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ABSTRACT. Let PG(n,g) be the projective n-space over the Galois
field GF(g). A k-cap in PG(n,q) is a set of k points such that no
three of them are collinear. A k-cap is said to be complete if it is
maximal with respect to set-theoretic inclusion. In this paper, us-
ing classical algebraic varieties, such as Segre varieties and Veronese
varieties, some new infinite classes of caps are constructed.

1. INTRODUCTION

The aim of this paper is to give some cap constructions in Galois pro-
jective spaces using classical varieties such as Segre varieties and Veronese
varieties. .

Let PG(n,q) be the n-dimensional projective space over the Galois field
GF(q).
A k cap in PG(n,q) is a set of k points such that no three of them are
collinear. A k-cap is said to be complete if it is maximal with respect set-
theoretic inclusion.
The cardinality of the largest cap in PG(n,q) is denoted by ma(n,q). This
number mga(n,q) is known for only a few values of n and ¢, namely
qg+1 ifgisodd
ma(2,9) = { qg+2 ifqgiseven

m2(31q) =q2 +1, ifg>2

ma(r,2) =2",Vr > 2

ma(4,3) =20
ma (5, 3) =56
ma(4,4) = 41.

Finding the exact value of ma(n,q) and constructing an mgy(n,q)-cap in
PG(n,q), in general, appears to be a very difficult problem.
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Hence much work has been devoted to the construction of caps embedded in
various varieties (quadrics, hermitian varieties and so on) or caps admitting
a particularly interesting automorphism group.

Here we do not construct caps which are particularly large, but they are
interesting from a geometric point of view.

2. SEGRE VARIETIES AND CAPS

In this section we generalize the main results of [BBCE], showing that
the caps constructed in the cited paper belong to an infinite family.

Let PG(m, q) and PGk, q) be projective spaces over GF(q) with m, k > 1.
Set N = (m + 1)(k + 1) — 1. For each u = (ug,uy,... ,u4n) € GF(¢™)
and w = (wo, w1, ... ,Wn) € GF(¢**!) define:

(u®w) = (uOvO’uowl)" - UpWE,

ULWO, ULW gy ve s UIWhy e« - s U WOy Urp W1,y - - , U W ).

The Segre variety of the two projective spaces, is the variety S = Sp 1 of
PG(N, q) consisting of all points represented by the vectors (u®w) as u and
w vary over all non-zero vectors of GF(q)™*! and GF(q)*+!, respectively.

The Segre variety has two families of maximal subspaces with dimen-
sions m and k respectively, say M and K, each of which form a cover of
S. Two maximal subspaces from one and the same family are skew; two
maximal subspaces from distinct families meet in exactly one point. We
have [HT]

M = {PG(m,q) @ wlw € PG(k,q)},
K = {u® PG(k,q)|u € PG(m,q)}.

Let S and T be Singer cycles in GL(m+1, ¢) and GL(n+1, g), respectively.
Then the Kronecker product S ® T yields a linear collineation of PG(n, ¢)
fixing S setwise.

Lemma 2.1. [[BBCE], Lemma 2] Each point orbit of S® T contained in
S meets each member of MUK in at least one point.

Assume from now on that n is an even integer.
Let T be a Singer cycle in GL(2n,q). The matrix T is conjugate in
GL(2n,q*") to the diagonal matrix D, = diag(w,w?,... ,w"h-‘) for some
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primitive element w in GF(¢?®). The element w9 +! is a primitive ele-
ment of GF(g"™) and so there exists a Singer cycle S in GL(n,q) which is
conjugate in GL(n,g") to the diagonal matrix
D, = dia,g(w”"“,w“"“”, cwT T,

The Kronecker product S ® T is conjugate in GL(2n2,q) to the Kro-

necker product
D1®D; = diag(w"""'z,w""""""l,w""""’z"'l, UL ),
It follows that the rational canonical form of S ® T' over GF(q) is a block
diagonal matrix
R = diag(Ch, Cs,. .. ,Ch),

being each C; the companion matrix of an irreducible polynomial of degree
2n.
Let g be the collineation induced by R on PG(2n® — 1, q), it fixes n projec-
tive (2n — 1)-dimensional subspaces, say ¥, X2,... ,X,, and all subspaces
generated by them.
q2n -1
Lemma 2.2. (i) The order of g is =1 ;
(ii) The collineation group G generated by g acts semiregularly on PG(2n2-
1’ q) \ (Ui:ll"‘ rnzf')'

PROOF. (i) Let @ = ¢** ! + ¢®"2 + ... + ¢ + 1, then since w is a

primitive element of GF(g?"), it follows that

LK) n 1 - _ '3 n—ll — n3
W@ e — (@t Feta = = (@ T D - 68

whit 8 € GF(g)*, and so the order of g is at most a. Assume that the
order of g is k < a. Then

" 4+2)k » Nk _ — (gt g )R
W@ 2k = (@ etk = = (@ TR

and so we get for instance, w(@~V¥ = 1. It follows that ¢*" — 1|(g— 1)k and
so a divides k, a contradiction.

