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ABSTRACT. We provide a hierarchy, linearly ordered by inclusion, describ-
ing various complete sets of combinatorial objects starting with complete
sets of mutually orthogonal latin squares, generalizing to affine geometries
and designs, frequency squares and hypercubes, and ending with (¢, m, s)-
nets.

1. AN OVERVIEW

In 1938 R.C. Bose [2] introduced what has become a fundamental and
classical result in combinatorial design theory by demonstrating an equiva-
lence between complete sets of mutually orthogonal latin squares (MOLS)
of a given order and affine planes of the same order. In the last decade a
number of results have generalized Bose’s result to more complex combina-
torial structures; see for example [14] or [15].

On one hand these generalizations have involved orthogonal frequency
squares and orthogonal hypercubes which are natural but distinct gener-
alizations of orthogonal latin squares, and on the other, affine geometries
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and affine resolvable designs which generalize affine planes. Working in the
same time period from a very different perspective Niederreiter [25] intro-
duced the concept of a (t, m, s)-net. Among the many useful properties (for
example in the numerical integration of high dimensional integrals) exhib-
ited by this latter structure is the ability to find examples which represent
many of the above combinatorial objects. In this sense one might hope to
establish (¢, m, s)-nets as a general unifying structure. Towards this end,
this paper is intended to clarify the relationships between the various com-
binatorial objects mentioned above by providing a linear ordering beginning
with complete sets of MOLS and ending with (¢, m, s)-nets.

In developing this hierarchy space considerations were a limiting param-
eter. In particular this forced the decision to restrict the system to a linear
ordering involving complete sets rather than a more complex partially or-
dered structure which would include various partial designs such as Bruck
nets, orthogonal arrays and transversal designs. However, as a future sec-
ond step, the hierarchy provided here could be expanded to include such
partial designs.

Even then certain relations may be open to interpretation and perhaps
dispute. Affine geometries generalize affine planes by dimension and, on
this basis, our system shows the former generalizing the latter. But all
affine geometries are desarguesian which is not true of all affine planes.

The hierarchy given below holds for prime power orders. For example
Level II, consisting of affine geometries, exists for dimension d > 3 if and
only the order is a prime power. The remaining structures in Levels I-V
exist for all prime powers but it is unknown whether any examples exist in
nonprime power cases. In the case of complete sets of MOLS Mullen, [20],
has nominated the question of their existence in the nonprime power case
as a candidate for the “next Fermat problem”.

It is not clear what the implications would be if one of these structures
were found to exist in a nonprime power case. For example a complete set
of MOLS of order m", for m a prime power, can always be used to construct
a complete set of mutually orthogonal frequency squares (MOFS) of type
F(m";m"—1) by substitutions tothe symbols, [10]. But these substitutions
correspond to blocks of an affine design whose existence, in turn, is also
guaranteed by the fact m is a prime power. If for a particular value of m
that is not a prime power, the MOLS existed, but not the required design,
would a complete set of F(mh; m"*~1) MOFS exist for that m? Specifically,
suppose 99 MOLS of order 100 were discovered. Since it is known that 9
MOLS of order 10 do not exist and that a standard method would require
these order 10 MOLS to construct a complete set of F(100; 10) MOFS from
the 99 MOLS of order 100, the existence of the MOFS would remain an
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open question.

Similarly to construct either a complete set of latin hypercubes or an
affine design from a complete set of MOF'S requires, in both cases, a second
affine design whose points are the rows of the squares and blocks are certain
collections of rows. If the MOFS existed but the second design did not,
would one find a complete set of latin hypercubes or the affine design with
matching parameters?

However, since in this paper all orders are assumed to be a prime power
these issues do not arise.

The basic hierarchy is given in (1) below.

I. affine planes C II. affine geometries
C III. complete sets of frequency
squares and rectangles
C IV. complete sets of typel hypercubes
C V. complete sets of type0Q hypercubes
and affine designs
c VI. (t,m,s)—nets (1)

The objects in Levels I and II of (1) are classical and well-known. Through
the well-known connection between affine planes and complete sets of or-
thogonal latin squares (MOLS), Level I traces its origins back to Euler and
his famous problem concerning the arrangements of 36 officers. A wide va-
riety of relationships connecting such sets to other combinatorial structures
are known, and some are given in Theorem 1 below.

