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ABSTRACT. The cyclicity of a graph is the largest integer n for which
the graph is contractible to the cycle on n vertices. We prove that,
for n greater than three, the problem of determining whether an
arbitrary graph has cyclicity n is NP-hard. We conjecture that the
case n = 3 is decidable in polynomial time.

1. INTRODUCTION

A simple graph G = (V(G), E(G)) is contractible to the graph H =
(V(H), E(H)) if there is a partition {V|y € V(H)} of V(G) for which the
subgraph of G' induced by Vj, is connected for each y € V(H), and some
edge of G joins V, to V. if and only if yz € E(H).

Recent publications have focused on graph cyclicity. The cyclicity of a
graph is the largest integer n for which the graph is contractible to Cy, the
cycle on n vertices. Cyclicity was introduced in [3] as an aid in the study
of a related invariant called circularity [1, 2, 6]. In [5], formulas are given
for cyclicity in several classes of graphs, and a polynomial-time algorithm
for computing cyclicity of planar graphs is described. Such results lead
one to ask if there is an efficient algorithm for computing the cyclicity
of an arbitrary graph. This article casts doubt on the existence of such
an algorithm, by showing that the problem of deciding if a graph can be
contracted to C is NP-complete for » > 5. Since a graph has cyclicity
n if and only if it is contractible to C,, and not contractible to Crt1, it
follows that the question as to whether a graph has cyclicity n is NP-hard
for n > 4. More precisely, it follows that the question is in the class pNP
when n > 5, and is at least co-NP when n = 4. The case n = 3 remains
open, and may well be tractable.

In what follows, the subgraph of G induced by aset ¥V C V(G) is denoted
by G[V]. A contraction of G to C, will typically be described as a partition
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{Vo, V1, Va, -+, Vo_1} of V(G), indexed over the cyclic group Z, = Z/vZ,
with each G[Vi] connected, and with an edge joining Vi to V; exactly when
k =+ 1. For the rest of this article, » is a fixed interger no smaller than
5.

2. TRANSFORMATION

We now begin our proof that deciding if a graph is contractible to C; is
NP-complete when » > 5. The result is obtained by producing a polynomial
transformation of the known NP-complete problem 3SAT ([4], Theorem 3.1)
to the problem of contracting a graph to C;.

Recall that an instance of 3SAT consists of a pair (U,C), where U =
{Ur,Ua, -, Um} is a set of variables, and C = {C,Ca,---,Cpn} is a set
of clauses. Each clause is a set of three literals: Cj = {l;1,j2,!;3}. Each
literal is either a variable U; or its negation U;. The variables can take on
either of the two values 1 (“true”) or 0 (“false”), where T=0and 0 = 1.
A clause is satisfied if at least one of its three literals has a value of 1. The
problem 3SAT consists of determining if (U, C) is satisfiable, that is, if there
exists a truth assignment to the variables that simultaneously satisfies all
clauses. For convenience of indexing, we regard the values of 0 and 1 that
the variables U; can take on as being 0,1 € Z,..

This section describes how to transform an instance (U,C) of 3SAT
to a graph G, and the following section will prove G is contractible to
C, if and only if (U,C) is satisfiable. We build G in three stages. The
first stage is construction of a graph Gr whose contractions to C; are in
bijective correspondence with the truth assignments of the variables in U =
{U1,Ua, - ,Un}. In the lexicon of [4], G is a “truth-setting component.”
The graph Gr = (Vr, Er) is described as follows.

Vr= {w|k€ZIU{ui(k)|1<i<m, keZ}
Er = {Uk'vk+1 | k€ Zr} U
{uwi(k)ui(k + 1), viui(k), vrui(k+ 1) |1<i<m, k€ Z,.}

The bold lines in Figure 1 show G for a case U = {Uy, Uz, Us}, and 7 = 5.

The second stage in constructing of G involves adding to G “satisfaction-
testing” components, which are encodings of the clauses. This consists of
adding the following new vertices and edges.

Vs={c;|1<j<n}, Es={cvo, cjuz|1<j<n}

The the dashed lines in Figure 1 show satisfaction-testing edges Es.
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The third stage involves addition of “communication edges” Ec (shown
dotted in Figure 1) relating the satisfaction-testing and truth-setting com-
ponents.

Ec={cjui(l) |[1<j<n, =0, 1<p<3}
U{cjui(2) |[1<j<n, ljp=U;, 1<p<3}

Thus, G is defined as V(G) = VrUVs and E(G) = ErUEsUEc. Figure
1 is an illustration of G.

3. RESuLT

The previous section described how to transform and instance (U, C) of
3SAT to a graph G. Now this transformation is used to prove our result.
The following lemmas prove that (U, C) is satisfiable if and only if G is
contractible to C..