(ii) Let P be a point of PG(2n?,q) not belonging to U;=,... nX; and
subspaces generated by part of X;s.
Let P = (z,,... ,&,) , where g; is a non- zero vector in GF(g*"). Assume

2n _
g 11. Then there

that P is proportional to P - R? for some ,0 < i <

exists a non-zero element A € GF(Q) such that, for example, Az, = z; Ci
and Az, = 2,C3. This means that C} and C have a common eigenvalue

in GF(q) \ {0}.
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We have A = M@+ = (@"+e+1)ie’ for some j € {0,1,2,...,2n — 1}.
Since A € GF(g), hence A = A" =) = (@"+¢+1)i| Then o(@"+2); —
w(@"+a+1)é and go w(@-1i=1, It follows that ¢2" — 1/(g - 1)i, and s0 at, a
contradiction. 0O

Let § = Sp—1,2n—1 be the Segre variety of PG(2n? — 1, q) fixed by G.

Theorem 2.3. Each point orbit of G on S is a cap of size ¢**~'+...+q+1.

PROOF. Let O be an orbit of G on S. Of course G leaves M and K
invariant, and each G-orbit on S meets each subspace in M in at least one
point (Lemma, 2.1).

Since |M| = |O] = ¢*"! +¢*®2 +...+¢+1 and since two elements in M
are skew, it follows that each element of M meets O in exactly one point.

In the same way, O meets each element of K meets @ in at least one
point and so G acts transitively on K.

Since [K| = ¢" + ¢"~! + ... + ¢ + 1, the stabilizer of a subspace in K is
the subgroup H = [gq""+...+q+1] of order ¢" + 1 of G, and so H fixes K
elementwise.

We conclude that H induces a cyclic linear collineation of order g"+1on
each subspace 7 of K.

In particular, from ([BBCE], Lemma 1] it follows that each H-orbit is
a power of a Singer cycle and so from [E] it is a ¢" + 1 cap.

Suppose that there exists a line £ of PG(2n? — 1, q) meeting O in three
points. Then since S is intersection of quadrics, £ C S and so £ is contained
in some maximal subspace of either M or K. Since each element of M meets
O in exactly one point, it follows that ¢ lies inside a subspace of K. This
means that £ is a trisecant of a Ebert’s cap of size ¢" + 1, a contradiction.
a

As an immediate consequence we have the following corollary.

Corollary 2.4. The projective space PG(2n%—1, q) can be partitioned into
n-projective subspaces of dimension 2n and caps of type O.
Moreover the Segre variety S can be partitioned into caps of type O.

Remark 2.5. The size of the caps constructed as above is small with respect
to the number of points of the space.

It should be remarked, however, that such caps can be projected onto a
subspace S. The projected caps turn out to be fairly big with respect to
the dimension of S.

Example 2.6. Assume n = 4. Consider the group H induced by G on
the projective subspace X of PG(31,q) generated by T;, and £,. Then
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H = (h), where

(C 0
h—(o 02).

Using the software package MAGMA [MAGMA] we showed that for low
values of g, the non-linear H-orbits are caps of size ¢* +...+ ¢+ 1, and
each of them can be obtained by projecting the caps of type O C PG(31,q)
from the subspace generated by X3, and X4.

Proposition 2.7. Let O be a cap of the type described above. Then
O is complete in S if and only if X N O is complete, for all X € K.

PROOF. Suppose that X N O is complete for each X € K. If @ is not
complete, then there exists a point p € S such that O U {p} is a cap. But
the elements of K partition O, hence there exists X € K such that p € X.
So we can add the point p to the complete cap X N O.

Let O be complete. Assume that there exists X € K such that X N O
is not complete. Put = X N O. Since §} is not complete, there exists a
point p € X \ Q such that {p} U is a cap. But O is complete, then there
exists a line £ passing through p meeting O in two points. This line is not
contained in X, because {p} U is a cap. So £N X = {p}. Since elements
of K are pairwise skew, then £ is contained in no one Y € K. Let p;,p2 be
the two points of O NZ\ {p}. Since £ C S, there exists a maximal subspace
Z of S containing ¢. Hence, from the previous argumentation, Z € M,
contradicting the fact that (X NO|=1,forall X e M. 0O

In the proof of Theorem 2.3 we have seen that if X € K then X N O is
a (¢" + 1)-Ebert cap. Since for n = 2 an Ebert cap is an elliptic quadric,
then from the previous proposition it follows the following result.