2. MUTUALLY ORTHOGONAL LATIN AND FREQUENCY
SQUARES

Theorem 1. The ezistence of one of the following implies the existence of
all others.

(1) @ complete set of MOLS of order n;

(2) an affine plane of order n;

(8) a projective plane of order n;

(4) a transversal design of index 1, blocksize n + 1, and groupsize n;

(5) an orthogonal array of strength 2, index 1, degree n + 1, and order
n.

An affine plane satisfies the following system of axioms.

A1l There is a unique line joining any two points.
A2 Given a point P and a line £ not containing P, there is a unique
line containing P and not intersecting £.
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A3 There exist three points not on a common line.

An affine geometry, AG(d,n), of dimension d and order n may be con-
structed from the points and (d — 1)-dimensional subspaces and cosets, ie
the (d — 1)-flats, of the d-dimensional vector space (Fy,)¢ over F,, the field
of n elements. Recursively all such k-flats, kK = 0,1,...,d — 1 are them-
selves affine geometries of dimension & with 0-flats corresponding to points,
1-flats to lines, and 2-flats to planes. The points and lines in the 2-flats, ob-
tained in this way, satisfy axioms Al, A2, and A3 above. In this sense it is
natural to view affine geometries as a higher dimensional generalization of
affine planes despite the earlier observation that all 2-flats of d-dimensional,
d > 3, affine geometries, but not all affine planes, are desarguesian.

Frequency squares are squares in which each symbol ¢, i = 1,2,...,m
occurs \; times in each row and column. We will be concerned only with the
case where A\; = A = - .+ = Ap,,. Specifically for m and h positive integers
with m > 2, an F(mP;m"-1) freque ncy square is an m”* x m" array
in which each of m symbols occurs exactly m”»~! times in each row and
column. Two such frequency squares are orthogonal if each ordered pair of
symbols occurs m?*~2 times when one square is superimposed on the other.
A complete set of mutually orthogonal frequency squares (MOFS) of type
F(m"* mh=1) has (m* — 1)2/(m — 1) members; see Hedayat, Raghavarao
and Seiden [4). Such complete sets are known to exist for m a prime power;
see again [4]. The only other known example of complete sets of MOFS
are those of type F(4t; 2t) which exist whenever there exists a Hadamard
matrix of order 4t; see Morgan [18] where a generalization of this result is
discussed. These MOFS will be of type F(m";mh~1) only if t = 2* for
some positive integer k in which case 4¢ will be a prime power.

We will represent an affine resolvable design with blocksize ¥ and n
blocks per parallel class as an AD(k,n). With two parameters given, the
remaining parameters of such a design are fixed. As a design the affine
geometry AG(d,n) is an AD(n%"!,n).

For m a prime power, a complete set of F(mP; mh~!) MOFS will, in cer-
tain cases, give the even-dimensioned affine geometry AG(2h, m). In those
cases in which such a complete set does not give the equivalent affine geome-
try, it will give an affine design whose parameters are consistent with that of
the geometry. So as not to exclude odd-dimensioned affine geometries, and
the affine designs whose parameters match these geometries, we consider as
well complete sets of mutually orthogonal frequency rectangles (MOFR) of
type F(m"*, mh=1; mh=2 mh=1). These rectangles have m” rows and mh~!
columns, and each of the m symbols occurs m”"~2 times in each row and
m?~! times in each column. Two such rectangles are orthogonal if, upon
superposition of one rectangle on the other, each ordered pair occurs m2h~3
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times. A complete set in this case has (m"*—1)(m”"~1—-1)/(m—1) members.
In the interest of conciseness we will focus on the even-dimensional cases
which correspond to square frequency objects. Nevertheless virtually all, if
not all, results extend naturally to the odd-dimensional cases.

The initial result connecting frequency objects and geometries was pro-
vided by Mullen [19] who showed, implicitly, that any affine geometry
AG(2h,m), of even dimension, gives a complete set of MOFS of type
F(m";m"~1). This result motivated a number of others that clarified fur-
ther the relationships between complete sets of MOFS and MOFR on the
one hand, and affine geometries and affine resolvable designs on the other.