Lemma 1: If an instance (U,C) of 3SAT is satisfiable, then the corre-
sponding graph G is contractible to Cy.

Proof. Suppose each variable in U = {U;,---,Um} can be given an
assignment of 0 or 1, so that the clauses C = {Cy,---,Cyr} are simul-
taneously satisfied. We describe a contraction of G to C,. Consider the
following partition of V(G), with indices from Z,:

Vo = {vo}u{wi(0+0;)|1<i<m),

Vi = {w}u{u(l+0)|1<i<m}ulc|1<j<n},
Voo = {v2}U{wi(2+0;)|1<i<m},

Vs = {wa}U{w(8+T5)|1<i<m},

Vot = (o) Uulr— 14T [1<i < m).

The idea is that, for each i and k, u;(k) € Vi_, if U; = 0, but the condi-
tion U; = 1 bumps u;(k) into Vx. We claim that this partition defines a
contraction of G to C,. First, note that each G[Vi] is connected: This is
immediate for k # 1, since vy is adjacent to each u;(k + U;) (by an edge
in ET) regardless of whether U; has value 0 or 1. It is only slightly more
trouble to show that G[V}] is connected. The subgraph of G([V}] induced by
{v1}U{u;(14+T;) | 1 < i < m} is connected for the same reason that G[Vi]
is connected for k # 1. To prove G[V1] is connected, it suffices to show that
each ¢; is adjacent to some u;(1 + U;). This is where the communication
edges E¢ come in. Since Cj is satisfied, one of its literals I;, is true. If
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FIGURE 1. An example of G arising from the instance U =

{UllU'lsua}s Cl = {Uhm’)U_3}’ 02 = {UI:U_le'.?)} of
3SAT, and with » = 5.

l;p = Ui, then U; = 1, and cjui(1) = cju(l + U;) is a communication edge
joining ¢; to u;(1 + U;). On the other hand, if [;, = U;, then U; = 0, and
cjui(2) = ¢jui(1 + U;) is a communication edge joining c; to ui(1 + U;).
Thus is G[V}] connected.

Next, we confirm that some edge of G joins Vi to V; if and only if
k=1x1. Ifk=1+1, then vgv; € E7 joins Vi to V;. Conversely, suppose
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e € E(G) = ETUEsUEg joins Vi to Vi (k #1). Thecasese € Er, e € Es,
and e € E¢ are considered separately. If e € Er, then, by definition of Ep,
either e = vaug41, or e = u;(q)ui(g + 1), or e = vqu;(q), or e = vou;(g + 1),
for some 7, ¢. In the first case, v, € Vg and vgqy € Vgq1,s0 k =1+ 1. In the
second case, u;(q) € V_w; and u;(¢g+1) € Vq+1—U_,7 so k =1x1. In the last
two cases, the edge starts at vy € V; and ends at either u;(q) € Vo_1 UV,
or ui(¢ +1) € Vo U Vy41. Either way, k = | £ 1. Next, suppose e € Eg,
SO € = ¢jug or ¢ = cjva. Now, ¢; € V1, vo € Vo, and vy € Va. Thus e
either joins ¥ to V; or V; to Vs, and either way, k = {4 1. Finally, suppose
e € Ec, so e = cju;(1) or e = ¢cju;(2). Since ¢; € Vi, u;(1) € Vo UV, and
ui(2) € V1 U V4, it follows that k£ = ! & 1. The proof is complete. |

Lemma 2: If G is contractible to C,, then the instance (U,C) of 3SAT is
satisfiable.

Proof. Let {Vi | k € Z,} be a partition of V(G) giving a contraction of
G to Cy, so each G[Vy] is connected, and an edge joins Vi to V] if and only
if k =1+ 1. In order to describe the truth assignments, it is necessary to
first make several observations concerning this partition.

First note that, for each k € Z,, Vi contains exactly one vertex of the
r-cycle Z = vov vav3 - - - v._1vg. To see this, observe that, for any k, one of
the sets Vi or Vi41 must intersect V(Z). The reason is that each edge of
G is either incident with Z, or lies on a triangle that shares a vertex with
Z. Thus, any edge joining Vi to Viy) either touches Z, or lies on a triangle
that does. The vertices of such a triangle necessarily lie in Vi U Vi41, so
at least one of Vi or Vi4) contains vertices of Z. Now suppose there were
a k € Z, for which Vi NV (Z) = B; we show this leads to a contradiction.
Were there such a k, then Z would intersect Vi4; and Vi_; (by what was
said above), and, since Z is connected, it would have vertices in each of
the r — 1 sets Viy1, Veg2, Vi3 -+ Vk—1. The cycle Z could be viewed as
starting in Vi1, passing through Vii2, Vita, etc., eventually going out as
far as Vi1, then returning to Vi41. Then Z would have a positive even
number of edges joining Vits to Vigsy1, 1 < s < 7 — 2, and therefore it
would have at least 2(r — 2) edges. This is a contradiction since Z has
exactly r edges, and » < 2(r — 2) because » > 5. (This is the only place
the condition 7 > 5 is used.) We conclude that each Vi contains one (and
hence, only one) vertex of Z.