Proposition 2.8. Let O be a cap of the type described above. If n = 2
then O is complete in S.

Remark 2.9. Since in general, for n > 4 and n even, an Ebert cap is not
complete, then in general caps of type O are not complete.
3. VERONESE VARIETIES AND GENERALIZED INSCRIBED BUNDLES

In this section we consider the following problem. It is known that the
quadric Veronesean of PG(n,q) [HT] is a cap of size g" +... + g + 1.
Can two or more Veronese varieties be glued to obtain a larger cap?

We begin with the following definition.
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Definition 3.1. A generalized inscribed bundle of PG(n, g) consists of all
quadrics of PG(n, q) that are simultaneously tangent to the fundamental
lines of a (n + 1)-simplex of PG(n, q).

The generic quadric @ of PG(n,q), ¢ odd, has equation
Zaij:v.-a:j =0, with a;; € GF(q).
i<j
Denote by A = (a;;) the symmetric matrix associated to the quadric Q.

+1

2
U; of the standard (n + 1) simplex, to be tangent to the quadric Q gives

1
the following (n;— ) conditions

By imposing the condition that the (n lines joining the points U; and

aiiajj —a% =0, withi < j, i=0,1,... ,n.

n(n + 3)

Consider the projective space PG( ,q), where Xgo, X311 ...,

Xn—1n—1,Xo01, X02,-- - , Xn-1n are homogeneous coordinates and map the
quadric of PG(n, q), represented by the matrix A, to the point (ago, @11, -- ,@n-1n
of Pa(ﬁ%ﬂ,q).
Fori,j € {0,1,...,n},i # j define

Qi = X} — XiiXjj-
An immediate generalization of [[BC], Proposition 1] gives the following
proposition.

Proposition 3.2. The quadrics of a generalized inscribed bundle of PG(n,q)

in the quadric-point correspondence, are points of a variety O, obtained by

n+1
2

Proposition 3.3. The variety O, s a cap.

intersecting the ) quadrics Q;;

PROOF. We will prove the result by induction on n.
For n =1, O is a conic of PG(2,¢q) and so is a cap.
Assume the result is true forn —1,n > 2.

Suppose that O C PG (n(n +3)

Let M be a monomial matrix of PG(n + 1, q), say M = diag(agp, ,- .- ,

ay). Using [[CLS], Th 3.1] we can lift M to a matrix M of PGL(n(n 2-I- 3) +

,q) has three collinear points on the line £.

1,q) leaving the quadric Veronesean V, invariant.
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Of course, (M) leaves O invariant. Now, we can choose M in the stabilizer
S in PGL(n + 1,q) of a hyperplane H of (PG(n,q).

From[[HT], Theorem 25.1.7), under the quadratic-point correspondence,
the image of H is a quadric Veronesean V,_;, which is the complete in-
( (rn-1)(n+2)

5 ,q) containing

tersection of V,, and the projective space PG

Vn_l.
Suitably choosing H we can assume that the lifting of M € S is

T — i 2 2 2
M =diag(1,ai,a3,... ,0,_1,1,...,1... ,ap_105).

Such a collineation sends the line ¢ into a line of PG(M—I;M,q)

which is trisecant to a variety O,_1. The inductive hypothesis gives the
result.

Remark 3.4. The variety O, has been studied in [BC]. It turns out that
O is the union of two Veronese surfaces, say Vi, Vs, of PG(5,q). The
intersection of V; and V; is the union of three conics intersecting pairwise
in one point.

For further results on gluings of Veronese surfaces in PG(5,q) see [CHS).

Remark 3.5. The variety O, is the union of Veronese variety V, of

pe(2t3) )

The proof is completely similar to (BC].
Example 3.6. The cap O3 C PG(9, q) is union of 8 Veronese varieties.
Actually it contains the following 8 Veronese varieties.