In [15], Laywine and Mullen gave an equivalence between affine designs
of type AD(m?*~!,m) and complete sets of MOFS of type F(m";mh-1)
when the MOFS were derived by special substitutions to the symbols of a
complete sets of MOLS. In doing so they gave a characterization of those
sets of MOFS equivalent to an affine geometry. This characterization im-
plied that

Level II C Level III.

Laywine [11] extended the conversion of MOFS to an AD(m?*~1,m)
design to include all sets of complete MOFS of type F(m”;m"~!) for m a
prime power rather than just those obtainable by substitutions to the sym-
bols of MOLS. More recently the same author [13] showed when this conver-
sion could be reversed, and in doing so, characterized those AD(mz""l, m)
designs that could be represented as a complete set of MOFS of type
F(m";m"~1). At the same time he exhibited an AD(8,2) design that
could not be represented as a complete set of F'(4;2) MOFS, thus provid-
ing an explicit proof that the class of complete sets of F(m"; m"*~!) MOFS
is a proper subset of the class of AD(m?"*~1,m) affine designs. In terms of
the hierarchy (1), this showed that

Level III C Level V.

Suchower, [29] and [30], has shown the analogous results connecting
MOFR of type F(m*, m"*~1; m"~2 m"*~1) and the affine geometry AG(2h—
1,mm). Similarly results connecting complete sets of F(m”", m"*~1;mh=2 mh-1)
MOFR with AD(m?"~2,m) affine designs can be obtained by a straight-
forward generalization of the results in [29] and [30].

A hypercube of dimension d, order n and type Oisann xn x--- xn
array with n¢ points and n distinct symbols such that each symbol occurs
n%=1 times in the array. If any 1 € k €£d — 1 coordinates are fixed, and if
each symbol occurs n¢~*%-1 times in the subarray so defined, the hypercube
is said to be of type k. It should be noted that any hypercube of type
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k is also a hypercube of type 0 < § < k. Two hypercubes, regardless of
type, are orthogonal if upon superposition of one on the other, each of the
n? ordered pairs occurs n®~2 times. Since two orthogonal hypercubes of
type 1 and dimension 2 are just orthogonal latin squares we will refer to
type 1, and higher, hypercubes as latin hypercubes. A complete set of latin
hypercubes has (n? — 1)/(n — 1) — d members; see [16].

Consider the array

--0 0
OO =
(= =T
--0 0

In isolation one might view this array as an F(4;2) frequency square, and,
indeed, it is a member of a complete set of 9 orthogonal F(4;2) MOFS. In
fact it is a member of H;, He and Hj, the three non-isomorphic complete
sets of F'(4;2) MOFS first given by Schwager, Federer and Raktoe [27] and
shown below. Two sets of MOFS are isomorphic if the frequency squares
of one set can be transformed into the frequency squares of the other by
permutations on the symbols of some squares and a series of permutations
on the rows and columns of all the squares in the set.

0011 0101 0110 0011 0011 0101 0101 0110 0110
H,: 0011 0101 0110 1100 1100 1010 1010 1001 1001
1100 1010 1001 0011 1100 0101 1010 0110 1001
1100 1010 1001 1100 0011 1010 0101 1001 0110

0011 0101 0110 0011 0011 0101 0101 0110 0110
H,: 0011 0101 0110 1100 1100 1010 1010 1001 1001
1100 1010 1001 0011 1100 0110 1001 0101 1010
1100 1010 1001 1100 0011 1001 0110 1010 0101

0011 0101 0110 0011 0011 0101 0101 0110 0110
Hz: 0011 0101 0110 1100 1100 1010 1010 1001 1001
1100 1010 1001 0101 1010 0110 1001 0011 1100
1100 1010 1001 1010 0101 1001 0110 1100 0011
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However written as

1 10
01 10
10 01
10 01

one might be more inclined to interpret the array as a 4-dimensional latin
hypercube of order 2. As such it is a member of a complete set of 11
mutually orthogonal latin hypercubes given below.

