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Abstract

In this paper, we investigate the divisibility of mn by am+bn+c
for given a, b and c. We give the necessary and sufficient condition
for the divisibility, that is, am + bn + c divides mn. We then present
the structure of the set of pairs [m,n] that satisfies the divisibility.
This structure is represented by a directed graph and we prove the
necessary and sufficient condition for the graph to have a binary tree
structure. In particular, for ¢ = —1, we show double binary tree
structures on the set.

1 Introduction

This paper deals with the divisibility of mn by am + bn + ¢ and several
combinatorial properties of the set of pairs [m,n] such that am + bn + ¢
divides mn for given a, b, and c. We especially pay attention to binary tree
structures of the set.

Shibata and Seki [4] have studied the divisibility of mn by m +n — 1.
In [4], the necessary and sufficient conditions for the divisibility of mn by
m+n—1 was proved. They then defined an order relation on the set of pairs
[m,n] such that m + n — 1 divides mn, and represented the relation with
directed graphs to have shown that the graph has a binary tree structure.

One purpose of this paper is to generalize this result. We first give
characterizations of the divisibility of mn by am + bn + ¢ for given q, b, c.
The characterizations are stated as extensions of the results given in [4]. In
order to investigate properties of the set of pairs [m, n] such that am+bn+c
divides mn, we classify the set into subsets so that each of the subsets has a
linear ordering. The order relations can be represented as a directed graph.
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We then give the necessary and sufficient condition for the graph to have
a binary tree structure. In particular, for ¢ = -1, we find that infinitely
many binary trees form other binary trees. We call this structure double
binary tree. These investigations give combinatorics of divisibility of mn
by am + bn + ¢, which is also considered to be divisibility of a number in
product form by a number in additive form.

In Section 2, the necessary and sufficient conditions for the divisibility
are stated. Section 3 deals with the classification of the set into ordered
sets, then the structures of directed graphs are discussed in Section 4. In
Section 5 and Section 6, we prove the set has double binary tree structures.

For integers m,n, if m divides n, then we write m|n. (n1,n2,...,7%)
stands for the greatest common divisor of ny,n2,...,nk. {n1,n2,...,n1}
stands for the least common multiple of n;,7n2,...,nk. For other number

theoretic terminology and notation, we refer to Shapiro [3].

2 Necessary and sufficient conditions for di-
visibility

In this section, we give necessary and sufficient conditions for integers m,n,

such that am + bn + ¢ divides mn.

Theorem 2.1 Let a,b and c be any integers. For integers m,n,

(m,bn + c)(am +c,n)
0 ?

(am +bn +c,mn) =

where
(dm,dn)

= mydn a0 + o, b8 + B’
dy = (m,bn +¢), m =dna, bn+c= do,

0

d, = (am +c,n), n=dp,fam+c= d.fB.

Proof. First we assume that am + bn + ¢ # 0. Then (am + bn +¢,mn) =
(am + bn + ¢,(am + bn + ¢,m)(em + bn + ¢,n)) = (am + bn + ¢, (bn +
c,m)(am + c,n)) = (am + bn + ¢,dpdy). Since am + bn + ¢ is a common
multiple of d,, and d,,, we have {dn, d,}|(am + bn + c).

am+bn+c dnd,
(em +bn +¢,mn) = {dm,dn}( [@mdo) ,{dmadn}> ,

dmdy, (am+bn+cd d)
(dmydn) \ {dm,dn} " )"




For any integer k # 0 and integers a1, az,...,a,, if a;|k, i = 1,...,n, then

By equation (2), we have

am+bn +c
( {dm,dn} ;dm,dn)

am+bn+c am+bn+c am+bn+c
({dm,d,,} " aa+a 7 bR+ S )
lam + bn + ¢|
{dm,dn,aa+ o', b8 + 8’}
lam + bn + ¢
{{dm,aa +a'},{d,,b8 + 8'}}
am+b+c am+bn+c
({dm,aa + o'}’ {dn, b8 +ﬂ,})
dm(aa+a') d,(8+8)
({dm,aa +a'}’ {d,, b8 +ﬁ'})
((dm, 2 + '), (dn, b8 + 1)

(dm,dn,ac + o', b8 + 3').

Let 6 be
(dm,dyn)

" @mdmaa+a, b+ )
dmd,,

e

then we obtain (am + bn + c,mn) =

If am + bn + ¢ = 0, then aa + o' = b8 + ' = 0. The left hand side of
the equation (1) becomes (am +bn +c,mn) = (am+bn+c,dnd,) = dmd,.
On the other hand, the right hand side is d,,d,, because

(dm,dn)

b= Gmidnyaa+o, 065 5)

=1,

and the theorem is proved. g
We define the new symbol 9 by

9 = sign(am + bn + ¢)8, 3)
where sign(z) is a function defined as follows:

. 1, ifz >0,
sign(z) = -1, ifz<0.



Theorem 2.2 Let a,b and c be integers. For the integers m,n such that
am +bn + ¢ #0, (am + bn + c)|mn if and only if

(m,bn +c)(am +c,n)
)

=am+bn+c

From Theorem 2.2, we can obtain several necessary and sufficient conditions
for the divisibility.

Theorem 2.3 For integers m,n such that am + bn + ¢ # 0, we have
(i) (am + bn + c)|mn if and only if dm = 9(bB + B').
(i) (am + bn + c)lmn if and only if d, = F(aa + o).

Proof.
(i) First, assume that a pair [m,n] satisfies (am + bn + c)jmn. By Theo-
rem 2.2, dmdn = 9(am + bn +c) = 9(bn + (am +¢)) = 9dn(bf + B'). Since
d, > 0, we obtain d,, = 9(b8 + 8').

For the converse, assume that d,, = 9(b8 + 8'). By multiplying d» to
both sides of the equation, we obtain d,,d, = 9d, (b3 + B') = ¥(bn+(am +
¢)) = 9(am + bn + c). By Theorem 2.2, am +bn +c¢ divides mn.

