Combinatorial properties of the divisibility of mn by am + bn + c

Toru Araki Masayuki Kogure* Yukio Shibata

Department of Computer Science, Gunma University, 1-5-1, Tenjin-cho, Kiryu, Gunma, 376-8515 Japan

Abstract

In this paper, we investigate the divisibility of mn by am+bn+c for given a, b and c. We give the necessary and sufficient condition for the divisibility, that is, am+bn+c divides mn. We then present the structure of the set of pairs [m,n] that satisfies the divisibility. This structure is represented by a directed graph and we prove the necessary and sufficient condition for the graph to have a binary tree structure. In particular, for c=-1, we show double binary tree structures on the set.

1 Introduction

This paper deals with the divisibility of mn by am + bn + c and several combinatorial properties of the set of pairs [m,n] such that am + bn + c divides mn for given a, b, and c. We especially pay attention to binary tree structures of the set.

Shibata and Seki [4] have studied the divisibility of mn by m+n-1. In [4], the necessary and sufficient conditions for the divisibility of mn by m+n-1 was proved. They then defined an order relation on the set of pairs [m,n] such that m+n-1 divides mn, and represented the relation with directed graphs to have shown that the graph has a binary tree structure.

One purpose of this paper is to generalize this result. We first give characterizations of the divisibility of mn by am + bn + c for given a, b, c. The characterizations are stated as extensions of the results given in [4]. In order to investigate properties of the set of pairs [m, n] such that am + bn + c divides mn, we classify the set into subsets so that each of the subsets has a linear ordering. The order relations can be represented as a directed graph.

^{*}Now with Fujitsu Limited, Numazu, Shizuoka, 410 Japan

We then give the necessary and sufficient condition for the graph to have a binary tree structure. In particular, for c=-1, we find that infinitely many binary trees form other binary trees. We call this structure double binary tree. These investigations give combinatorics of divisibility of mn by am + bn + c, which is also considered to be divisibility of a number in product form by a number in additive form.

In Section 2, the necessary and sufficient conditions for the divisibility are stated. Section 3 deals with the classification of the set into ordered sets, then the structures of directed graphs are discussed in Section 4. In Section 5 and Section 6, we prove the set has double binary tree structures.

For integers m, n, if m divides n, then we write m|n. (n_1, n_2, \ldots, n_k) stands for the greatest common divisor of n_1, n_2, \ldots, n_k . $\{n_1, n_2, \ldots, n_k\}$ stands for the least common multiple of n_1, n_2, \ldots, n_k . For other number theoretic terminology and notation, we refer to Shapiro [3].

2 Necessary and sufficient conditions for divisibility

In this section, we give necessary and sufficient conditions for integers m, n, such that am + bn + c divides mn.

Theorem 2.1 Let a, b and c be any integers. For integers m, n,

$$(am + bn + c, mn) = \frac{(m, bn + c)(am + c, n)}{\theta},$$
 (1)

where

$$\theta = \frac{(d_m, d_n)}{(d_m, d_n, a\alpha + \alpha', b\beta + \beta')},$$

$$d_m = (m, bn + c), m = d_m \alpha, bn + c = d_m \alpha',$$

$$d_n = (am + c, n), n = d_n \beta \ am + c = d_n \beta'.$$

Proof. First we assume that $am + bn + c \neq 0$. Then $(am + bn + c, mn) = (am + bn + c, (am + bn + c, m)(am + bn + c, n)) = (am + bn + c, (bn + c, m)(am + c, n)) = (am + bn + c, d_m d_n)$. Since am + bn + c is a common multiple of d_m and d_n , we have $\{d_m, d_n\} | (am + bn + c)$.

$$\begin{array}{ll} (am+bn+c,mn) & = & \{d_m,d_n\} \left(\frac{am+bn+c}{\{d_m,d_n\}}, \frac{d_m d_n}{\{d_m,d_n\}} \right), \\ \\ & = & \frac{d_m d_n}{(d_m,d_n)} \left(\frac{am+bn+c}{\{d_m,d_n\}}, d_m,d_n \right). \end{array}$$

For any integer $k \neq 0$ and integers a_1, a_2, \ldots, a_n , if $a_i | k, i = 1, \ldots, n$, then

$$\left(\frac{k}{a_1}, \dots, \frac{k}{a_n}\right) = \frac{|k|}{\{a_1, \dots, a_n\}}.$$
 (2)