The 9 MOFS of set H; together with the six canonical row and column
squares

0000 0000 0000 0011 0101 0110
0000 1111 1111 0011 0101 0110
1111 0000 1111 0011 0101 0110
1111 1111 0000 0011 0101 0110

are equivalent to an AD(8,2) design isomorphic to the geometry AG(2, 4).
The 11, 4-dimensional latin MOHC of order 2

1 2 3 4 5 6 7 8 9 10 11

0011 0101 0110 0011 0011 0101 0101 0110 0110 0000 0110
0011 0101 0110 1100 1100 1010 1010 1001 1001 1111 0110
1100 1010 1001 0011 1100 0101 1010 0110 1601 1111 0110
1100 1010 1001 1100 0011 1010 0101 1001 0110 0000 0110

together with the 4 canonical hypercubes

0000 0000 0011 0101
0000 1111 0011 0101
1111 0000 0011 0101
1111 1111 0011 0101

are equivalent to the same design. In fact, viewed as orthogonal arrays,
both sets consist of the same 15 arrays.

3. FREQUENCY SQUARES, RECTANGLES AND LATIN
HYPERCUBES

A similar natural identification exists between odd-dimensioned latin
hypercubes and the frequency rectangles we have considered. The natural
question is then: For h > 2 is the class of complete sets of F(m?;mh~1)
MOFS and F(m*,mh~1;mh-1, mh—2) MOFR equivalent to the class of
complete sets of latin MOHC of order m and dimension d > 2h—1? In more
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intuitive terms are frequency squares, at least as far as membership in a
complete set is concerned, simply “flattened” hypercubes which compensate
for the restriction to dimension 2 by permitting greater flexibility in the
repetition of symbols? If the classes are not equivalent

Does the existence of a member of Level III imply the existence of a
member with matching parameters in Level IV, or, alternatively, could the
Level IV member imply the existence of the Level III member?

While it is not difficult to show that hypercubes give a class of designs
at least as large as MOFS, as done in the following theorem, a complete
answer to these questions will be given in Theorem 7. We begin by showing
that

Level IIT ¢ Level IV.

Theorem 2. Form a prime power the ezistence of a complete set of (mh -
1)2/(m—1) MOFS of type F(mh; mh=1) implies the existence of a complete
set of (m?" —1)/(m — 1) — 2h latin hypercubes of order m and dimension
2h.

Proof. Assign coordinates z1,z2,...,Zx and y1,¥2,...,Ys to the rows and
columns, respectively, of the frequency squares where z;,y; € Fr,, the field
of m elements for ¢ = 1,...,h. Fixing any one of these 2k coordinates in
any of the frequency squares defines a subarray consisting of mh=1 rows
if the coordinate is one of z;,z2,...,Tp O m*=1 columns in the case of
Y1,92,...,Yn. Any such subarray contains each of the m symbols m?2h=2
times so that each frequency square gives a latin hypercube. The orthogo-
nality of the MOFS implies the orthogonality of the hypercubes.

It follows from Mullen’s polynomial representation of MOFS [19] that
theré are exactly (m”* — 1)/(m — 1) distinct polynomials of the form a;z; +
@2Zg+- - -+anxp such that none is a multiple of another, and no polynomial
has all zero coefficients. Further, each of these polynomials represents a
unique canonical row square. As well it follows from {12] and [16] that
these same polynomials represent (m”" —1)/(m — 1) orthogonal hypercubes
of dimension 2h, order m, and type at most h — 1. Of these polynomials
there are exactly h with a single nonzero coefficient, and these represent
canonical type 0 hypercubes. The remaining polynomials represent latin or
type 1 hypercubes; in fact it is shown in [16] that the type is exactly one
less than the number of nonzero coefficients.

Similarly, in the context of MOF'S, polynomials of the form by y; +b2y2 +
.+++ bpyn represent a set of canonical column squares, and in the context
of hypercubes, a set of h canonical type 0 hypercubes together with (mh -
1)/(m — 1) — h latin hypercubes.
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Combining the F-squares and canonical row and column squares repe-
sented by polynomials with two nonzero coefficients gives the required

h _1)2 h_ 2h _
(m* —1) +2(m l_h)=m 1—2h

m-—1 m-1

latin hypercubes. B

In summary a complete set of (m"—1)2/(m~1) MOFS of type F(m";m"~1)
together with sets of (m® — 1)/(m — 1) canonical row squares and (m* —
1)/(m—1) canonical column squares can be converted to an AD(m?h~1,m)
design or to a complete set of (m?* —1)/(m — 1) — 2h orthogonal latin hy-
percubes of dimension 2h and 2h canonical type 0 hypercubes.