(i) Similarly proved. g

Theorem 2.4 For integers m,n such that am +bn + ¢ # 0, we have
(i) if ¢ # 0, then (am + bn + c)|mn if and only if abaB —o'f = -3
(i) if m # n, then (am +bn +c)|mn if and only if af —d'B+(b—a)aB =

m—n
5— #0.

Proof.

(i) Let us assume that a pair [m,n] satisfies (am + bn + c)jmn and ¢ #
0. From the definition, we have (am + c)(bn + ¢) = dmdao'f'. Then
abmn + c(am + bn + ¢) = dmdno’8’. Substituting m and n from m = dna
and n = d,B, we obtain dnda(abeB — o/f') = —c(am + bn + c). By
Theorem 2.2, abaf — o'f' = —c/9.

For the converse, assume that aba — /8’ = —c/9 and ¢ # 0. Multi-
plying d,nd, to both sides of the equation, we have ddn(abaf — a'f') =
-%31“-. Then 9(abmn — (am + c)(bn + ¢)) = —cdmd.. Since ¢ # 0,
9(am + bn + ¢) = dpd,. By Theorem 2.2, (am + bn + c)|mn.

(ii) Let us assume that a pair [m,n] satisfies (am +bn + c) divides mn and
m # n. By the definition of o, o/, 8 and #,

m(am +c) —n(bn+c) + (b —a)ymn = dmd.af’' - dnda o' B+ (b—a)dmdaap.



Then (m—n)(am+bn+c) = dnd,(af' —a'f+(b—a)aB). By Theorem 2.2,
we obtain af' — o' + (b —a)af = (m —n)/9.

For the converse, assume that a8’ — o/8 + (b — a)aff = (m — n)/d and
m # n. Multiplying d.,d,, to both sides of the equation, we have

dmd,(m —n)
—y
Then m(am +c)—n(bn+c)+(b—a)mn = d,d,(m —n) /9, or (m—n)(am +

bn +c) = dnd,(m —n)/J. Since m # n, we have am + bn + ¢ = dmd, /9,
this means (am + bn + c)|mn.

dmdn(aﬂl - a,ﬁ + (b - a)aﬁ) =

Lemma 2.5 If (a,c) = 1, then (a,&') = (a,B8') = 1. If (b,c) = 1, then
(b,0') = (b,8) =1.

Proof. Since abaff—a'f’ = —c/¥ from Theorem 2.4, each of (a, '), (a, ),
(b,c’) and (b, 8') divides c. If (a,c) = 1, we obtain (a,a’) = ((a,a'),¢c) =
(o', (a,c)) = 1. The remaining are similarly proved. g

3 Classification of pairs

In this section, we will investigate the structure of the set of pairs [m,n]
such that (am + bn + ¢)|mn, and we will classify the pairs.

Definition 3.1 For integers a,b and ¢ (abc # 0), the set S(a,b,c) is a
collection of pairs [m,n] such that am +bn +c # 0 and (am + bn + c)|mn.

For [m;,n;] € S(a,b,c), we write

dm; = (m;,bn; +¢), dn; = (am; + ¢, n;),
m; =dmia,', n; =dn.,ﬂi,
bni +c=dma;,  ami+c=d,p

By Definition 3.1, [m,n] € S(a,b,c) if and only if [n,m] € S(b,a,c), and
parameters o and o are exchanged for 8 and @', respectively. In other
words, let

ay=b, by=a, m =nandn, =m,

then [my,m1] € S(a1,b1,¢) and oy = B, o} = #, B, = @ and B, = o'
Therefore, if a certain proposition P holds in S(a,b,c), the proposition
obtained from P by exchanging a for b, m for n, « for 3, o for 8’ holds in
S(b,a,c). We call this proposition the symmetric proposition for P.

Lemma 3.2 If [m,n] € S(a,b,c), then
(i) BB+ B')o’' —c=0 (mod blaa + o)),
(ii) Y(aa + )8 —c=0 (mod a(bB + #')).



Proof. We prove only (i). (ii) is a proposition symmetric for (i).
Let [m,n] € S(a,b,c). From the definition,

d(aa +o')(bB + B')

dabaf + I aaf +ba'B +a'f')
(9B — c) + ¥(aaf' +ba'B +d'B')
= Y aa+a)g +9(bB+8')a —c,

then we have 9b(ac + o')8 = 9(b8 + B')a’ — c¢. Hence we obtain 9(b3 +
B')a' —c=0 (mod blacx +a')). g

Each congruence in Lemma 3.2 contains two parameters in modulus.
Conversely, for example, if a and o' are fixed, the values for 9(b3 + 3')
of pairs that have these two parameters are congruent under b(ea + o).
From this fact, if we classify the pairs in S(a,b,c) with respect to these
parameters, there might be an order relation on each subset.

Definition 3.3 Let So 3 c(a, ') and S, ; (B, B') be subsets of S(a,b,c) de-
fined as follows:

n am+c
00,80 = {[mim) | 2 =5, T2 = )
Example. Some elements in S 1,—3(3,1) of §(2, 1, —3) are shown in Fig 1.

Sa1_3(3,1) = {[12, 7], 133,14}, [54, 21), - - }

m n 12 7 33 14 54 21 75 28 9 35

o|p il 302 31 3|4 3]s

ol p 1|3 1|9 1]s 1] 2t 1] 27
(] 1 1 3 1 1

Figure 1: Some elements in Sp,;,-3(3,1).

