are two independent edges e € ¢(C,X) and e’ €
e(C,Y). Let u,u’ € AN A’ be incident with e and e’ respectively (we may
have u = u’). Then the sets (A\{u}) U {e} and (A’\{u'}) U {e'} are non
adjacent vertices of £,(G) and their intersection has cardinality less than m,
again a contradiction. Hence, either all vertices in e(C X)ue(C,Y) share
one vertex in C or one of the two sets e¢(C, X) and e(C, Y) is the empty set.
Since |C| > 2, the first possibility implies that §(G) = 1. Therefore, we
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mav assume that e(C,Y) = 0. This implies that the neighborhood of each
vertex in Y is contained in V(G)\C. Since §(G) > n/2 we have |C| < n/2.
Therefore, for each vertex ¢ € C we have |e({c}, X)| > 2.

Suppose that there is an edge e = {c1,c2} € E(G[C])\(AN A’). Let
uy, ug be the edges of AN A’ incident with ¢; and ¢, respectively. Let e,
ez be two edges in e({c1}, X). Then the sets (AU {e1, e2})\ {21, u2} and
(A’U {e}\{u1} intersect in less than m edges of G and are non adjacent in
L.(G), a contradiction. Hence E(G[C]) = An A’. In particular, for each
c€C, le({c}, X)| = n/2.

Since e(C,Y) = @, there is at least one edge e = {z,y} € (X,Y), with
zeXandyeVY. Let D =e({z},X) and u = {c;,c2} € AUA". We
have [D| < |X| -1 < n -3 < |D'| = |e({e1,c2}, X)|. Let D” be a subset
of D' with cardinality |D|. Then the sets (AN D”)\D and (A’ U {e})\{u}
are non adjacent in £,(G) and intersect in less than m edges of G. This
contradiction completes the proof. (]

The-following example shows that the condition on the minimum degree
of the graph in the above Theorem is close to be tight.

Example: Let G be the disjoint union of K,,+; and K,,_;. The minimum
degree of the graph is §(G) = m — 2 = % — 2. Denote by V; the set of
vertices that generate the subgraph isomorphic to K,,+; and denote by V;
the set of remaining vertices in graph G. Then it is easily checked that
p(G) = |E(G[Va))I.

On other hand, let V{* = Vi\{z,y} for some pair of vertices z,y € V;.
Then the sets of edges A = E(G[V;]) U {z,y} and B = E(G[V}]) U {=z,y}
are non adjacent vertices in £,(¢y—1(G). Therefore,

Ie(G) 2 p(G) + 2.

O

As a consequence of Theorems 4 and 5 we obtain the following spectral
upper bound for the line completion number of a dense graph.

Theorem 6. Let G be a dense graph with m edges. Then,

m (. w(LC)
el@) <3 (1 - m(L‘(G») +1

Example: Let G be the graph obtained by adding an edge to K3 x K which
does not produce multiple edges. Then G is a dense graph and Ic(G) =
p(G) +1 > 3. On the other hand, p1(L(G)) = 2.5617 and p10(L(G)) =
7.4728. By applying the above Theorem, we have lc(G) < 4.28. Therefore,
le(G) = 4.

69



When G is a regular graph, the upper bound of Theorem 6 can be sim-
plified. For regular graphs it is a well-known fact (see e.g. Biggs [4]) that

#(L(G)) = p1(G) and pp(L(G)) = 2d.

0
Thus Theorem 6 can be stated in the following way.

Theorem 7. Let G be a dense regular graph on n vertices and degree

d. Let py = p1(G) the second smallest eigenvalue of the Laplacian of G.
Then,

1e(G) < %(2«1 —p)+1.

(]

As an application of the above Theorem we get the following results.
Denote by Ky the complete ¢-partite graph, with each partite set of order
7. Part (i) of the following Theorem was obtained in [2].

Theorem 8. Forn > 2 and k > 1,
() le(Kn) = 3 (21 (12] - D +1,
(ii) le(Kyon) = EH=D 41,

Proof:

(i) Suppose first that n = 2m is an even number. For the complete
graph Kon,, we have p;(Kam) = 2m. Then, by Theorem 7, p(Kapm) <
1(2;—22. On the other hand, the set of edges in the subgraph induced
by a subset of m vertices has cardinality () = &8‘—2) and leaves (7)

edges in the exterior. Therefore, p(Kom) = ﬁ"s—_zl and

n(n —2)

+1.