Corollary 3. If an AD(m?"~!,m) design can be derived from a com-
plete set of (m" — 1)2/(m — 1) MOFS of type F(m";mh=1) using the
above construction, the same design cen be obtained from a complete set
of (m?* —1)/(m — 1) — 2h latin MOHC of order m and dimension 2h.

4. FREQUENCY SQUARES AND AFFINE DESIGNS

Bhat and Shrikhande [1] introduced the characteristic of an affine design,
and used it to distinguish between nonisomorphic designs with the same
parameters. The characteristic is given by the number of special u—tuples
in an AD(k, n) where a special u—tuple is a set of 4 = k/n points contained
in n + 1 blocks of that AD(k,n). Laywine [13] extended this notion of
special u—tuples to that of hyperspecial u—tuples and to orthogonal classes
of special and hyperspecial u—tuples in order to characterize those affine
designs equivalent to a complete set of MOFS. The next theorem from [13]
provides that characterization.

Theorem 4. For m a prime power and h a positive integer, the eristence
of an AD(m?"=1,m) with two orthogonal classes of hyperspecial m*-tuples
is equivalent to the existence of a complete set of F(mh;mh~1) MOFS.

Theorem 4 implies that, where parameters of the MOFS and affine de-
sign are compatible, the class of complete sets of MOFS is properly included
in the class of affine designs. In [13] this was explicitly demonstrated us-
ing the five existing nonisomorphic AD(8,2) designs provides by Bhat and
Shrikhande. Three of these were identified with H;, Hy and H3, the three
complete sets of F(4;2) MOFS displayed in Section 2, and the remaining
two were shown to lack the necessary orthogonal classes of special 4-tuples
to be represented as MOFS. Hence

Level III C Level V.
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5. HYPERCUBES AND AFFINE DESIGNS

In this section we will examine relationships between complete sets of
type 0 hypercubes, type 1 or latin hypercubes, and affine designs. We begin
by stating an equivalence between type 0 hypercubes and affine designs.
This equivalence follows from Theorem 3.2 of Shrikhande (28].

Theorem 5. The eristence of a complete set of (n® — 1)/(n — 1) type 0
hypercubes of dimension d and prime power order n is equivalent to the
existence of an AD(n%"1,n).

Suppose we wish to restrict the complete set from the most general
case of type 0 hypercubes, as above, to the case of d canonical hypercubes
and (n¢ = 1)/(n — 1) — d of at least type 1. In the canonical hypercube
Cr,k = 1,2,...,d symbol s occurs only in all the points in the subarray
determined by setting coordinate z, = sfors =0,1,...,n—1. Inatypej =
1,...,d — 1 hypercube, every subarray determined by fixing j coordinates
contains each symbol n=7-1 times. Then, if the set of (n¢ — 1)/(n — 1)
hypercubes contains d canonical members, Theorem 6 shows the rest must
be type 1 (and higher) so that the set is latin.

Theorem 6. If d members of a set of (n® —1)/(n —1), d-dimensional type
0 hypercubes of order n are canonical the remaining hypercubes are latin.

Proof. Let the canonical hypercube Ci be superimposed on any noncanon-
ical hypercube H. Upon superimposition of the hypercubes orthogonal-
ity requires that in the array z; = s the ordered pair (s,t), for any
t=0,1,...,n— 1, will appear n%~2 times. In turn this implies that any
symbol ¢ occurs n¢~2 times in this particular subarray of H. By repeating
for all s = 0,1,...,n — 1 and then for all k = 1,2,...,d it follows that all
noncanonical hypercubes are latin. B

