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Abstract

We introduce Skolem arrays, which are two-dimensional analogues of
Skolem sequences. Skolem arrays are ladders which admit a Skolem la-
belling in the sense of [2]. We prove that they exist exactly for those
integers n = 0 or 1 (mod 4). In addition, we provide an exponential lower
bound for the number of distinct Skolem arrays of a given order. Compu-
tational results are presented which give an exact count of the number of
Skolem arrays up to order 16.

Introduction

Skolem sequence of order n is an integer sequence of length 2n in which each of
the integers 1,...,n occurs twice, and, for each 1 <4 < n, the two occurrences
of i are distance ¢ apart. Skolem sequences and their generalizations have been
actively studied by numerous authors; see [4] for a comprehensive survey of
known results. Two of the fundamental results on Skolem sequences are the

following.

Theorem 1 [5] Skolem sequences of order n ezist if and only if n = 0 or 1

(mod 4).
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Theorem 2 [1] The number of distinct Skolem sequences of order n is > a3l

In this article, we introduce Skolem arrays, which may be thought of as
two-dimensional generalizations of Skolem sequences and prove analogues to
Theorems 1 and 2. In [2] and [3], Mendelsohn and Shalaby studied Skolem
labellings of several classes of graphs, including paths (Skolem labellings of paths
amount to studying Skolem sequences), trees, and cycles. A 2 x n Skolem array
provides such a (weak) Skolem labelling for the Cartesian products KoOPF,, i.e.
the ladder graphs.

In Section 3 we solve the spectral problem for Skolem arrays: Skolem arrays
of order n exist exactly for n = 0,1 (mod 4). In Section 4, we give an exponential
lower bound for the number of Skolem arrays of order n. Section 5 is devoted to
the so-called split arrays; we show split arrays exist for all orders of the spectrum.
In the last Section, we summarize the results of computational searches that
produced the exact number of Skolem sequences of all orders up to 16 inclusive.
We include an Appendix that provides a list of all distinct Skolem arrays up to
order 5 inclusive.

2 Definitions

Definition 3 Let A be a 2 x n array. Then n is the order of A and the
distance between two positions (a,b) and (c,d) of A is |c—a| +|d - b|.

Definition 4 A Skolem array is a 2 Xn array A in which eachi € {1,...,n}
occurs in two positions of A which are distance i apart. The pair (i,1) is split
if i appears in both rows; otherwise, (i,i) is nonsplit. For 1 <i < n, we define
c1(i) and ca(i) to be the column of the first and second instance of i, respectively,
reading from left to right.

By convention, the Skolem array of order 0 is the empty array. There is one

Skolem array of order 1: . It is easy to see that there are no Skolem arrays

311114 5(3[2]4]2
of order 2 or 3. AT 312 and a1 135 2¢ Skolem arrays of
orders 4 and 5, respectively. In the given array of order 5, ¢(3) = 2 and

C2 (5) =35.

The property of Definition 4 defining Skolem arrays may be restated as
follows:

if (¢,1) is split, then
(@) =a(@) +(@E-1) (1)
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if (¢,%) is non-split then
() =a (2) +1. 2)

3 The spectrum of Skolem arrays

Theorem 5 A Skolem array of order n ezists if and only if
n=0 orl (mod 4).
PRroor. We prove first that there are no Skolem arrays of order n = 2,3
(mod 4).
The sum of all the column labels of A is
n n
S() + i)y =2-) i=n(n+1). 3)

i=1 i=1

Define N = {i : (i,%) is non-split in A}, S = {4 : (4,%) is split in A}.

Using (1) and (2) plus NNS =0 and NUS = {1,...,n}, we have that (3)
equals

Sa@+d (el +i)+d ab)+d (el +GE-1)

iEN ieEN i€S i€S
= 2) a@)+2) a@d+y i+y (i-1)
iEN i€S iEN i€S

n n
= 2) al)+) i-|S|
i=1 i=1

= 23 a@+ 2t g

=1

Hence,
(n+1) +2|8|
i) =" eg,
gc
S0
n(n+1)+2|S| =0 (mod 4) . (4)

Since the number of entries in the first row of A from non-split pairs must
be even, |S| =n (mod 2). If A is a Skolem array of order n = 2 (mod 4), then
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2|S| = 0 (mod 4), so the left hand side of (4) becomes 2(3) + 0 = 2 (mod 4)
which is a contradiction. Similarly, if n = 3 (mod 4) then 2|S| = 2 (mod 4) and
so the left hand side of (4) becomes 3(4) + 2 = 2 (mod 4), also a contradiction.

We complete the proof of the theorem by recursively constructing Skolem
arrays of all orders n = 0 and 1 (mod 4). Our induction on n begins with the
Skolem arrays of order 0 and 1.

Assume that A is a Skolem array of order n. We construct a Skolem array

: n+4d|{n+2
of order n + 4 by adding two columns n 3 el to the left of A and two
n+3|n+2 .
columns ¥ iln+ad to the right. |

Corollary 6 A ladder graph, K,OP,, has a Skolem labelling if and only if
n=0or1 (mod4).