2 2 2 2
(u1, uruz, urug, U1, U3, Usug, UoUa, U3, UsUy, Uf)
2 2 2 2
(u1, —u1ua, u1ug, U1, U3, UoUs, Ugly, U3, Ugtq, Uj)
2 2 2 2
(1, u1ug, —uus, U1 U4, Uz, UgUg, UoUa, U3, Uslia, Us)
2 2 2 2
(w1, uruz, urus, —u1u4g, U3, Ug U, UpUs, U3, Uglia, Us)
( 2 2 _ 2 2
U7, U1 Uz, U1U3, U1Ug, Ug, —U2U3, Uz Ug, U3, U3U4, U))
2 2 2 2
(uf, uruz, uyus, Uy U4, U3, U2U3, —Ugly, U3, U3, U3)
2 2 2 2
(uf, uru2, urus, U1 us, U3, U2U3, Usliq, U, —U3Ug, UD)

2 2 2 2
(u, —u1u2, —u1us, —U1 U4, U3, —Usls, —UUa, U3, —Ugllq, U3).
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4. A CAP EMBEDDED IN THE KLEIN QUADRIC HS®

In [CHS] a new (2¢® + ¢+ 1)-cap embedded in the Klein quadric H® was
constructed. This cap is the image, via the Pliicker map, of the chords of
a twisted cubic I' of PG(3,q) and of the axes of its osculating developable
e

A chord of T is a line of PG(3, ¢) joining either a pair of real points of
T, possibly coincident, or a pair of complex conjugate points of I'. Let I'*
be the set of osculating planes of T'. If p # 3, dual to the chords of T' are
the azes of I'*. An azis of I'* is a line of PG(3, g), which is the intersection
of a pair of real planes of I'*, possibly coincident, or of a pair of complex
conjugate planes of I'*. The total number of chords of T is ¢ + ¢ + 1.
Dually, the total number of axes of I'* is ¢ + g+ 1.

From now on assume ¢ even.

Let
W0 = {(u?, uv,v?, uw, vw, w?) : u,v,w € GF(q)}

be a Veronese surface of PG(5,q). And let N(V): {(0,q,0,d,¢,0) : a,b,c €
GF(q)} be the nucleus of V, (i.e. the plane of PG(5,q) with contains all
the nuclei of conics of V).

Denote by
(Xo1, Xo2, Xo3, X12, X13, X23)

the homogeneous coordinates of points of PG(5,q).
The linear map

® : (Xo1,Xo2,Xo03, X12, X13, X23) = (Xo01Xo2, Xos + X12, X12, X13, X23)

embeds V in the Klein quadric HE - Xo1Xa3 + Xo2 X13 + Xo3X12 = 0. The
Veronese surface embedded in H5 is:

V = {(v?,uv,v? — uw,uw, vw, w?) : u,v,w € GF(g) U {o0}}.
Also, the map ® sends the nucleus of V to the plane
N®©W):{(0,a,b,b,¢,0):a,b,ce GF(q)}.
The axes of a twisted cubic of PG(3,q) give a Veronese variety V em-
bedded in H5, (see[CHS]) and it is:
V = {(u?, w, uw, v® — uw,vw, w?) : u,v,w € GF(q) U {o0}}.
Its nucleus is
N®©):{(0,a,b,b,c,0): a,b,c € GF(g)}.
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Hence, we have the following result.
Proposition 4.1. N(V) = N(V).

Remark 4.2. The two Veronese varieties embedded on H® are distinct, (see
[CHS)).

The equations of the conic C, obtained by sectioning #* with the nu-
cleus N(V) are

Xo2X13 +X33 =0
C:
X =X13=0

The two surfaces V and V meet in the following conic:

Xo1 Xog + X023 =0
C' : Xog = X13 =0
Xoz = X12
Since g is even the conics C and C’ represent reguli of lines of PG(3,q).
The regulus corresponding to C is Rc = (M1, M3, M3), where

M, = (0,0,0,0,1,0), M, =(0,1,1,1,1,0), M5 = (0,1,0,0,0,0).
The regulus of tangents to I' (i.e. the regulus represented by C’) is:
Rer = (Ly, L, L3)
where:

L =(,0,1,1,0,1), L, = (0,0,0,0,0,1) Ls = (1,0,0,0,0,0).

By using the mutual invariant [HT] we see that the second regulus is the
opposite of the first.

Proposition 4.3. The set VUV UC is a cap.

PROOF. Assume by way of contradiction that there are three collinear
points P, P2, P; on VUV UC, and let L be the line containing these three
points. The line L is contained in 5, since it contains three points of 5.
Since VUV is a cap (see [CHS]) and since V (respectively V) and N (V)
are skew we have only to consider the following cases.

() PoPjeVand P eC,i#j#k#i,14,5,k€{1,2,3}.
(i) P,PjeVand P, €C,i#j#k#i,i,5,k€{1,2,3}.
(ili) P,,P;jeC and P eC,i#j#k#1i,i,5,k€ {1,2,3}.
(iv) ,eV\C,PjeV\C and P, €C,i#j#k#1,i,5,k€ {1,2,3}.
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Let £,¢' and £" be the three lines in PG(3,q) corresponding to the
points P;, P, and P;. Since L is a line of H® the lines £,¢' and ¢" belong
to the pencil of center p.