Lemma 5.5 of Niederreiter [25] showed that any set of n + 1 orthogonal
squares of order n could be transformed into n — 1 MOLS together with
a canonical row and a canonical column square. It follows from Theorem
6 that an analogous transformation can be done for d > 2 if one can find
d canonical hypercubes among the (n¢ — 1)/(n — 1) type 0 hypercubes,
or, equivalently, find d parallel classes among the (n? — 1)/(n — 1) classes
of an AD(n%"1,n) such that the intersection of any k = 1,2,...,d non-
parallel blocks from these classes contains exactly n?~* points. If the d
coordinates are defined so that the levels of each corresponds to the occur-
rences of the symbols of one of the d canonical classes, then each point will
be given uniquely by the coordinates (z;,z2,...,Za). Mullen and Whittle
[24] defined a set of s > d hypercubes of dimension d to be d-orthogonal
if superimposition of any subset of d of the hypercubes gave each d-tuple
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exactly once. Clearly our condition on the d special classes corresponds
exactly to the notion of d-orthogonality defined by Mullen and Whittle in
the case where s = d.

A sufficient condition for the existence of d such classes is the existence
of d — 1 independent prime classes as introduced and studied by Kimberley
[7) and Mavron [17]. Prime classes intersect all other classes in the design
in a manner that resembles the intersections of hyperplanes in an affine
geometry. We require classes where only their mutual intersections resemble
those of prime classes and hyperplanes. It is unknown whether such a
set of d classes can always be found in an AD(n%"1,n), ie. in a set of
(n? - 1)/(n — 1) type 0 hypercubes of dimension d and order 7, so that we
can only conclude that

Level IV C Level V.

This uncertainy suggests the following:

Open Question. Is the existence of every set of (n¢ —1)/(n — 1) type
0 hypercubes of dimension d and order n eguivalent to the existence of d
“canonical and (n®—1)/(n—1)—d latin hypercubes of dimension d and order
n?

In the case of the two nonisomorphic AD(8,2) designs, neither of which
could be represented by a complete set of F'(4;2) MOFS, a computer search
revealed that both contained many collections of 4 classes with the inter-
section properties permitting them to be canonical hypercubes. A similar
computer search of a number of AD(16,2) designs revealed in each design
many collections of 5 canonical classes. While the search of AD(16,2) de-
signs was far from exhaustive, the designs chosen were those which one
would expect to have fewer special p-tuples and so probably less likely to
have canonical classes. Combining Theorem 2 and the example of the last
two of five nonisomorphic AD(8,2) designs gives:

Theorem 7. The class of complete sets of MOFS of type F(m*;mt=1) is
a proper subset of the class of complete sets of latin hypercubes of dimension
2h and order m.

For the sake of completeness we close this section by mentioning two
other notions of orthogonality for hypercubes that have been discussed by
Héhler in [6] and Morgan [18]. In [6] Hohler considers a stronger notion of
orthogonality and shows that for d > 3, a complete set of (n— 1)4-1 Héhler
hypercubes of dimension d exists if and only if n is a prime power (when
d = 2, this notion reduces to the usual notion of MOLS). In [18] Morgan
discusses yet another notion of orthogonality, called equiorthogonality, and
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shows that if m is a prime power, then there exist complete sets of (n —
1)¢/(m —1) equiorthogonal frequency hypercubes of dimension d > 2 based
upon m symbols. While both of these notions are generalizations of the
usual concept of a hypercube, to date no general relationship has been
established between either of these and (¢, m, s)-nets other than in the d=2
case. Accordingly these objects will not be discussed further in this paper.

6. (t,m,s)-NETS

We now give the definition for the fundamental concept of a (t,m, s)-net
in base n, as first discussed by Niederreiter in [25]. Let s > 1 be a fixed
integer. For an integer n > 2, an elementary interval in base n is an interval
of the form

8
E = []lam™%, (a: + 1)n~%),
i=1
with integers d; > 0 and integers 0 < a; < n% for 1 < i < s. For integers
0 <t <m,a(t,m,s)-net in base n is a point set of n™ points in [0,1)* such
that every elementary interval E in base n of volume n!~™ contains exactly
n' points of the point set. We refer to [25] for a systematic development of
the theory and various constructions of nets and to [25,26] for applications
of nets to various areas of numerical analysis. Paper [21] presents a brief
survey of several combinatorial constructions of nets.