Although the spectrum of Skolem arrays is the same as the spectrum of
Skolem sequences, there is no obvious one-one correspondence between the two
classes. In fact, as n grows, there are apparently more Skolem sequences than
Skolem arrays (see Section 6).

4 The number of Skolem arrays

In this section we give an exponential lower bound for the number of distinct
Skolem arrays of order n. However, we must first develop ways of extending
Skolem arrays.

A Skolem array A of order 2n is vertically split if each value 1,...,2n occurs
in the first n columns. There are exactly four vertically split Skolem arrays of
order 4:

41232 3114 213|124 4111113
3{1|1]4 412312 411113 213(2(4

Using the construction of Theorem 5 on a vertically split array A, it is easy
to see that there are vertically split Skolem arrays of all orders n = 0 (mod 4).

Definition 7 Let A be a Skolem array of order n. Let E be a 2 x 2k vertically
split array, for k > 0. Addn to each entry of E producing E+n. The extension
of A by E, denoted E(A), is the 2 x (n+ 2k) Skolem array formed by appending
the first k columns of E + n to the left of A, and the rest to the right.
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Note that the new arrays created in the proof of Theorem 5 are merely

. 412132
extensions of A by F = 31114

split array A is also vertically split.

( In addition, an extension of a vertically

In a Skolem array of order n there are only two possible locations for the two
values of n: (0,1) and (1,n) or (1,1) and (0, n). In any vertically split array, the
two values of 1 must be horizontally adjacent and located in the middle of the
array. Therefore when extending a Skolem array A of order n by a vertically
split E of order 2k to form E(A) there are four possibilities for the positions of
nand n+1:

n+tl|n | -]~ |n+l

-— —_ e n -— ves f

plus the three others that result from horizontal and vertical reflections.

We note that if we interchange the right-most n and n+1 values in the array
above, the resulting array is also Skolem:

n+l|n|---| - n
—_ - v |41 —_

The analogous interchanges work in the other three cases. We name this oper-
ation on extensions switching and use the notation S(E(A)) for a switch of the
extension F of A. Note that S(E(A)) is vertically split if A is.

Lemma 8 Let A, and Ay be distinct Skolem arrays of order n; E, and E,
distinct vertically split arrays. Then the following hold.
1. E;(A;j) = Ex(A;) implies that i = k and j =1 for alli,j, k,l € {1,2}.
2. For any switch S, S(E;(A;)) # Ex(A) ifi# k orj #£1.
3. S(Ei(A;)) = S(Ex(Ai)) implies that i = k and j = I for all 3,5,k,l €
{1,2}.

PROOF.(1) is immediate. For (3) simply reverse the switch and then use (1).
(2) is immediate if k # i. If k = i, note that in S(Ex(A;)) the value n + 1 is
in a position (a,b) with b = k + 1 or k + n. However, in Ex(4;), n+1isin a
position (¢,d) withd =k or k +n + 1.

We now prove the main theorem of this section.
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Theorem 9 1. Let dy(n) be the number of vertically split Skolem arrays of
ordern. Forn=0 (mod 4), n > 4,

dy(n) > 22572 .12,

2. Let the number of distinct Skolem arrays of order n be s(n). Then s(4) =
8,3(5) = 24 and for n > 5,

2%-2.31 ifn=0 (mod 4);
> n—
3(")—{ g¥=rl) 4 ifn=1 (mod4).

ProorF. (1) For n > 4,n = 0 (mod 4), let A be a vertically split array of
order n — 4. The four vertically split arrays of size 4 gives rise to 4 extensions of
A and switching in these extensions gives rise to 4 more extensions of A. These
extensions of A are distinct by Lemma 8.

Hence,
dy(n) > 8dy(n — 4).

Using equation (2) and the fact that d,(8) = 96, (1) follows.

For item (2) of the theorem, first suppose n is even. We first note that
3(4) = 8 and s(8) = 496 (see Section 6 below). For n > 8 we proceed by
induction on n. Assume the result is true for n — 4 where n > 8 is fixed. Using
the four vertically split Skolem arrays of order 4, we may extend the Skolem
arrays of order n — 4 to obtain

23‘n:1!_2 . 4 . 31

many distinct Skolem arrays of order n (using Lemma 8). Switching these
Skolem arrays multiplies this number by 2 by Lemma 8, and the result follows.

If n is odd, the result follows in a similar fashion from the fact that s(5) = 24
and 3(9) = 1336 (see Section 6 below).

5 Split arrays

In the previous section, we examined the vertically split arrays; that is, those
arrays where each entry occurred in both the first and last half of the columns.
Now we consider what happens if each entry must occur in each row. First, we
show that at least half of the pairs in any Skolem array must be split.
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Theorem 10 If A is a Skolem array of order n, then A has at least (5] split
pairs.

PROOF. Let A be a Skolem array. From (4) in the proof of Theorem 5,

gcl () = %(n(n +1) +2S]).

The sum of the column numbers is minimized when the left-most positions
of the array are used. If n is even, this means that the left § are occupied. If n
is odd, this mea.ns that the "‘1 columns are entirely occupled and there is an
entry in the 2L column. Hence

n . n!n+2! . . .
ch @) > 22,_1 i= . if n is even;
ey E;r + ("—l e+ i s odd.