CASE (i). Let Q be a conic of V passing through P> and Ps. Then

the conic plane wq, (that is the plane meeting V in ), contains the
line L. Since wg meets the nucleus N(V) in exactly one point, we have
1o NN (V) = P,. Hence P, is the nucleus of § in nq, contradicting the fact
that through P, there passes the line L that is a secant of 2.

CASE (ii). It follows from the previous CASE (i) by duality (see [HT]).

CASE (iii). In this case the contradiction follows from the fact that the
lines £, £’ and ¢" are in a pencil and one on them is in the opposite regulus
in which the other two lie.

CASE (iv). Let P, = (u?,uv,v? — uw, uw, vw,w?) be the point of V
and P; = (%, wv,ww, v — W, 7w, @) that of V. If the line P, P; meets
N(V) then Au? = pu?, \w? = pv?, \w? = pw?. It follows that such line
meets the plane N (V) outside C. Hence also this case is not possible.

This completes the proof. O

Remark 4.4. Using the software package MAGMA [MAGMA] we found
that for the first values of ¢ (g even) the cap constructed in Proposition 4.3
is complete. In a recent paper A.Blokhuis and P.Sziklai [BS] proved that

any complete cap on the Klein quadric has size at least cons-q% Hence
our cap reach the above lower bound.
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On Groups with Redundancy in
Multiplication!

M.M. Parmenter

Following the terminology in (2], we define a By-group to be
a group G which satisfies the following condition:

If {ay,...,a:} is a k-subset of G, then |{a;a;]1 < i,5 < k}| <
k(k+1)
—

As in [2] and [3], we will use the notation {a,as,...,ai}* to
denote {a;a;|1 < 1,5 < k}.

Clearly all abelian groups are Bji-groups, as are all non-

k+1
abelian groups of order < ﬂ——-l-—) The interesting problem

is to determine which other nonabelian groups are Bj-groups.
When k = 2, Freiman [4] showed that a nonabelian group is a
Bs-group if and only if it is a Hamiltonian 2-group. It appears
that this is the only value of k¥ for which a complete charac-
terization has been given, but Brailovsky (3] proved that when
k > 2 a nonabelian Bi-group must be finite of order < 2(k®- k).
The corresponding notion of Bj-rings has been investigated by
Bell and Klein in [2], and the same authors studied a related
redundancy condition on rings in [1]. We would like to thank
Howard Bell for several helpful conversations on this topic, and
for providing us with a copy of [2].

In this note, we give a complete characterization of By-
groups in the cases k = 3,k = 4. Specifically, we show that
the only nonabelian Bj-groups in these cases are those of or-

der < FE+D)

behaviour does not extend to k = 5.
The first half of the proof of the k = 3 case is essentially the
same as the proof of Lemma 4.3 in [2].

. We then give an example showing that this

1This research was supported in part by NSERC grant A-8775.
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Theorem 1 A nonabelian group G is a Bs-group if and only if
G is isomorphic to Ss.

Proof.
Assume that G is a nonabelian Bs-group. We will show first that
if ,y are two noncommuting elernents of G, then <z,y>=8;.

To see this suppose first that z2 = 1 and y? # 1. Note that
{z,y,zy}? contains the 6 distinct elements 1, zy,y,yz,y? yzy,
so any other element in {a: v, :cy} must equal one of these.
The only possibility for zy? is zy? = yz, while the possibilities
for zyry are zyzy = 1,yz, or y?. The latter two cases are
incompatible with zy? = yz, so we are left with zyzy = 1 and
ry? = yz. But this means that y*® = z%y® = zyzy = 1, and so
< z,y >= S3 as desired.

Next note that if z2 = 1 and y? = 1, then (zy)? # 1 (since
zy # yz). Since < z,y >=< z,zy >, we are in the case covered
by the previous paragraph.

Finally assume z? # 1 and y # 1. Since {1,z,y}? contams

the 6 distinct elements 1, z,y, z2, ry, yz, we conclude that y?
z? in this case. But then consider {z,y,zy}? It contains the
6 distinct elements z2, zy, 2%y, yr,yry, zy®. Hence ryz equals
one of these elements, and the only possibility is zyz = yzy.
Similarily we must have zyzy = z? or yz, but these are both
incompatible with zyz = yzy. We conclude that this case is
impossible.

Now let z,y be any two noncommuting elements of G. We
have shown that < z,y >& 53, and may assume that z? =
1,43 =1 and yz = zy?.