For surveys of constructions of (¢, m, s)-nets we refer to [22] and to Clay-
man, Lawrence, Mullen, Niederreiter and Sloane (3] which provides an up-
dated table of net parameters as well as a brief summary of various methods
of net construction. These tables can be found on the Journal of Combina-
torial Designs web page located at http://www.emba.uvm.edu/~colbourn/jcd/]
table-base2.html.

The following results provide connections between (¢, m, s)-nets and com-
plete orthogonal structures discussed earlier in this paper. In [25] Nieder-
reiter proved

Theorem 8. Let n > 2 be an integer. Then there exists a complete set of
n + 1 mutually orthogonal squares of order n if and only if there exists a
(0,2,n + 1)-net in base n.

Theorem 8 was generalized by Mullen and Whittle [24] to

Theorem 9. Let n > 2,1t > 0 be integers. Then there ezists a complete
set of (n**2 —~1)/(n — 1) hypercubes of dimension t+2, order n and type 0
if and only if there erists a (t,t + 2, (n'*2 — 1)/(n — 1))-net in base n.

We also note from Laywine, Mullen and Whittle [16] that complete sets
of MOLS and hypercubes of order n are conjectured to exist if and only if
n is a prime power.
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In Level IV it was shown that complete sets of type 0 hypercubes are
equivalent to certain affine designs so that the Theorems 8 and 9 could be
restated in terms of (t,m, s)-nets and affine designs.

In [23] it was shown by Mullen and Schmid that the existence of a
‘(t,t + k, s)-net is equivalent to the existence of a set of strongly orthog-
onal hypercubes. Strongly orthogonal hypercubes are hypercubes whose
elements are vectors, and whose orthogonality generalizes the usual notion
of pairwise orthogonality. We refer to (23] for the definition, as well as a -
proof of

Theorem 10. Lets>1,n>2,t >0, k > 2 be integers. Then there exist
s strongly orthogonal hypercubes of dimension t + k, order n, and strength
" k if and only if there exists a (t,t + k, s)-net in base n.

Lastly we demonstrate the construction of a net that is not equivalent
to a complete set of type 0 hypercubes, thus showing that Level V in (1) is
strictly contained in Level VI.

Table 1 of [23] provides a complete set of 7 strongly orthogonal hy-
percubes of dimension 4, order 2, and strength 3. Since each of these
hypercubes has exactly 4 occurrences of four symbols all 7 are type 0. By
Theorem 10, these hypercubes are equivalent to a (1,4, 7)-net in base n = 2.
But they are not pairwise orthogonal since superimposition of one of the 7
hypercubes on any one of the remaining 6 produces 8 ordered pairs, each of
which occurs twice, and leaves 8 other ordered pairs unrepresented. Hence
this (1,4, 7)-net in base 2 is not equivalent to a complete set of orthogonal
hypercubes of type 0.

REFERENCES

1. V.N. Bhat and S.S. Shrikhande, Non-isomorphic solutions of some balanced incom-
plete block designs, J. Combinatorial Thy. 9 (1970), 174-191.

2. R.C. Bose, On the application of the properties of Galois fields to the problem of
construction of hyper-Graeco Latin squares, Sankhya 3 (1938), 323-338.

3. A.T. Clayman, K.M. Lawrence, G.L. Mullen, H. Niederreiter, and N.J.A. Sloane,
Updated tables of parameters of (t,m, s)-nets, J. Combinatorial Designs 7 (1999),
381-393.

4. A.S. Hedayat, D. Raghavarao and E. Seiden, Further contributions to the theory of
F-squares design, Ann. Statist. 3 (1975), 712-716.

5. A.S. Hedayat, N.J.A. Sloane, and J. Stufken, Orthogonal Arrays: Theory and Ap-
plications, Springer Series in Statistics, Springer-Verlag, New York, 1999.

6. P. Hohler, Eine Verallgemeinerung von orthogonelen lateinischen Quadraten auf
héhere Dimensionen, Diss. Dokt. Eidgendss, Techn. Hochschule Ziirich, 1970.

7. M.E. Kimberley, On the construction of certain Hadamard designs, Math. Z. 119
(1971), 41-59.

8. K.M. Lawrence, A combinatorial characterization of (t,m, s)-nets in base b, J. Com-
binatorial Designs 4 (1996), 275-293.