By equation (2), we have

$$\begin{pmatrix} \frac{am+bn+c}{\{d_m,d_n\}},d_m,d_n \end{pmatrix} = \begin{pmatrix} \frac{am+bn+c}{\{d_m,d_n\}},\frac{am+bn+c}{a\alpha+\alpha'},\frac{am+bn+c}{b\beta+\beta'} \end{pmatrix}$$

$$= \frac{|am+bn+c|}{\{d_m,d_n,a\alpha+\alpha',b\beta+\beta'\}}$$

$$= \frac{|am+bn+c|}{\{\{d_m,a\alpha+\alpha'\},\{d_n,b\beta+\beta'\}\}}$$

$$= \begin{pmatrix} \frac{am+bn+c}{\{d_m,a\alpha+\alpha'\}},\frac{am+bn+c}{\{d_n,b\beta+\beta'\}} \end{pmatrix}$$

$$= \begin{pmatrix} \frac{d_m(a\alpha+\alpha')}{\{d_m,a\alpha+\alpha'\}},\frac{d_n(b\beta+\beta')}{\{d_n,b\beta+\beta'\}} \end{pmatrix}$$

$$= \begin{pmatrix} (d_m,a\alpha+\alpha'),(d_n,b\beta+\beta') \end{pmatrix}$$

$$= (d_m,d_n,a\alpha+\alpha'),(d_n,b\beta+\beta').$$

Let θ be

$$\theta = \frac{(d_m, d_n)}{(d_m, d_n, a\alpha + \alpha', b\beta + \beta')},$$

then we obtain $(am + bn + c, mn) = \frac{d_m d_n}{\theta}$.

If am + bn + c = 0, then $a\alpha + \alpha' = b\beta + \beta' = 0$. The left hand side of the equation (1) becomes $(am + bn + c, mn) = (am + bn + c, d_m d_n) = d_m d_n$. On the other hand, the right hand side is $d_m d_n$ because

$$\theta = \frac{(d_m, d_n)}{(d_m, d_n, a\alpha + \alpha', b\beta + \beta')} = 1,$$

and the theorem is proved.

We define the new symbol ϑ by

$$\vartheta = \operatorname{sign}(am + bn + c)\theta,\tag{3}$$

where sign(x) is a function defined as follows:

$$\operatorname{sign}(x) = \begin{cases} 1, & \text{if } x \ge 0, \\ -1, & \text{if } x < 0. \end{cases}$$

Theorem 2.2 Let a, b and c be integers. For the integers m, n such that $am + bn + c \neq 0$, (am + bn + c)|mn if and only if

$$\frac{(m,bn+c)(am+c,n)}{\vartheta}=am+bn+c.$$

From Theorem 2.2, we can obtain several necessary and sufficient conditions for the divisibility.

Theorem 2.3 For integers m, n such that $am + bn + c \neq 0$, we have

- (i) (am + bn + c)|mn if and only if $d_m = \vartheta(b\beta + \beta')$.
- (ii) (am + bn + c)|mn if and only if $d_n = \vartheta(a\alpha + \alpha')$.

Proof.

(i) First, assume that a pair [m,n] satisfies (am+bn+c)|mn. By Theorem 2.2, $d_m d_n = \vartheta(am+bn+c) = \vartheta(bn+(am+c)) = \vartheta d_n(b\beta+\beta')$. Since $d_n > 0$, we obtain $d_m = \vartheta(b\beta+\beta')$.

For the converse, assume that $d_m = \vartheta(b\beta + \beta')$. By multiplying d_n to both sides of the equation, we obtain $d_m d_n = \vartheta d_n (b\beta + \beta') = \vartheta(bn + (am + c)) = \vartheta(am + bn + c)$. By Theorem 2.2, am + bn + c divides mn.

(ii) Similarly proved.

Theorem 2.4 For integers m, n such that $am + bn + c \neq 0$, we have

(i) if $c \neq 0$, then (am + bn + c)|mn if and only if $ab\alpha\beta - \alpha'\beta' = -\frac{c}{\vartheta}$.

(ii) if $m \neq n$, then (am + bn + c)|mn if and only if $\alpha\beta' - \alpha'\beta + (b - a)\alpha\beta = \frac{m-n}{2} \neq 0$.

Proof.

(i) Let us assume that a pair [m,n] satisfies (am+bn+c)|mn and $c \neq 0$. From the definition, we have $(am+c)(bn+c) = d_m d_n \alpha' \beta'$. Then $abmn+c(am+bn+c) = d_m d_n \alpha' \beta'$. Substituting m and n from $m=d_m \alpha$ and $n=d_n \beta$, we obtain $d_m d_n (ab\alpha\beta-\alpha'\beta') = -c(am+bn+c)$. By Theorem 2.2, $ab\alpha\beta-\alpha'\beta'=-c/\vartheta$.