We wish to prove that < =,y >= G. Assume to the con-
trary that z €< z,y >. We may assume that z and z don’t
commute (otherwise replace z by yz). It follows from our ear-
lier argument that < z,z > S3. Since 22 = 1, either 2°> =1

or (;z:z) = 1. Replacing z by zz if necessary, we may assume
that z3 = 1. But then {z,y,2)} contains the 7 distinct elements
1,zy,z2,yz,y% yz2, 2%, and we have a contradiction. a
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The proof for the k = 4 case follows along similar lines but is
somewhat longer, primarily because of the proof of the following
lemma (let D,, denote the dihedral group of order n and Kj the
quaternion group).

Lemma 2 If z,y are noncommuting elements of a By-group,
then < z,y > is isomorphic to one of S3, Dg, K3, Dyo.

The main result follows reasonably directly from Lemma 2.
Because of this, we will give the proof of Theorem 3 first and
later outline the argument for Lemma 2.

Theorem 3 A nonabelian group G is a B4-group if and only if
G is isomorphic to one of Si, Ds, Ks, D1o.

Proof of Theorem 3.

Let z,y be noncommuting elements from a nonabelian B4-group
G. Then < z,y > is isomorphic to one of S3, Dg, Kg, D1o. We
will prove that G =< z,y > in all cases.

First assume < z,y >= Dg or Djp. We may also assume
z? =1,y =1 or y° = 1, and yz = zy~'. Note that {z,y,zy}’
contains the 8 distinct elements 1, zy, y, yz,v% yzy, zyz, Ty’
Hence, if z €< z,y > we would have 11 distinct elements in
{z,y,zy, z}, giving a contradiction. So < z,y >= G in this
case.

Next assume < z,y > Kg and z* = 1,y? = z?%,yz = z¢°.
Say z €< z,y >. We can assume that z does not commute
with z (otherwise use yz). By Lemma 2, since < z,z > con-
tains an element of order 4 we know that < z,2 >= Dg or
< z,z > Kg. But if < z,2 >= Dg, then < z,z >= G by the
previous paragraph. So we may assume < z,z >= Kj. It fol-
lows that 22 = z2(= y?) and zz = z2%. Now {z,y, zy}® contains
the 7 distinct elements z2, zy, 2%y, yz,yzy, ryz, zy?. Also the
elements zz,yz, zyz, zz are distinct, so {z,y, zy, z}2 has 11 dis-
tinct elements and we have a contradiction. Again G =< z,y >.
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Finally assume that < z,y >~ S; and z? = 1,3® = 1,yz =
ry?. Say z €< z,y >. We may assume that 2z does not commute
with z, and the only case not settled is where < =,z > §3. We
may assume z is of order 3 (using zz if necessary), and so zz =
z2z%. But now {z,y, zy, z}’ contains all 6 elements of < z,y >
plus the 5 additional distinct elements zz,yz,zyz, 2%, zz. We
again have a contradiction and conclude that G =< z,y >.

a

Now we return to the lemma.

Proof of Lemma 2.

This argument is divided into a number of cases, depending on
the orders of z and y. Initially we will consider the situation
where one of the generators (say z) is of order 2.

First assume that 72 = 1 and that y is of order 8. Then
{z,y,1% 33} contains the 9 distinct elements 1, zy, zy?, zy?,y%,
v, v*,v°%, 3% Hence either yz or y3z must be equal to one of
the 9 elements listed. The only possibility for yz is yz = zy*
(note yz = zy? implies y*z = zy® = z), while the only possi-
bility for y3z is y®z = zy (note y3z = zy® implies yz = zy)
and this would then give yz = zy3. So yz must equal zy® in
either case. But then {:z:,y,:l:y,gf}2 contains the 11 distinct el-
ements 1,zy,y, zy% vz, ¥%, yzy, %, 2yzy, y’z, y’cy. We have a
contradiction, so this case doesn’t occur.

Next assume that 2 = 1 and that the order of y is greater
than 6 but not equal to 8. In this case {x,y,y2,y3}2 contains
the 10 distinct elements 1, zy, zy?, zy3, yz, ¥%, v3, v*, v°, ¥® (note
yz = zy? implies y = yz? = y* while yz = zy® implies y = ¢°).
It follows that y2z must equal one of these ten elements and the
only possibilities are y?z = zy? or y’z = zy® (note y’z = zy
implies y = z?y = y*). Similarly we must have y°z = zy?
or y®z = zy®. But y’z = zy? and y3z = zy> together imply
yz = zy, while y’z = zy® and y3z = zy® give y°z = zy° and
y®z = zy*. Hence we obtain a contradiction and this case also
cannot occur.
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Now assume that z? = 1 and that y is of order 6 Hence
{z, y, ,ya} contains the 9 dlstlnct elements 1, zy, zy?, zy3, yz,
v?, v, 9%, y5. So either y?z or y3z must equal one of these mne
elements. The only possibilities are y? a: = zy? or ¥’z = 1y
(for example ¥’z = zy® would imply y*z = zy® = z). But if
v’z = zy? , then {x,y, Ty, 3} conta.lns the 11 distinct elements
L, zy,y,2y°% yz, 9% yzy, v', 297, 42, 482y, Also, if 43z = zy?
then {a:, Y, my, 3,{2}2 contains the 11 distinct elements 1, ry, y, Ty?,
yz,y%, yzy, y3, oy® ,y T,y Again we have a. contradiction.