Theorem 3.4
(i) If [my, 1), [ma,n2] € Sapc(a, '), then

b(aa + o)

91(bB1 + B) = 92(bB2 + B3) (mod W)-



(ll If [mlanl] [m'b Tl2] € abc(ﬂ’ :B,); then

a(bp + g')
(ad, B")
Proof. We prove only (i). Assume that [m,,n;] and [m3, n,] are members

of Sy (e, @'). By Lemma 3.2,

d1(aa; + ) = 92(acz + a}) (mod )

9 (bB1 + B;)e’ —c=0 (mod b(ac + o)), 4)

Va(bB2 + B3)a’ —c=0 (mod b(ax + 2')). (5)

By subtracting (5) from (4), we have 9,(bf; + 8;)a’ = 9,(bB: + B)o’
(mod b(aa+a')). Since (o, b(aa+0a')) = (o, ab), we obtain ¥, (b8, +8,) =

b(ac +
020682 +5) (mod 2525 ‘;)). '
Lemma 3.5
(i) If [my,n1],[ma,n2] € Supc(a,a’), then there exists an integer k such
that o abor

(b )andﬂgﬂz—ﬂlﬂl+k(b )

(ii) If [my,n1), [ma,n) € S wbc(B:B'), then there exists an integer k such
that

9208 = 9,681 + kb————

g abf
=49 49 =
Pvaaas a0 +ka(ab,[3’) and 920, = Y1) +k( 5.5
Proof. We prove only (i). By Theorem 3.4,
b(aa + o
91(bBy + B1) = 92(bB2 + B;) (mod ﬁa’_)))'

Hence, there exists an integer k such that

b(aa + ')
(ab,a’)
By Theorem 2.4, ¥,(abaf; — o'B}) = —c = ¥2(abaB; — o'Bh). Thus we
obtain ¥, (abaf, — af}) = 9rabaf — o (191 (681 + B;) + kHEata) ﬂzbﬂg)
or Y2(aa+a’)bfs = 9 (acx + a’)bﬁ1 +k(aa+a )bl_—T Since aa+ o #0,

ab,a’

we have 9208, = 9,00, + kb(ab R Substituting this result into (6), we

obtain ’02ﬂ2 = 191,31 + kW [ |
Now we will introduce an order relation on S, 4,c(a, ') and S, , (8, 8')
on the basis of the results of Lemma 3.5.

92(bB2 + B) = 1 (bB1 + B}) + k (6)




Suppose that [m,n] € S, 5.c(, a'). We define integers m,, n; as follows:
let

aba

(ﬁ+( bo ),ﬁ @ b,a'))’ and ¥; = sign(em + bn + ¢)6,,

o aba

@y 1A=+ ey

dml = ﬁl(bﬂl +,Bi),dn, = 191(0.01 + C!l), and my = dmlal,'nl = dn,ﬂl-

a=a,0y =, 9 =98+ —F——

Then, we have

am, +bny + ¢ = (aa + o) (19(bﬂ +8)+ M)

(ab, ')

hence if am; + bn; + ¢ # 0, then (am; + bn; + ¢)jmn and [my,nq] €

Sapc(a,a’).
Similarly, let

_ , aba .
02 - (ﬂ (ab a,) aﬂ (ab, a,)) )192 - SIgn(am +bn + 0)027

o aba

@y =% -y

dmy = 92(bB2 + B2), dn, = Y2(acz + a3), and my = dm, 2,12 = dn, ;-

If amy + bng + ¢ # 0, then (amy + bng + ¢)|mn and [m2,n2] € Sap (o, ).
Thus elements in S, 4 (@, @’) are ordered with respect to the order of
9(bB+ '), that is, a pair [m,, n,] has precedence over [m2, 1] if and only if
91(bB1 + B}) < 92(bB2 + B5). This order relation is a linear ordering. Since
9(bB + B') > 0, each S, 5 c(a, ') has the least element.
Similarly, elements of S, ; .(83,8') are linearly ordered with respect to
the order of ¥(ac + &').

ap = a, a'z =a', 0,0, =98 —

Example. Linear ordering on S, 3 —3(3,1) is shown in Fig 2.

m a 12 7| {33 14] [s421] [75 28] [9 35
alp st sl ] spe L) ala [l 35 Luves
o B JE 19 1|5 L2 1| 2

0 L 1 3 ! i

Figure 2: Linear ordering on Sz 1,-3(3,1).
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Lemma 3.6
(i) A pair [m,n% is the f;:last element of Sop,c(a, ') if and only if
n _ |blea+
I8+ ') < W
(ii) A pair [m,n] is the least element of S, , .(B, 8') if and only if
|a(b8 + B')|
(ab,8')

Proof. We prove only (i). Let [m,n] be an element in S, (a,’) and

[m1,n,] an adjacent element to [m, n] with respect to the order on S, 5 (@, &).
!

Then the parameters of [m,n,;] are 4,8, = 98 + _ 2 and 8] =

daa + o) <

(b, @)
aba o aba
98’ + or 9,6, =9 -—--——and19 ! = 9f — ————. Thus
ﬁ ( b ) lﬂl i ( ,a ,) lﬂl ﬂ ( b )
(b1 +8]) =9(bB + B') ﬂt‘;—) Hence, if [m, n} is the least element
, _’|b(aa+a')|
of Sap,c(a,a’), then 9(b8 + B') (ab, o) <o.

The converse is easily proved. g

Lemma 3.7
(i) A pair [m,n] is the least element of Sq (e, @) if and only if 9(bB+ B')
is the least positive solution of the equation
o c blaa + o)
— =0 —_).

(ab,o’)" ~ (ab, o) (mod =)
(ii) A pair [m,n] is the least element of S, , (8, 8') if and only if d(aa+0’)
is the least positive solution of the equatwn

B ¢ _ a(bB + 3
@5 " @b - ™ @

Proof. We prove only (i). Let [m,n] be the least element of S, .(a, o).

).

/
By Lemma 3.6, we have (b3 + ') < %—zg)l. From Lemma 3.2, [m, n]
satisfies the congruence ’
b
358+ 5) C =0 (moq X22*))

(a b ") (ab, @) (ab,a’)
Hence 9(bB + ') is the least positive solution of the equation

o c

(ab,a) "~ (abaly

The converse is easily proved. g

b(aa + ')

(@b, )

0 (mod

11



Corollary 3.8 Let [m,n] be a member of S(1,1,—-1). Then [m,n] is the
least element of both S1,1,-1(a,¢') and 51, (B, 0') if and only if m+n —
1==1.

Proof. Suppose that [m,n] € S(1,1,—1) is the least element of both
S11,-1(a, ') and Sy,1,-1(a,a'). By Lemma 3.6, we have dn < d, and
d, < dm, and this reduces to d,, = d,. Since (dm,d,) = (m,n,—1) =1
and d,,.,d, > 1, we have d,, = d,, = 1. Then the following two cases arise.