For the converse, assume that $ab\alpha\beta - \alpha'\beta' = -c/\vartheta$ and $c \neq 0$. Multiplying $d_m d_n$ to both sides of the equation, we have $d_m d_n (ab\alpha\beta - \alpha'\beta') = -\frac{cd_m d_n}{\vartheta}$. Then $\vartheta(abmn - (am + c)(bn + c)) = -cd_m d_n$. Since $c \neq 0$, $\vartheta(am + bn + c) = d_m d_n$. By Theorem 2.2, (am + bn + c)|mn.

(ii) Let us assume that a pair [m, n] satisfies (am + bn + c) divides mn and $m \neq n$. By the definition of α , α' , β and β' ,

$$m(am+c)-n(bn+c)+(b-a)mn=d_md_n\alpha\beta'-d_md_n\alpha'\beta+(b-a)d_md_n\alpha\beta.$$

Then $(m-n)(am+bn+c) = d_m d_n (\alpha \beta' - \alpha' \beta + (b-a)\alpha \beta)$. By Theorem 2.2, we obtain $\alpha \beta' - \alpha' \beta + (b-a)\alpha \beta = (m-n)/\vartheta$.

For the converse, assume that $\alpha\beta' - \alpha'\beta + (b-a)\alpha\beta = (m-n)/\vartheta$ and $m \neq n$. Multiplying $d_m d_n$ to both sides of the equation, we have

$$d_m d_n (\alpha \beta' - \alpha' \beta + (b-a)\alpha \beta) = \frac{d_m d_n (m-n)}{\vartheta}.$$

Then $m(am+c)-n(bn+c)+(b-a)mn=d_md_n(m-n)/\vartheta$, or $(m-n)(am+bn+c)=d_md_n(m-n)/\vartheta$. Since $m\neq n$, we have $am+bn+c=d_md_n/\vartheta$, this means (am+bn+c)|mn.

Lemma 2.5 If (a,c) = 1, then $(a,\alpha') = (a,\beta') = 1$. If (b,c) = 1, then $(b,\alpha') = (b,\beta') = 1$.

Proof. Since $ab\alpha\beta - \alpha'\beta' = -c/\vartheta$ from Theorem 2.4, each of (a, α') , (a, β') , (b, α') and (b, β') divides c. If (a, c) = 1, we obtain $(a, \alpha') = ((a, \alpha'), c) = (\alpha', (a, c)) = 1$. The remaining are similarly proved.

3 Classification of pairs

In this section, we will investigate the structure of the set of pairs [m, n] such that (am + bn + c)|mn, and we will classify the pairs.

Definition 3.1 For integers a, b and c ($abc \neq 0$), the set S(a, b, c) is a collection of pairs [m, n] such that $am + bn + c \neq 0$ and (am + bn + c)|mn.

For $[m_i, n_i] \in S(a, b, c)$, we write

$$\begin{split} d_{m_i} &= (m_i, bn_i + c), & d_{n_i} &= (am_i + c, n_i), \\ m_i &= d_{m_i}\alpha_i, & n_i &= d_{n_i}\beta_i, \\ bn_i + c &= d_{m_i}\alpha_i', & am_i + c &= d_{n_i}\beta_i'. \end{split}$$

By Definition 3.1, $[m,n] \in S(a,b,c)$ if and only if $[n,m] \in S(b,a,c)$, and parameters α and α' are exchanged for β and β' , respectively. In other words, let

$$a_1 = b$$
, $b_1 = a$, $m_1 = n$ and $n_1 = m$,

then $[m_1, n_1] \in S(a_1, b_1, c)$ and $\alpha_1 = \beta$, $\alpha'_1 = \beta'$, $\beta_1 = \alpha$ and $\beta'_1 = \alpha'$. Therefore, if a certain proposition P holds in S(a, b, c), the proposition obtained from P by exchanging a for b, m for n, α for β , α' for β' holds in S(b, a, c). We call this proposition the symmetric proposition for P.

Lemma 3.2 If $[m, n] \in S(a, b, c)$, then

- (i) $\vartheta(b\beta + \beta')\alpha' c \equiv 0 \pmod{b(a\alpha + \alpha')}$,
- (ii) $\vartheta(a\alpha + \alpha')\beta' c \equiv 0 \pmod{a(b\beta + \beta')}$.