The next case is where z2 = 1 and y® = 1. Observe that
{x Y, xy,yz} conta.lns the 10 distlnct elements 1 zy,y, zy ,y:t:,
%, yzy,y° 2y, y* (note yz = zy? implies y = yz? = y*, zy°
yz implies y = y®). Now y%z must equal one of these elements,
and the only possibility is y?z = zy® (note y?z = ry implies
v = y*,y%’z = zy? implies yz = zy). But then yz = ybz = zy?,
and so in this case we have < z,y >2 D,o which was one of the
possibilities.

Next assume z? = 1 and y is of order 4. If yr = zy3, then we
have < z,y > Dg, so assume this is not the case. But then sim-
ilar reasoning to that seen before tells us that {z,y, zy, y3}2 con-
tains the 11 distinct elements 1, zy, y, zy3, yz, ¥?, yzy, zv?, z, vz,
y3zy, and we have a contradiction.

We now assume z? = 1 and y® = 1. If yz = zy? then
< z,y >= S;, so assume that this is not the case. Then
{z,y,zy,y*}* contains the 10 distinct elements 1, zy, y, zy?, yz,
v, yzy, ¢, y’z, y?zy. In this case, zyz and ryzy must both equal
elements which are already listed. But the only possibilities for
Tyz are zyr = yzy or zyz = y’zy, while the possibilities for
Tyzy are Tyzy = yz or zyzy = y’z. Checking case by case,
we see that each combination of these possibilities leads to a
contradiction.

If £2 = 1 and y? = 1 then (zy)? # 1 (since zy # yz), so we
can assume we are in one of the cases already considered.

To finish the argument, we need to handle cases where nei-
ther z nor y is of order 2.
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First assume that z2 # 1 y #1 andz =y Ifyz =y, it
will then follow that y® = yz* =zy’z =y",s0y* =1l and G =
Ks. Hence we may assume yz # :cy"’ Then {:c :L' ,y, a:y} con—
tains the 10 distinct elements z2, z4, zy, 2%y, 2%y, o'y, yz, y=°,
yzy,zy® (note 23 # 1 since z? = yz, also yz® = zy implies
zyz = yz* = z'y). Hence zyz must be equal to some element
in this list, and the only possiblity is zyz = yzy. But then
zyz?® is distinct from all elements in the list, and we have a
contradiction.

Next assume that z? # 1,y> # 1,22 # y?, and also that
zyz # y and yzy # z. We may also assume (zy)? # 1 or we
would be in an earlier case. Consider the 12 elements 1, z, y, zy,
22, 2%y, yz, y2, yoy, Ty, %, zyzy in {1,7,y, 3y}’ At least two
of these must be equal to other elements in the list. However,
given the conditions, the only possibilities are yz = Ty, yzy =
2, zyz = yey,zyz = Y%, 7y’ = yz,zyzy = yz. The condi-
tion yz = z?y contradicts each of the other 5, and the same
remark holds for yz = zy? and zyzy = yz. So we assume
these do not hold. Next observe that yzy = z? and zyz = yzy
cannot be true at the same time, nor can zyz = y:cy and
Ty = y2 We are left with the posmbxhty that yzy = z? and
ryz = y*. Buti 1n this case {:c y,my, 2} contalns the 11 dis-
tinct elements z2, zy, 2%y, 23, yz, ¥?, yz?, 2y, zyz?, 23y, 24, and
so this case cannot occur.

The last set of cases all assume z? # 1,y% # 1,z # 3?
and zyz = y. Once these possibilities have been settled, we
will be finished because similar situations with yzy = z are
symmetrical. Note that yz = z~'y means that y"z = z~1y"
whenever n is odd, and SO forces the order of y to be even.