Case ¥ = 1. Since d,, = 9(bB + ') and d, = F(ex + '), we have
dn=8+p8 =1andd, =a+a =1. From af — a'f’ =1, we have
o =1-a f=2-aand f/ =a—-1 Thenm =dpa = a and
n=d,8=2—a,and weobtainm+n—-1=a+(2-a)-1=1

Case ¥ = —1. Similarly we haved,, = —-f—f' =landd, = —a—ad' = 1.
Theno =1—-a, 8= -a, B/ =a—-1. Then m =dpa = a and
n=d,8=—a,and weobtainm+n—-1l=a—-a—-1=-1.

Conversely, suppose that [m,n] € $(1,1, —1) and [m,n| satisfies m+n—
1==+1. Thendy, = (m,n—1)=(m,m+n—-1)=1landd, = (n,m—1) =
(n,m +n — 1) = 1, hence we obtain d,, = d,. By Lemma 3.6, the pair
[m, n] is the least element of both Sy ;,—1(e, ') and Sy,1,—1(a, @'). ¥

4 Structure of S(a,b,c)

In the previous section, we introduced Sgp.c(c, @) and S, , .(8,8') and
proved that each one was a linearly ordered set. The order relation can be
represented by a directed graph. We define a directed graph on S (a,b,¢),
and give the necessary and sufficient condition for the graph to be a binary

tree.

4.1 A graph on S(a,b,c)

Definition 4.1 Let a directed graph G(a,b,c) be defined as follows:

1. the vertex set of G(a,b,c) is S(a,b,c),

2. there ezists a directed arc from v to v' if and only if these vertices satisfy
either of the following two conditions:

(a) v,9' € Sapc(e,a') and V' is the next element of v with respect to the
order on S, p.c(, a');

(b) v,v' € S', (B,B') and v’ is the next element of v with respect to the

a,b,c

order on S, , (B, 8).

Fig. 3 and Fig. 4 show G(3,2, —6) and G(3,2,2), respectively.

12
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Figure 3: A part of the graph G(3,2, —6).

A graph G(a,b,c) can be regarded as a representation of the partial
order relation on S(a,b,c). Shibata and Seki [4] have shown that the graph
G(1,1,-1) has a binary tree structure. G(a,b,c) however does not have
binary tree structures in general, for example such as G(3,2,—6). On the
other hand, we see that a connected component of graph G(3,2, 2) is a

binary tree.
In order to investigate the structure of G(a, b, c), we first have an insight

into the order relation on S(a,b,c). Each vertex [m,n] of G(a, b, c) satisfies
one of the following conditions:

Type 1 the least element of both S, (,@') and Sep.c(8,8');
Type 2 the least element of either S, (e, @) or Sep.c(8,8);

Type 3 Otherwise, that is, [m,n] is not the least element of Sapc(a, '),

abc(B: B)-

and is not of S’

13
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Figure 4: A part of the graph G(3,2,2).

From Lemma 3.6, a vertex [m,n] of G(a, b,c) is of Type 3 if and only if

|b(ac + o) |a(b8 + B')|
(ab, ') (ab,B)

The following theorem gives a necessary and sufficient condition for the
existence of a pair of Type 3 in a graph G(a, b, c).

I(bB + ,3') > and 9(ea +a') > (7

Theorem 4.2 G(a,b,c) has elements of Type 3 if and only if |ab] < 2.

Proof. Let us assume that |ab| < c?. We will prove that thereis a pair such
that 9 = c and the condition holds. If ¥ = ¢, then (ab,a') = (ab,8') =1
since abafB — o’ ' = —c/9 = —1. Thus, [m,n] with 9 = c is a pair or Type
3 if and only if

c(bB + B') > |b(ac + a')| and c(ac + o') > |a(bB + B')|- (8)

Let A, B be any integers such that

cB > |bA|,
{ cA > |aB|, )
(A4,B) = (a,A) = (b,B) = 1 and (a,b)|(AB - 1). (10)

Let a, 8 be any solution of a diophantine equation

abaf — (A — ac)(B - bB) = -1,

14



that is,
eBa +bAB = AB -1,

and o = A —aa, f/ = B — bB. Then, we have (a,0) = (a, A — aa) =
(o, A) = (aBa, A) = (-bAB + AB - 1,A) =1, (8,6') = (B,B ~ bB) =
(8,B) = (bAB,B) = (—aBa+ AB — 1, B) = 1. Hence, if we define m,n by
dp =c(bB+ ') = cB, m =dna, d, = c(aa+a') = cA and n = d, S, then
[m,n] satisfies (am + bn + c)|mn and the condition (8), that is, [m,n] is a
pair of Type 3. From this reason, if we prove the existence of any integers
satisfying (9) and (10), the proof completes.

Without loss of generality, we assume that |a| > [b|. Then the possible
orderings are [b| < |a| < ||, |b] < |a] = |¢| and |b| < |c| < |a|]. Through this
proof, we assume that a and b are positive, since we consider only absolute
values of a, b. Three cases arise.

Case 1. b < a < |¢|. Putting A = B = sign(c), we find that inequalities
(9) and (10) hold.

Case 2. b < a = |c|. Putting A = sign(c)(a+ab+ 1) and B = sign(c)(ab+
1), we have (4,B) = (a,A4) = (b,B) = 1 and (a,b)|(AB — 1), and the
inequalities (9) hold because

cB —[bA| = (ablc| + |c]) - (ab+ ab® + b),
= ab(|c|] — b) + (|¢| — b) — ab
> ab—ab+ (|c|]-b)
= |le|]-b
> 0,

cA—|eB| = (a|c| + ablc| +|c|) — (a?b+a)

ab(le| - a) + (lc| — a) + alc|

= a2
> 0.

Case 3. b < || < a. Let A = sign(c)(ak+abl+1) and B = sign(c)(abl+1),
where k and ! are any integers such that

b(a — |e})(|c] - b)
k> c2—ab ’
k 1 klc| 1
=5 a < bz "o (11)

Then A and B satisfy (A,B) = (a,A) = (b,B) = 1 and (a,b)|(4B — 1),
and the inequalities (9) follow, since
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cB - |bA| = (ablc|l + |c]) — b(ak + abl + 1)
ab(|c| — b)l — (abk — |c| + b)

(abk — |c| +b) — (abk — |¢| + b)

0,

(a|c|k + abdlc|! + |c|) — a({abl + 1)
—ab(a — |c[)! + alc|k — (a — |c[)

> —alclk + (a—|e|) + alclk — (a —|cl)
= 0.