Therefore,

151 > 131.

A Skolem array A is split if every row pair (i,i) is split. For example,
213|114
4i2(1(3

is split.

Theorem 11 There exists a split Skolem array of every order n, n = 0,1 (mod
4).

PROOF. Note that in any Skolem array, there are precisely four possible
locations for the entries n and n — 1, namely,

n e | =11 -
n-11... - n

and its 3 images under reflections. Thus, the existence of a single split array
gives split arrays with n and n — 1 in all possible locations.

The unique Skolem array of order 1 is split.

Let n =0 or 1 (mod 4). Assume there exist split Skolem arrays for all orders
m, m =0 or 1 (mod 4), m < n. We construct a split Skolem array of order n.

Let k= | 21| + 1. Place only the entries k + 1,...,n as follows:
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n—2iin (1,i+ 1) and (2,n — i)
n—2—1in(2,i+1)and (l,n—i—1),

where i =0,...,| 2=E=1| If n and k have the same parity, we have

n Jk+2] - |k+1 k43| =
n—1] - |k+1]|- |- k+2| | n

if they have opposite parity,

n [ k+3 [k+1] - |k+2] [ =
n—1] - |k+2 | - - [k¥1| - |n

Put kin (1,n) and (2,n — k+1).
Case 1. Suppose n = 0 or 9 (mod 12). Then k = 1 0r 0 (mod 4), respectively.

n k43 k+1 ] = k+2] -
n—1]|--|k+2] = |- |E|E+1|-[n

o

Consider the sub-array consisting of k columns 2=kl . n -k +1. It
contains precisely two occupied positions (1,1) and (2,k). Since k = 0 or 1
(mod 4), k < n, there exists an split array A of order k with k in these two
positions. Use the remaining entries in A to fill the rest of the subarray.

Case 2. Suppose n =1 or 4 (mod 12). Then k = 1 or 2 (mod 4) respectively.
We have

n o Jk+2 =] |- k+1|k+3|=-TF
n—1]-- | k+1] =] |-k k+2| - | n

Since k—1 = 0 or 1 (mod 4), the k — 1 empty columns from 258 +1ton—k
can be filled with a split array of order k — 1.

Case 3. Finally, suppose n = 5 or 8 (mod 12). Then k = 3 or 0 (mod 4),
respectively. We have

n [ k+2 - |- |k+1] k+3] - %
n—1]-- || k+1 |- |k | = k+2 |- | n

Consider the subarray consisting of the k+ 1 columns "—;" to n—k+2. Since
k+1=0or 1 (mod 4), there exists an split array A of order k + 1 with k + 1
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in positions (2,1) and (1,&) and with k in (1,1) and (2, k) (clearly, k+ 1 < n).
Use A without those entries to fill the rest of the subarray. |

We do not know a lower bound for the number of distinct split Skolem arrays
of order n.

6 Computational results

The number of distinct Skolem sequences, o(n), for small n is given in the
following table (see Table 43.20 of [4]).

n 11415 |8 9 12 13
on) | 1]6] 10| 504 | 2656 | 455936 | 3040560

Computer searches (using a C++ program written by the second author)
have yielded the following data (d;(n) is the number of distinct split Skolem
arrays of order n).

n T[4]5 [8 |9 12 13 16

s(m) | 1|8 24| 496 | 1336 | 54272 | 173440 | 10177712
d,n) |0|4]0 |96 |0 4000 | 0 270368

d(n) |1|4]4 |32 [96 |992 |[2512 | 50512

7 More general arrays

Skolem arrays may be generalized to include m by n arrays of multiplicity A
(where XA denotes the number of pairs of each of the labels). For example, the
following

212122
3111113
3111113

is a 3 by 4 Skolem array with A = 2. Another variation is to allow empty cells.
For example, the following

-
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is a 3 by 3 Skolem array with A = 1 that has the minimum number of possible
empty cells. It is an interesting problem (that we do not address) to investigate
these more general Skolem arrays and in particular, classify their spectrums.
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8 Appendix

We include a computer-generated list of all the Skolem arrays up to order 5.
A list of all Skolem arrays up to order 8 has been generated, and is avail-
able on request from the authors. For brevity, our list is up to reflection.
We use an ordered pair notation for Skolem arrays, with a “s” represent-

213114y,
a2 113" written

ing a position on the second row. For example,
(3,3%),(1,2%),(2,4°),(4,1°).

n=1:
1,1%)
n=4:

(2*73*)1 (2’ 4)1 (3’ l‘), (1’ 4.)
(2,2°),(4,3%),(3,1%), (1,4%)

n=>5:
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(3,3%),(2*,4%),(2,5), (4,1*),(1,5%)
(3*,4%),(3,2*),(2,5), (4,1%),(1,5%)
(2*,3%), (3,4*),(2,5), (4,1%),(1,5*)
(2*,3*),(3,5), (2,4%),(4,1*),(1,5%)
(2,3),(2%,4*),(5,3%), (4,1*),(1,5%)
(2,2*),(8,4*),(5,3*),(4,1%),(1,5%)
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