87



10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22,

23.

24.

25.

26.

27.

28.

29.

30.

. K.M. Lawrence, A. Mahalanabis, G.L. Mullen, and W.C. Schmid, Construction of

digital (t,m, s)-nets from linear codes, Finite Fields and Applications, Lect. Note
Series of the London Math. Soc. (S.D. Cohen and H. Niederreiter, eds.), vol. 233,,
Camb. Univ. Press, 1996, pp. 189-208.

C.F. Laywine, A geometric construction for sets of mutually orthogonal frequency
squares, Utilitas Math. 85 (1989), 95-102.

C.F. Laywine, Complete sets of orthogonal frequency squares and affine resolvable
designs, Utilitas Math. 43 (1993), 161-170.

C.F. Laywine, On the dimension of affine designs and hypercubes, J. Combin. De-
signs 4 (1996), 235-246.

C.F. Laywine, An affine design with v = m?* and k = m?*~1 not equivalent to a
complete set of F(m*;m?=1) MOFS, J. Combin. Designs 7 (1999), 331-340.

C.F. Laywine and G.L. Mullen, Generalizations of Bose’s equivalence bet com-
plete sets of mutually orthogonal latin squares and affine planes, J. Combinatorial
Thy., Ser. A 61 (1992), 13-35.

C.F. Laywine and G.L. Mullen, Mutually orthogonal frequency hypercubes and affine
geometries, In: Coding Theory, Design Theory, Group Theory, (Eds. D. Jungnickel
and S.A. Vanstone), John Wiley, 1993, 183-193.

C.F. Laywine, G.L. Mullen, and G. Whittle, D-dimensional hypercubes and the
Euler and MacNeish conjectures, Monatsh. Math. 119 (1995), 223-238.

V. C. Mavron, On the structure of affine designs, Math. Z. 125 (1972), 298-316.
L.H. Morgan, Consiruction of complete sets of mutually equiorthogonal frequency
hypercubes, Discrete Math. 186 (1998), 237-251.

G.L. Mullen, Polynomial representation of complete sets of mutually orthogonal
Jrequency squares of prime power order, Discrete Math. 69 (1988), 79-84.

G.L. Mullen, A candidate for the “next Fermat problem”, Math. Intelligencer 17
(1995), 18-21.

G.L. Mullen, Combinatorial methods in the construction of point sets with unifor-
mity properties, Math. Comput. Modelling, 23 (1996), no. 8/9, pp. 1-8.

G.L. Mullen, A. Mahalanabis, and H. Niederreiter, Tables of (t, m, s)-net and (t, 8)-
sequence paremeters,, Monte Carlo and Quasi-Monte Carlo Methods in Scientific
Computing, Lect. Notes in Statist. (H. Niederreiter and P.J.-S. Shiue, eds.), vol. .
106, Springer, New York, 1995,, pp. 58-86.

G.L. Mullen and W.C. Schmid, An equivalence between (t, m, s)-nets and strongly
orthogonal hypercubes, J. Combinatorial Theory, Ser. A 76 (1996), 164-174.

G.L. Mullen and G. Whittle, Point sets with uniformity properties and orthogonal
hypercubes, Monatsh. Math. 113 (1992), 265-273.

H. Niederreiter, Point sets and sequences with small discrepancy, Monatsh. Math.
104 (1987), 273-337.

H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods,
CBMS-NSF Regional Conference Series in Applied Math., vol. . 63, SIAM, Philadel-
phia, 1992,

S.J. Schwager, W.T. Federer and B.L. Raktoe, Nonisomorphic complete sets of
orthogonal F-squares and Hadamard matrices, Comm. Statist.-Theor. Meth. 13
(1984), 1391-1406.

S.S. Shrikhande, Affine resolvable balanced incomplete block designs: A survey, Ae-
quationes Math. 14 (1976), 251-269.

S. J. Suchower, On the mazimal number of mutuelly orthogonal F-hyperrectangles,
Utilitas Math. 36 (1989), 77-82.

S. J. Suchower, Polynomial representations of complete sets of frequency hyperrect-
angles with prime power dimensions, J. Combin Theory Ser. A 62 (1993), 46-65.

88