Vv

Il

cA — |aB|

Finally, we show that the existence of the positive integer ! satisfying (11).
The difference between the left and right hand side of (11) is

M 1Y _(_k 1\ _ _Kld &
(b(a = el ab) (|C| -b ab) bla—|c]) lef—b
k(c? — ab)

bla = |c[)(e| - b)

> 1,

hence there is a positive integer in the interval (11).
Conversely, assume that a pair [m,n] is of Type 3 in G(a,b,c). From
Lemma 3.6, [m, n] satisfies

[b(ac + a')|

la(bB + 8')|
(ab,a’) ’

and d(ac + ') > (ab.7)

I8 + B) >

Multiplying each side of the inequalities, we have 9°(ab,a’)(ab,8') > |ab|.
Since ¥(abaB — 'B’) = —c, both ¥(ab,a’) and ¥(ab, B') divides c. Hence
d(ab,a’) < ¢ and ¥(ab, ') < c. So, we obtain ¢ > |ab|.

Corollary 4.3 If ¢ < |ab|, each element in S(a,b,c) is the least element
of Sap.c(a,a'), or of S, (B,B'), or of both.

Proof. By Lemma 4.2, if ¢ < |ab|, G(a, b, c) has no pairs of Type 3. Hence
each pair in G(a, b, c) is either Type 1 or Type 2. g

4.2 Binary tree structures

Lemma 4.4 Sop (e, 0') and S,

wb,c(BB') have at most one element in
common.
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Proof. Let us assume that [my,n,], [m2,ns] € Sapcla,a)nN S, , (8,8
Since [my,n1], [m2,ns] € Sap (@, '), we have ap = a1, ay = o) and there
exists an integer k such that

_ 0"1 ' ’ abal
V282 =910 + km, V285 =916, + k(ab, )

Furthermore, since [my,m1], [m2,n2] € S, , .(8,8'), then 8, = B, 8, = B,.
So we have

9 9 _ 1 1
2T T\ benpr — i B abagf = ol 3,
= 0.

Thus [m;,n,] corresponds to [mz,n2). g

From Corollary 4.3 and Lemma 4.4, we obtain a necessary and sufficient
condition so that G(a,b,c) has a binary tree structure.

Theorem 4.5 Each connected component of a graph G(a,b,c) has a binary

tree structure if and only if ¢® < |ab|. This binary tree has the root [m,n]

such that

|b(ac + &')|
(ab,a’)

la(68 + B')|
(@b, @)

Proof. Every vertex of G(a, b, c) is of outdegree 2. From Lemma 4.3, every
vertex, other than the pairs satisfying the condition (12), is of indegree 1.

Let [m,n4] be any vertex of G(a,b,c). If [m1,7m1] does not satisfy the
inequalities (12), either it is the least element of Sab,c(a1,a)) or the least
element of S, , (B1,8]). Without loss of generality, assume that [m,n] is
the least element of S, 4 (a1, @}). Then we can trace it to the least element
of S; 4 .(B1,08). It is an element of Sa,b,c(a2,a}) for some asz, ab, B> and
Bs. If it is the least element in S, (a2, ab), it satisfies (12). If it is not,
we can trace it to the least element of S, 5 (a2, 05).

When the step is repeated, the value of 9(aa + ') and I8 + B)
decreases keeping positivity. We can arrive, consequently, at the element
[m,n] which is the least element of both S, .(a,a’) and Sep.c(8,8') for
some a, o, B and B'. It must satisfy (12). Any element is therefore reached
from the element [m, n] by a unique directed path. Hence, each component
of G(a,b,c) is an infinite binary tree with the root [m,n]. g

dm ,

(12)
dn

IA
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Corollary 4.6 If ¢ = %1, each connected component of G(a,b,c) is a bi-
nary tree with the root [m,n] such that

dn < |bdnl,
{ d, < ladm|. (13)
Proof. From the assumption, ¢2 = 1 < |ab| always holds. Hence each

connected component of G(a,b,—1) is a binary tree from Theorem 4.5.
Since (a,c) = (b,¢) = 1 from Lemma 2.5, we have (ab,a') = (ab,f’) = 1.
Since ¥ is a divisor of ¢, we have |9 = 1. Hence d,, = 9(b8+ ') = [b8+ |
and d,, = ¥(aa+a') = lac+ '], and the condition (12) is rewritten by the
condition (13). g

Corollary 4.7 ([4]) Each connected component of G(1,1, 1) is an infi-
nite binary tree with the root [m,n| such thatm +n —1=*1.

Proof. By Corollary 4.6, each connected component of G(1,1,-1) is a
binary tree. By Corollary 3.8, each root must satisfy m +n —1=%£1. g

There are infinite components in G(a, b, ) in general. In particular, Shibata
and Seki [4] have shown that the structure of the set of pairs such that
(m +n — 1)jmn and m,n are positive is a binary tree with the root [1,1].

5 Duality of the set S(a,b, —1)

We will investigate the structure of binary trees in the case of ¢ = —1
through Section 5, 6. First, we show that the set S(a,b, —1) includes other
linear orders, and another binary tree can be constructed in S(a,b, —1).

5.1 Transformation of a subset of S(a,b,c)
We define a set S(a,b) which is a subset of S(a,b,~1).

Definition 5.1 For the positive integers a,b, a set S(a,b) is a collection
of pairs in S(a,b, —1) such that m,n are positive.

We define the following subsets of S(a,b),

Sapla,a’) = Sap—1(a,a’)N S(a, b),
Ses(8,8') wb,—1(8,8') N S(a,b).

