Non-isomorphic Minimal Colorings of K_{4n+3}

V Vijayalakshmi *

Department of Mathematics, University of Bombay, Vidyanagari, Bombay - 400098, India. e-mail: vijaya@math.mu.ac.in

Abstract

We prove that the number of nonisomorphic minimal 2-colorings of the edges of K_{4n+3} is at least 2n less than the number of nonisomorphic minimal 2-colorings of the edges of K_{4n+2} , where n is a nonnegative integer. Harary explicitly gave all the nonisomorphic minimal 2-colorings of the edges of K_6 . In this paper, we give all the nonisomorphic minimal 2-colorings of the edges of K_7 .

1 Introduction and background results

Definition 1.1 If a graph G with 2-coloring of the edges has the minimum number of monochromatic triangles then that coloring of G is said to be a minimal coloring. We denote by $M(K_3, G)$ the number of monochromatic triangles in a minimal coloring of G.

A.W.Goodman [1] has proved the following result regarding $M(K_3, K_n)$, where K_n is the complete graph on n vertices. The same result was proved by Sauve [3] in a more elegant and simple way using the method of weights.

^{*}Supported by CSIR fellowship, India.

Proposition 1.2 [A. W. Goodman]

$$M(K_3, K_n) = \frac{1}{3} t (t-1) (t-2) if n = 2t,$$

$$= \frac{2}{3} t (t-1) (4t+1) if n = 4t+1,$$

$$= \frac{2}{3} t (t+1) (4t-1) if n = 4t+3.$$

Definition 1.3 Let G be a graph in which the edges are colored with two colors, say, red and blue. Let v be any vertex of G. We define the degree pair of the vertex v as (s,t) where s is the number of red edges incident at v and t is the number of blue edges incident at v.

Sauve [3] has proved the following result about the degree pairs of the vertices in a minimal coloring of K_n .

Proposition 1.4 [L. Sauve] A 2-coloring of the edges of K_n is a minimal coloring if and only if the degree pair of

- (1) any vertex is (t, t-1) or (t-1, t), when n = 2t;
- (2) any vertex is (2t, 2t), when n = 4t + 1;
- (3) 4t+2 vertices are (2t+1,2t+1) and the degree pair of one exceptional vertex is (2t,2t+2) or (2t+2,2t), when n=4t+3.

Definition 1.5 Let G be a graph. Suppose $C_1(G)$ and $C_2(G)$ are two 2-coloring of the edges of G. $C_1(G)$ and $C_2(G)$ are said to be non-isomorphic if and only if the graph defined by one color of $C_1(G)$ is not isomorphic to the graph defined by either color of $C_2(G)$.

2 2-Colorings of K_{4n+3}

In this section we prove that in any minimal coloring of K_{4n+3} , if we remove a suitable vertex we get a minimal coloring of K_{4n+2} and that a minimal

coloring of K_{4n+2} can be extended to a minimal coloring of K_{4n+3} in at most one way. We construct all the 4 non-isomorphic colorings of K_7 using the non-isomorphic minimal colorings of K_6 given by Harary [2].

B. Radhakrishnan Nair and A. Vijayakumar [4] have proved the following theorem about the number of monochromatic triangles incident at a vertex v in any 2-edge coloring of a graph G. Their theorem, in our language is as follows.

Theorem 2.1 Let G be a complete graph on n vertices in which the edges are colored with two colors, say red and blue and r be the number of red edges in G. For any vertex v of G, let d(v) = the number of red edges incident at v, N(v) = the set of all vertices which are joined to v by red color and T(v) = the number of monochromatic triangles which are incident at v. Then

$$T(v) = \sum_{u \in N(v)} d(u) \ - \ r \ + \ \frac{1}{2} \ [n - d(v) - 1] \ [n - d(v) - 2].$$

Theorem 2.2 Any minimal coloring of K_{4n+3} is an extension of a minimal coloring of K_{4n+2} and the number of non-isomorphic minimal colorings of K_{4n+3} is at least 2n less than the number of non-isomorphic minimal colorings of K_{4n+2} .

Proof: Consider K_{4n+3} , where n is a nonnegative integer. Any 2-coloring of the edges of K_{4n+3} will be a minimal coloring if and only if the degree pairs of 4n+2 vertices are (2n+1,2n+1) and the degree pair of one exceptional vertex, say P is (2n,2n+2) or (2n+2,2n) (1.4). The number of monochromatic triangles that lie on the vertex P is $2n^2$ (2.1) and using Goodman's formula (1.2) we get

$$M(K_3, K_{4n+3}) - M(K_3, K_{4n+2}) = 2n^2$$
.