To begm, assume 2 # 1,y? # 1,22 # y*,zyz = y and the
order of y is greater than 4 but not equa.l to 8. Then {1 z,v, y"‘}
contains the 11 dnstmct elementsl x y v3, 22, zy, 23, yz, v, v,
vz (note 2 = y implies zy® = y z = z"y3 also either of
yz = a:y , Ty = Yz 1mp11es that 22 = y?, also y* = z? implies
y® = yz? = z-%y = y~3), and so this case can’t occur.
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Next consider the case where z? # l,y #1,22 # y?, zyz =
y and the order of y is 8 Now {1, a: yYs 3} conta.ms the 10 dis-
tinct elements 1, z,y, 3, 22, zy, 73, yz,¥%,v3z. So y* must be
in this list, and the only possibility is y* = z2. But then y® is
distinct from all elements in the list, and we have a contradic-
tion.

Finally, we assume z? # 1,3® # 1,2% # y%,zyz = y and the
order of y equals 4 Then {z y, Ty, y2} contains the 9 distinct
elements z2, ry, 22y, zy?, y%, ¥°, zyz, 2y3 1. It follows that either
yz or yzy must be equal to one of the elements listed, and the
only possibilities are yz = z2y or yzy = z2. If yz = z%y, then

3 = 1 a.nd {a:y’,y,:cz, a:zy}2 conta.ins the 11 distinct elements
zylzy’? ,zy ,wy a: my z y,y:vy yw yw Y,z %y, z, 2%, z?yz?
(= 2%,z %, ¢° ,:v ¥, a:y,:vy ,a: ¥, T, 2%y, y). On the other
hand, if yzy = 2 then yi==z and {x,y,:c a: y} contalns the
11 distinct elements 22, zy, 23, 23y, yz, y2?, yz’y, 2%y, =4, 222,
z?yz?. So this case can’t occur either.

The proof is complete. O

We will close with an example showing that Theorems 1 and
3 do not extend to the case k = 5. (Speciﬁcally, we present a
5(6)

nonabelian Bs-group of order 16 > —— >

Example 4.
Let G = Kgx C,. We will show that G is a Bs-group. To do this,
it will be useful to note that the center Z(G) is an elementary
abelian 2-group of order 4, and that one particular element of
Z(G), which we will denote k, has the property that 2 = h for
all noncentral elements z of G. In addition, if a product zy of
noncentral elements z,y is noncentral in G then zy = yzh.
Assume to the contrary that G is not a Bs-group. This
means that we can choose distinct elements a, b, ¢, d, e in G such
that {a,b,c,d,e}* =G
Observe that each of a?,b%,c%,d%, €? must equal 1 or k. In
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particular, this means that there are at least 3 repeated prod-
ucts among these squares. If a® = 1 and % = 1, then a and
b would have to be central, and this would lead to 7 more re-
peated products in {a,b,c,d, 6}2. We now have a contradiction
to {a,b,c,d,e}’> = G (since there are 25 products), so we can
assume from now on that at most one of a, b, ¢, d, e is central in
G.

First assume that one of these elements is central, i.e. a
land 8 = ¢ = d* = €2 = h. We now have 7 repeated
products in {a, b, c,d, e}’ (namely ¢?, d?, €2, ba, ca, da, ea). Since
{a,b,¢,d, e}’ = G and |Z(G)| = 4, some product of different
noncentral elements must be in Z(G) and not equal to 1 or A
- by relabelling if necessary we can assume bc is this product.
But then bc = cb, so we have an eighth repeated product. In
addition, some other such product must equal the fourth el-
ement of Z(G), and this gives a ninth repeated product. If
this product involves b or ¢, we would be able to construct
yet another central product and would have a tenth repeated
product and a contradiction (e.g.if bd is central, then so is
cd = (cb)b*(bd)). So the only possibility is that de € Z(G).
But now (ce)(db) = c(ed)b = (cb)(ed) = h, since it is the prod-
uct of the two elements of Z(G) which are different from 1 and
h. But for this to happen in G, it must be the case that either
ce and db are central or ce = db. In either case, we have a tenth
repeated product, and hence a contradiction.

We are left with the case where a? = b2 = ¢ = d* = €? = h.
So now we have 4 repeated products in {a,b,c,d,e}*. In this
situation, the three central elements other than A must all be
obtainable in {a, b, ¢,d, e}?. Some element in {a,b,c,d, e} must
be used twice in these products - by relabelling, we can assume
ab and ac are central. But then, as seen earlier, bc(= ba(a?)ac)
is also central. So now we have 7 repeated products. Since
ab, ac and bc are all different, we may assume that ab =1 and it
follows that b = ah. Next observe that if ad or ae were central,
then we would be able to find additional central elements as

2
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above, getting more repeated products and a contradiction. So
we can assume that none of these products is central. But then
ad = dah = db,da = adh = bd,ae = eah = eb, and again we
have 10 repeated products.

This completes the proof. a

The argument in Example 4 shows that |{e,b,c,d, e}?| < 14
when G = Kg x C;. It is easy to see that the bound of 14 is
best possible.
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