For any pair [m,n] in S(a,b), we have § = 1 and J = 1, since the value of
# is a divisor of 1 and a, b, m, n are positive.
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Since So,5(cr, ') and S, (B, B') are subsets of Sg5,—1(c,’) and
Se.5,-1(8, B'), respectively, Lemma 3.2, Theorem 3.4 and Theorem 3.5 also
hold for S, p(a, ') and S, (B, 8'). Hence these sets are linearly ordered
sets. Furthermore, the necessary and sufficient condition for the least ele-
ment in S(a, d) also holds.

Lemma 5.2

(i) A pair [m,n] is the least element of S, p(a, ') if and only if
B8+ pB') < blaa + ).

(ii) A pair [m,n] is the least element of S, ,(8,8') if and only if
(aa + ') < a(bB + B').

Proof. We prove only (i). (ii) is a proposition symmetric to (i). Assume
that [m,n] is the least element of S, (e, @'). Then we have b8 — ba' < 0
or § —baa < 0.

The case for b3 —ba' < 0. Since [m,n] € S(a,b), we have abaf—o/f’' = 1
by Theorem 2.4. Then we have aba(8 — o') — /(B — baa) = 1, this yields
o/ (B - aba) = aba(B — ') — 1 < 0. Since ' > 0, we obtain 8’ — baa < 0.
By adding both sides of the inequalities b3 — ba' < 0 and B’ — baa < 0, we
have (b8 + B') — b(aa + ') < 0.

The case for 8’ — aba < 0. In this case, two cases arise.
1. the case of @’ > 0. In a similar way, we obtain the same result.
2. the case of &' = 0. Since aba(b — a') — 1 = o'(f' — baa) = 0, we
have aba(B —a') = 1. Hencea =b=a =1, =0and 8 = 1 and
B —aba = B/ —1 < 0. Because of 8/ > 0, we have 8’ = 0. Hence
b + f' =1 and b(ax + &’) = 1, we obtain (b8 + ') < b(aca + o).

The converse is easily proved. g

We define a transformation D of S(a,b) as follows.

Definition 5.3 Let D be a transformation of a set S(a,b) defined as fol-
lows: .
D([m» n]) = [ml’nlli

where
o) = a, a’l = ﬂ,
ﬁl = ﬂs ﬁ; = al
dm; = bﬂl + ﬂi, dn1 =aa; + 0’1
m) =dnp, a1, ny =dn,, f.

By this definition, we have m;n; = (o' + bB8)(acx + ')af and

am; +bn;—1 = a(df+)a+blaa+p)8-1
= abaf + aad’ +bBB' + (abaf — 1)
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= abaf + acd’ + 068 +o'f
= (aa+f)(b8+ ),

so that we have (am, + bn; — 1)|m n,. Therefore D is a transformation of
S(a,b). It is easily proved that D is a bijection and D' =D.

Example. [22,39] and [26,33] are members of S(2,1). We have
D([22,39]) = (26, 33] and D([26,33]) = [22,39].

m n 22 39 D 26 33
o|B 2|3 2|3
o| B’ 715 D 5|7

Figure 5: An example of transformation D.

5.2 Duality of S(a,b)

Definition 5.4 Let R.4(a, 8') and R, (¢, B) be subsets of S(a,b) defined
as follows:

Ra,b(aaﬁ’) = {[’m,n]GS(a,b) | -&"—l-za, E%__]':'BI}’
R;»b(a"ﬂ) = {[mxn] € S(a7b) | br;;l =a’, dﬁ =,6}

Let D([m,n]) = [my,n.). Since D is a bijection of S(a,b), [m,n] corre-
sponds to [m;,n,] in one-to-one manner by the transformation D. If [m,n]
is a member of S, 3(a, '), then it is immediately proved that [mi,ny] isa
member of R,(a’,a). Conversely, if [m1,n1] is a member of R, s(c, '),
then [m,n] is a member of S, s(c, 3'). Let P be a proposition on Sap(a,a'),
and P, be a proposition obtained by exchanging S, 4(a, ') for Re(a, 8')
and o for B'. Since D is a bijection of S(a,b), the proof obtained by
exchanging S, p(a,a’) for Re(a,B') and o' for B’ in the proof for P is
valid. Hence P, is a proposition on R, s(c,8’). Similarly, we can rewrite
the proposition Q on S (8, 8') to a proposition @, on R, (', B) by ex-
changing Sy ,(8,8’) for R, ,(a',B) and o' for B'. We call P, and Q; dual
propositions of P and Q, respectively. The symmetry between Sep(a,a’)
and S’ (B, 8') also holds between R, (e, ') and Ry ,(c', 8). Lemma 3.2,
Theorem 3.4 and Lemma 3.5 have dual propositions.
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Theorem 5.5 Let [m,n] be any element of S(a,b).
(i) (& +b8)B'+1=0 (mod b(aa + B')).
(ii) (aa+ A')a’ +1=0 (mod a(a’ + bB)).

Lemma 5.6
(1) If [mlanl]) [mz, nz] (S Ra,b(a,ﬁl), then

(ay +6B1) = (ah +bB82) (mod b(aa + B)).
(ii) If [ml’nl]) [m2,n2] € R;,b(alaﬁ): then
(acy +8,) = (aag + ) (mod a(e/ + b)),

Lemma 5.7

(i) For [my,n,], [m2,n2] € Ry (e, B'), there is an integer k, such that bfB, =
bB, + kba' and B} = B; + kaba.

(ii) For [my,n,],[m2,n2) € R;'b(a',ﬂ), there is an integer k, such that
aay = aay + kafy’ and of, = o} + kabf.

We introduce order relations on R, (@, 8') and R;, ,(c, ) in similar way
to Section 3.

Theorem 5.8

(1) Rap(e, B') is a linearly ordered set with respect to the order of (o' +bp).
The difference of the value (a’ + bB) of an adjacent pair is (ac + B').

(ii) R, (o, B) is a linearly ordered set with respect to the order of (aa+3').
The difference of the value (ac + 8') of an adjacent pair is (o' + bf).

Example. Fig. 6 shows linear ordering on R35(2,1).

[m, n) 16, 171 110, 58] 114,123] 118,212] {22,462)
alp 2| 2|2 2] 3 2| 4 2] s
o'| B nia 23] 1 5] a7 | 9 1
a'+bp 13 27 41 s5 69

the least element

Figure 6: Linear ordering on Rj2(2,1).