So, by removing this vertex P from K_{4n+3} we get a minimal coloring of K_{4n+2} . In other words, any minimal coloring of K_{4n+3} is obtained precisely by extending a minimal coloring of K_{4n+2} .

We consider a minimal coloring of K_{4n+2} and find all possible extensions of this to a minimal coloring of K_{4n+3} . In any minimal coloring of K_{4n+2} , the degree pair of any vertex is (2n, 2n+1) or (2n+1, 2n) (1.4). Hence to extend a minimal coloring of K_{4n+2} to a minimal coloring of K_{4n+3} , we have to add a new vertex P and join this with the vertices of K_{4n+2} in such a way that the degree pair of P is (2n, 2n+2) or (2n+2, 2n) and the degree pairs of all other vertices are (2n+1, 2n+1). It is clear that there is at most one extension possible. In fact, an extension is possible only when exactly 2n vertices of K_{4n+2} have degree pair (2n, 2n+1) or exactly 2n vertices of K_{4n+2} have degree pair (2n+1, 2n). If $C_1(K_{4n+3})$ and $C_2(K_{4n+3})$ are two minimal colorings of K_{4n+3} which are extensions of two non-isomorphic minimal colorings of K_{4n+2} , then $C_1(K_{4n+3})$ and $C_2(K_{4n+3})$ are also non-isomorphic, for an exceptional vertex must be mapped to an exceptional vertex under any isomorphism.

We claim that there exist 2n non-isomorphic minimal colorings of K_{4n+2} which are not extendable to a minimal coloring of K_{4n+3} .

For each integer k such that $0 \le k \le 2n+1$, we construct a minimal coloring C_k of K_{4n+2} such that C_i is non-isomorphic to C_j , for $i \ne j$. Suppose $u_1, u_2, \ldots, u_{2n+1}$ and $v_1, v_2, \ldots v_{2n+1}$ are the vertices of K_{4n+2} and the edges are colored with red and blue. The red edges of C_k are precisely u_iu_j , for $1 \le i \le 2n+1, 1 \le j \le 2n+1, i \ne j$, v_iv_j for $1 \le i \le 2n+1, 1 \le j \le 2n+1, i \ne j$, and if k>0, u_iv_i , for $1 \le i \le k$. It is easy check that C_k is a minimal coloring of K_{4n+2} , for each $0 \le k \le 2n+1$, Also C_k s are all mutually non-isomorphic, because in these colorings all the monochromatic triangles are of red color and the number of red edges are distinct.

The minimal colorings

$$C_0, C_1, \ldots, C_{n-1}, C_{n+2}, C_{n+3}, \ldots, C_{2n+1}$$

of K_{4n+2} are not extendable to get minimal colorings of K_{4n+3} . These are 2n in number. Hence the theorem.

Remark: We note that in Theorem 2.2, the colorings C_u and C_{u+1} are

extendable to get minimal colorings of K_{4u+3} and hence there exists at least 2 non-isomorphic minimal colorings of K_{4u+3} .

Theorem 2.3 There exists precisely four non-isomorphic minimal colorings of K_7 .

Proof: Suppose we color the edges by red and blue. Harary [2] has constructed all the 6 non-isomorphic minimal colorings of K_6 which are given below in Figures 1 through 6 with only the red edges present.

By Theorem (2.3) there are at most 4 non-isomorphic minimal colorings of K_7 . It is easy to see that the colorings given in figures 2, 3, 5 and 6 are extendable to a minimal coloring of K_7 . These are given below in Figures 7 through 10 with only the red edges present.

Acknowledgement: I thank Prof. S.S. Sane for his help in preparing this paper.

References

[1] A.W. Goodman, On sets of acquaintances and strangers at any party, American Mathematical Monthly, Vol. 66 (1959) 778 - 783.

- [2] F. Harary, The two triangle case of the acquaintance graph, *Math. Magazine*, Vol.45 (1972), 130 135.
- [3] L. Sauve, On chromatic graphs, American Mathematical Monthly, Vol. 68 (1961) 107 -111.
- [4] B. Radhakrishnan Nair, A. Vijayakumar, About triangles in a graph and its compliment, *Discrete Mathematics*, Vol. 131 (1994) 205 210.