By relabeling the indices of the sets Vi if necessary, we can (and do)
assume vx € Vj, for each k£ € Z,. Next, observe that, forany 1 < 7 < m, each
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Vi contains exactly one vertex of the r-cycle u;(0)ui(1) - - -u;(r — 1)u;(0).
The reason is that, since each u;(k) is ajdacent to both vi-; € Vi—; and
vp € Vi, it must be in either Vi_; or V. From this, it readily follows
that if u;(1) € Vo then u;(k) € Vi—, for each k, while u;(1) € Vi implies
u;(k) € Vj for each k.

Now the truth assignments can be made. Notice that, for a fixed 1,
1 < ¢ < m, the vertex u;(1) is adjacent to both vg € V and v; € V4, so it
must be in Vg or Vi. Give each variable U; the following truth assignment.

U = 1 1fu,(1) eV
T Oifu,'(].)GVo

Consider an arbitrary clause Cj = {lj1,1;2,{;3}. The vertex c; is adjacent
to both vy € V; and v, € Vs, so it must be in V;. Since G[V4] is connected,
there must be a path in G[Vi] joining ¢; to vy € Vi. This path begins
with neither edge cjvg nor c;vs, for these lead outside of G[V}]. The only
other edges incident with c; are communication edges in Ec, so the path
must begin with an edge ¢;jui(1) or c;u;(2). In the first case, cju;(1) € Ec
implies l;, = U; for some 1 < p < 3. Combine this with the fact that
u;(1) € V; implies U; = 1, and /;, has a value of 1, so Cj is satisfied. In the
second case, ¢;u;(2) € E¢ implies l;, = U; for some 1 < p < 3. Moreover,
u;(2) € Vi implies u;(1) € Vo, because, as mentioned above, Vi can not
contain more than one vertex of the cycle u;(0)u;(1)ui(2) - - - ui(r — 1)u; (0).
Now, u;(1) € Vo means U; = 0, so the literal /;, = U; is true, and Cjis
satisfied. In this way, every clause is satisfied, and the proof is complete. B

Theorem 1: The problem of determining whether a graph is contractible
to C, s NP-complete for r > 5.

Proof. This problem is in the class NP, for the vertices of an arbitrary
graph can be nondeterministically partitioned into r sets {Vi |k € Z,}.
Then, in polynomial time, it can be determined if this partition is a con-
traction to C; by checking whether each G[Vj] is connected, and if an edge
joins Vi to V; exactly when k =1+ 1 (mod ).

Lemmas 1 and 2 imply that we can transform any instance (U, C) of the
NP-complete problem 3SAT to a graph G such that (U,C) is satisfiable
if and only if G is contractible to C,.. Moreover, as G has r + »|U| + |C|
vertices, the number of steps needed for its construction is bounded by a
polynomial function of the sizes of U and C. Hence, we have a polynomial
transformation from 3SAT to the problem of contracting a graph to C,. It
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follows that the problem of determining whether a graph can be contracted
to C, is NP-complete. [ |

4. CONCLUSION

We have seen that for » > 5 it is NP-complete to determine if a graph
is contractible to C.. Our method does not adapt to proving that the
question of contracting to Cy4 is NP-complete. The problem is that, if G is
built by indexing over Z4 rather than Z,, the proof of Lemma 2 does not
go through. There is a possibility that some V} contains more than one
of the vertices {v; | ¢ € Z4}, and this allows cases where a contraction to
C4 does not yield a truth assignment that solves (U, C). It may be that it
can be decided in polynomial time if G can be contracted to Cy. Work is
currently underway to find an algorithm that does this.

As mentioned in the introduction, Theorem 1 implies that it is NP-hard
to decide if a graph has cyclicity n for n > 4, and the question is in the class
PNP when n > 5, and is at least co-NP for cyclicity n = 4. What about
cyclicity 37 It is easy to see that a connected graph is contractible to Cj
exactly when it contains a cycle, and this can be determined in polynomial
time. A graph has cyclicity 3 if and only if it is contractible to C3 and not
contractible to Cy4. This suggests an open problem.

Conjecture 1: It can be decided in polynomial time if an arbilrary graph
has cyclicity 8. FEquivalently, it can be decided in polynomial time if an
arbitrary graph can be contracted to Cy.
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