By the dual proposition of Lemma 5.2, the necessary and sufficient condi-
tion for the least element of R, s(a, ') and R, ,(a', B) is given as follows.

Lemma 5.9 For [m,n] € S(a,b),

(i) A pair [m,n] is the least element of R, (e, B') if and only if o + b8 <
blaa + ).

(ii) A pair [m,n] is the least element of R, (o', B) if and only if aa+ ' <
a(a’ + bp).
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5.3 Binary tree structure

We will represent the structures of S(a,b) by Ras(a, ') and R, 4(a’,8) in
similar way to Section 4.

Definition 5.10 Let Gr(a,b) be a directed graph defined as follows:

1. A vertez set of Ggr(a,b) is S(a,b);

2. There is a directed arc from v to v' if and only if these vertices satisfy
either of the following conditions:

(a) v,v' € Rop(e,B') and v' is the next element of v with respect to the
order on R, p(c, B');

(b) v,v' € R, (&', B) and v' is the next element of v with respect to the
order on R, (o', ).

By the dual proposition of Corollary 4.6, the structure of Gr(a,b) is a
binary tree.

Theorem 5.11 Each connected component of a graph Gr(a,b) is an in-
finite binary tree with the root [m,n] such that o/ + b8 < blaa + B') and
aa + f' < a(a’ + bB).

Let a graph Gs(a,b) be an induced subgraph of G(a,b,—1) by S(a,b).
Gs(a,b) has the binary tree structure presented in Corollary 4.6. In par-
ticular, for a = b = 1, both Gs(1,1) and Gr(1,1) are binary trees with the
root [1,1].

Theorem 5.12 Graph Gg(1,1) is a binary tree with the root [1,1].

Proof. From Corollary 4.7, any root of Gs(1,1) satisfies m +n — 1 = £1.
Since m,n are positive, m = n = 1 is the unique solution. Therefore
Gs(1,1) has only one connected component with the root [1, i]. n

Theorem 5.13 Graph Gr(1,1) is a binary tree with the root [1,1].

Proof. The necessary and sufficient condition for the root of the binary
tree is (o/ + 8) < (a + B') and (a + B') £ («' + B) from Theorem 5.11.
Hence we have (o’ + 8) =(a+f')ora—o' = — 3. Since af — /B’ =
Bla — ') + /(B — B') =1, we have (8 + &')(a — @) = 1. Since a,f>1
and o/,8 > 0, we obtain +a =a—-ao =1 Hencea=p§=1 and
o' = ' =0. This pair is [1,1]. g
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6 Structure of double binary trees

In this section, we show that S(a,b) has a double binary tree structure,
that is, a graph Gg(a,b) is connected by arcs of graph Gpg(a,b). Forv,v' €
S(a,d), if v’ is the next element of v in S, 4(a,a’) (resp. S, (8,8')), then
we call v' the left son (resp. right son) of v in Gg(a, b), and v the father of
v' in Gg(a,b).

6.1 Preservation of father-son relation

Let [mpy,np1] be elements in Sep(arr,af;), and [mp2,nRs) be the next
element of [mp;,npg] in Sap(ar1,a’g;). Their parameters are

’ ' _ ’ 't
Qp2 = Ry, Qpy = ap, .BR2 = ﬂRl + Qpys ﬂRz = ﬁnl + abaRl-

Let [mgs1,ns1) be the next element of [mR1,n R with respect to the order
on R, y(apry,By;). Then

as) = apy, Qg = dpy + abagry, Bs1 = Pr + Bri> Bs, = Bry-

Let [ms2,n52) be the next element of [mR2,ng2) with respect to the order
on R, y(ars, Bg,). Then

as2 = @Ry, Oy = gy +abars, Bsz = PBre + Bryy By = Brs-

Hence we have

Qs2 = Qp3 =ap) = ag,

Bsz: = Brz+ Pry = (Br1 + apy) + (B, + abag;)
= (Br1 + Br;) + (ar: + abap,)
= fs1+ 01;31,

Os; = oy +abapy = gy + abag, = agy,

ﬂg? = ﬂ;n = ﬂ;il + abap = ﬂlsl + abasg,.

From above equations, both [ms1,ns1) and [ms2,nsq] are elements of
Sap(asy, ), and [msy,ns,] is the next element of [ms1,ns1] with re-
spect to the order on S, 4(as;,a%,). This relation is shown in Figure 7.
By symmetry between S, s(a, ') and S; 4(8,8'), any father-son relation
in Gs(a,b) is preserved with respect to the tracing of directed arcs by
R, (e, 8'). Furthermore, by symmetry between R, p(a, ') and R, (e, B),
any father-son relations in Gs(a, b) are preserved with respect to the tracing
of directed arcs by R; (o', 8) of Gr(a,b). Now the following theorem is
obtained.
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[mg,.ng,] !
RI*TRI --..anarc by R, (ag, Bg))

an arc by Sa,b(“m,afu )

3

an arc by Ra.b(aR2.BR2 )
(mg,.ng)

Figure 7: Preservation of the father-son relation in Gg(a,b).

Theorem 6.1 Any father-son relation in Gs(a,b) is preserved with respect
to the tracing directed arcs of G r(a,b).

This theorem implies Gg(a,b) and Gg(a,b) construct double binary tree
structures in S(a, d).

6.2 Preservation of the least element

Let [m,n] be the least element of S,(c, @), and let [m,n] and [m,,n,]
belong to R, s(c, 8'). Then oy = «, 8] = B, and there exists a positive
integer k such that o} = o’ + kaba, By = B + kfB’. Thus we obtain

dm, = b1 + By = (b8 + F') + kbB' = dm + kb,
dn, = aoq + o} = (aa + ) + kaba = d,, + kaba.
Since (m,n} is the least element of S, ;(a, @), we have bd,, — d,,, > 0 and
bd,, — dm, = (bd,, — d.p,) + kb(aba — §'). (14)

By the definition of the parameters, we have d,ebm = d,d,aba and
dm(am — 1) = d;,d, . By subtracting the second equation from the first,
we obtain d,,d,(aba — ') = am(bd,, — d,,,) + d,,. The right hand side of
this equation is positive, this yields aba — 8’ > 0. We have bd,, > dm,
from the equation (14), that is, [m),n,] is the least element of S, 4(a;,a}).