Let n = 2m 41 be an odd number. The exterior of the set A of edges
generated by a set of m vertices of Ko41 has more than |A| edges,
so that p(Kom+1) > 1("‘7_—11

Suppose that p(Kom41) > ﬂ"z‘—_ll Let A C E(K2m+1) such that
|Al = p(K2m+1)- Since |BL(A)|+|A| < |BL(A)| + |ex(A)| = m(2m +
1), we have

|BL(A)| — |A] < m(m + 2).
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On the other hand, let a = |(A)| and o’ = |(ext(A))|. We have
min{a,a’} > m+1 and |B.(A)| - |A] > a-a’ > (m+1)? > m(m+2),
a contradiction. Therefore p(Kam+1) = %=1 and

m(m - 1) +1

(ii) For the complete ¢t-partite graph Kijox) we have u; (Kfax)) = 2k(t—1).
By Theorem 7, p(Kyax)) < &({_—12 Let X consist of k vertices in
each stable set of the ¢-partite graph and let A the set of edges in the
subgraph induced by X. Then |A| = |ez(A)] = 'a—‘(,;——ll Therefore
p(Kipox)) 2 "—2‘%———1-2 By combining the two inequalities, Theorem 5
gives lo(Kypp) = 4D 41, ]

The following Proposition is another example of application of Theo-
rem 7.

Proposition 9. Let K,, be the complete graph on n > 2 vertices. Then,

le(K;, x K2) = ”—("—2‘—1) +1.

Proof: The Laplacian eigenvalues of K, x Ky can be obtained by all
possible sums of the respective Laplacian eigenvalues of K,, and K. Since
pu1(K2) = 2 and u(Ky) = n > 2, then py(Kn x K3) = 2. Thus, by
Theorem 7, p(K, x K3) < ﬂl‘;—ll = |E(K,)|. Let A be the set of those
edges generated by one of the copies of K, so |A| = |E(K,)| = ﬂ%"—ll

Therefore, p(K, x K3) = ﬂﬁ;—ll and le(K, x K3) = ﬂ"z_‘ll +1. O

4 Complete bipartite graphs

In [2], the authors consider the determination of the line completion number
of complete bipartite graphs as an open problem. They suggest that there
might not be a global formula of this parameter for complete bipartite
graphs because it depends on the parity of n and m as well as its relative
sizes.

In this section we analyze the problem of computing l¢(K, ) when either
n = m or n and m are both even numbers as a first step for solving this
problem.

Theorem 10. Let K, ,, the complete bipartite graph. Then,

le(Knm) = p(Knm) + 1.
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Proof: By Lemma 2, it suffices to show that Ic(G) < p(G) +1=r.

As in the proof of Theorem 5, suppose that there are two non adjacent
vertices in L.(G). Let m be the smallest integer such that m = |AN A’| for
a pair A, A’ of non adjacent vertices in £,.(G).

If m = 0, then A’ C ez(A) and |ex(A)| > |A| > p(G), which contradicts
the definition of p. Thus m > 0.

Let X = (A\A"),Y = (A'\A) andue AN A"

Since there is at least one edge in each of the sets A\A’ and A’\A and
the graph is complete bipartite, then there is a pair of independent edges
e, ¢ such that e € e((u), X) and ¢’ € e({),Y). Thus, the sets of edges
(AU {e})\{u} and (A’ U {e'})\{u} are non adjacent vertices in £,(G) and
its intersection has less that m elements, which lead to a contradiction and
the result follows. O

By using the above Theorem, we compute the line completion number
of Ky, m for several pairs of values of n and m. For our purposes we define
the function odd(n) as 1 if n is odd and 0 if n is even.

Theorem 11. Let 1 <n < m. Ifn =m or n and m are even numbers,

h
e le(Knm) = [%J ([%J +odd(n - m)) +1.

Proof: We consider two cases.
Case 1. n=m.

If n = m is an even number the result follows from part (ii) of Theorem
8. If n =m = 2k 41 is an odd number, then we have #1(Kny) =n. By
Theorem 7, p(Kpn,n) < I_“%J = k?+k. Let X and Y be the bipartition sets

of K, and let A be the set of edges generated by the first & vertices of X
and the first k 4- 1 vertices of Y. Clearly, |A| = |ez(A)|k? + k. Therefore,

p(Knn)=|%| =K+ k and

le(Knp) =k +k+1,

as claimed.
Case 2. n =2k <2¢g=m.
Let X = 2k and Y = 2q be the bipartition sets of Kog 24. Let A; be the

set of edges generated by the first k vertices of X and the first q vertices of
Y. We have |ex(A1)| = |A1|kq and therefore p(Kax 24) > kq.

Suppose that p(K2ak,2¢) > kq. Let A be a set of vertices such that |4| =
p(G) and |ex(A)| > |A|. Let Z; = (A) and Z; = (ex(A)), X; = Z:n X and
Y,=2Z;nY,i=1,2. We have

kg < |A| < |Xy| - [Y1] and kg < |ez(A)| < |X2| - |Y2.
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Since |BL(A)| + |ex(A)| = 4kq, we have |BL(A)| —|A| < 2kg. On the other
hand, the above inequalities imply

IBL(A)| - 14] 2 1X1| - V1] + | X2| - [Y2] 2 2V X4| - I Xz - Yz > 2kq,

a contradiction. Therefore, p(K3k 2,) = kg and p(Koak 2q) = kg + 1. O

We conjecture that the formula above is true for all bipartite complete
graphs.
Conjecture 12 lc(Knm) = |3] (| 3] + odd(n-m))+1,1<n<m. O
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