Lemma 6.2 Let [m,n] be the least element of S, p(a,a’). If fmy,n,] is a
succeeding element to [m,n] in R, y(a, 8'), then [my,n1] is the least element

of Sap(a1,y).
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Next, let [m,n] be the least element of S, ,(8,8') and [m,n], [m2,n2] €
R, p(a,B'). Then, we have d,, < ad,, and

adm, — dn, = (adm — dn) + kab(B' — a). (15)

From the definition, we have d,,,(am — 1) = d,,d,,8' and d,m = d,.d,a.
By subtracting the second equation from the first one, we have

dmdn (B — @) = m(adm — dn) — dpn.

The case of d,, < ad,,. Since m > d,, and d,,,,d, > 1, we have 8/ — a > 0.
Therefore, (15) yields ad,,, > d,,, so that [m;,n,] is the least element of
S (81, 8.

The case of ad,,, = d,,. In this case, we obtain ' — « < 0 and ad,,, < d,,.
Therefore [my,n,] is not the least element of S, (1, 8;). Since d,|(am—1)
and (a,am — 1) = 1, we have (d,,a) = 1. Moreover, since (d,,,d,) =1 and
(adm,d,) = 1, we have a = d,, = d,, = 1. We obtain m = n = 1 because
m = (b8 + f)a and n = (aa + a')B.

Lemma 6.3 Let [m,n] be the least element of S, ,(8,5') and let [my,n]
be an element succeeding to [m,n] in R, 4(a,B'). Ifa=b=1 and [m,n] =
[1,1], then [m,,n,] is not the least element of S"I,b(al,a’l). Otherwise,
[m1,n1] is the least element of S ,(e1,a)).

By symmetry between R, »(a, 8') and R;,b(a' , ), the following results are
obtained.

Lemma 6.4 Let [m,n| be the least element of S, y(c,a’). If [my,n;] is a
succeeding element to [m,n] in R, (o', B), [my,n,] is the least element of
Saplar,al).

Lemma 6.5 Let [m,n] be the least element of S, ,(8, ') and [m1,n1] be a
succeeding element to [m,n] in R, (¢!, 8). Ifa=b=1 and [m,n] =[1,1],
then [my,n,] is not the least element of S, ,(ay,}). Otherwise, [my,ny] is
the least element of S, ,(a1,a]).

From the above lemmas, we obtain the following theorem.
Theorem 6.6 Let [m,n] be any root of Gg(a,b). For ab > 2, every pair

in the component which contains [m,n] in Gg(a,b) is also a root of some
component of Gg(a,b).
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6.3 Double binary tree in the case of ab > 2

Gs(a,b) and Gg(a,b) have a double binary tree structure in the case of
ab > 2. The following lemmas lead to this fact.

Lemma 6.7 Let a,b be positive integers.
(i) Sap(a, ') and R, 5(ax, 8') have at most one element in common.
(ii) S, ,(8,8') and R ,(a', B) have at most one element in common.

Lemma 6.8 Let ab > 2.
(i) S a, s{a, ') and R, (o', B) have at most one element in common.
(ii) S, 4(8,0') and R‘z b(oz B') have at most one element in common.

Proof. Easily proved. g

Both Ggs(a,b) and Gg(a,b) consist of infinite components, and by Theo-
rem 6.1, 6.6, Lemma 6.7 and Lemma 6.8, S(a, b) has the double binary tree
structure presented in Fig 8. We draw only arcs in Gg(a,b) which con-
nect roots of Gs(a,b) in Fig. 8. The fact is that there are arcs of Gr(a,b)
connecting vertices in the corresponding position in each of binary trees of
Gs(a,b).

= arcsof Gs(ab)
"""" arcs of Ge{a,b)

, \
P 3
/ 3
/ X
K \
/ \
Il ‘\
’ LY 4 .
’ . 'l N,

Figure 8: The double binary tree structure for the case of ab > 2.

6.4 Binary tree structure in S(1,1)

In the case of a = b = 1, the relations between Gs(l 1) and Gp(1,1) are
described in the following lemma.
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Lemma 6.9 Leta=b=1.

(i) 51,1(1,0) and R} ,(0,1) are identical. Otherwise, So4(a, ') and
R, (o', B) have at most one element in common.

(ii) 51,1(1,0) and Ry,1(0,1) are identical. Otherwise, Sj,(B,8') and
R, 1(a, ') have at most one element in common.

Proof. We prove only (i). If a = b = 1, then [1,1] is the least element of
both of 51,1(1,0) and R] ,(0,1). The parameters of [1,1] are a = 8 =1
and o’ = B’ = 0. For any element [m;,n;] in S$;1(1,0), there exists an
integer k, such that a; = 1, ] =0 and 3, = 1, 8; = k. For any element
[m2,72] in R 1(0,1), there exists an integer k', such that oy =0, 2 = 1
and az = 1, B3 = k'. If {m,,n,] is 2 member of S;,,(1,0), then [m;,n,] is
a member of R) ,(0,1) since o’ = 0 and 8 = 1. Conversely, if [m;,n,] is
a member of R} ;(0,1), then [m,n,] is in S;,;(1,0). Hence these two sets
are identical.

Otherwise, we must have o’ # 0. In this case, it is easily proved that
Sap(c, @) and R, ;(c', B) have at most one element in common. g

Both G5(1,1) and Gg(1,1) consist of a single binary tree with the root
[1,1]. Hence, by Theorem 6.1, Lemma 6.7 and Lemma 6.9, Gs(1,1) and
GRr(1,1) are binary trees in dual relation with each other. Fig. 9 shows
Gs(1,1) and Gg(1,1).

arcs of Gs(1,1)

arcs of G W(1.1)

R RI|3
o> |3

S =

=

Figure 9: Binary tree structure of Gg(1,1) and Gs(1,1)
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