Proof. We prove only (i). (ii) is a proposition symmetric for (i). Let $[m, n] \in S(a, b, c)$. From the definition,

$$\vartheta(a\alpha + \alpha')(b\beta + \beta') = \vartheta ab\alpha\beta + \vartheta(a\alpha\beta' + b\alpha'\beta + a'\beta')
= (\vartheta\alpha'\beta' - c) + \vartheta(a\alpha\beta' + b\alpha'\beta + \alpha'\beta')
= \vartheta(a\alpha + \alpha')\beta' + \vartheta(b\beta + \beta')\alpha' - c,$$

then we have $\vartheta b(a\alpha + \alpha')\beta = \vartheta(b\beta + \beta')\alpha' - c$. Hence we obtain $\vartheta(b\beta + \beta')\alpha' - c \equiv 0 \pmod{b(a\alpha + \alpha')}$.

Each congruence in Lemma 3.2 contains two parameters in modulus. Conversely, for example, if α and α' are fixed, the values for $\vartheta(b\beta + \beta')$ of pairs that have these two parameters are congruent under $b(a\alpha + \alpha')$. From this fact, if we classify the pairs in S(a,b,c) with respect to these parameters, there might be an order relation on each subset.

Definition 3.3 Let $S_{a,b,c}(\alpha,\alpha')$ and $S'_{a,b,c}(\beta,\beta')$ be subsets of S(a,b,c) defined as follows:

$$\begin{split} S_{a,b,c}(\alpha,\alpha') &= \left\{ [m,n] \; \middle| \; \frac{m}{d_m} = \alpha, \frac{bn+c}{d_m} = \alpha' \right\}, \\ S'_{a,b,c}(\beta,\beta') &= \left\{ [m,n] \; \middle| \; \frac{n}{d_n} = \beta, \frac{am+c}{d_n} = \beta' \right\}. \end{split}$$

Example. Some elements in $S_{2,1,-3}(3,1)$ of S(2,1,-3) are shown in Fig 1.

$$S_{2,1,-3}(3,1) = \{[12,7], [33,14], [54,21], \dots\}$$

m	n	12	7]	33	14	54	21	75	28	96	35
α	β	3	ı		3	2	3	1	3	4	3	5
α.	β'	1	3		1	9	1	5	1	21	1	27
θ		1			1		3		ı		1	

Figure 1: Some elements in $S_{2,1,-3}(3,1)$.

Theorem 3.4

(i) If $[m_1, n_1], [m_2, n_2] \in S_{a,b,c}(\alpha, \alpha')$, then

$$\vartheta_1(b\beta_1 + \beta_1') \equiv \vartheta_2(b\beta_2 + \beta_2') \pmod{\frac{b(a\alpha + \alpha')}{(ab, \alpha')}}.$$

(ii) If $[m_1, n_1], [m_2, n_2] \in S'_{a,b,c}(\beta, \beta')$, then

$$\vartheta_1(a\alpha_1 + \alpha_1') \equiv \vartheta_2(a\alpha_2 + \alpha_2') \pmod{\frac{a(b\beta + \beta')}{(ab, \beta')}}.$$

Proof. We prove only (i). Assume that $[m_1, n_1]$ and $[m_2, n_2]$ are members of $S_{a,b,c}(\alpha, \alpha')$. By Lemma 3.2,

$$\vartheta_1(b\beta_1 + \beta_1')\alpha' - c \equiv 0 \pmod{b(a\alpha + \alpha')},\tag{4}$$

$$\vartheta_2(b\beta_2 + \beta_2')\alpha' - c \equiv 0 \pmod{b(a\alpha + \alpha')}.$$
 (5)

By subtracting (5) from (4), we have $\vartheta_1(b\beta_1 + \beta_1')\alpha' \equiv \vartheta_2(b\beta_2 + \beta_2')\alpha'$ (mod $b(a\alpha + \alpha')$). Since $(\alpha', b(a\alpha + \alpha')) = (\alpha', ab)$, we obtain $\vartheta_1(b\beta_1 + \beta_1') \equiv \vartheta_2(b\beta_2 + \beta_2')$ (mod $\frac{b(a\alpha + \alpha')}{(ab, \alpha')}$).

Lemma 3.5

(i) If $[m_1, n_1], [m_2, n_2] \in S_{a,b,c}(\alpha, \alpha')$, then there exists an integer k such that

$$\vartheta_2 b \beta_2 = \vartheta_1 b \beta_1 + k b \frac{\alpha'}{(ab, \alpha')} \text{ and } \vartheta_2 \beta_2' = \vartheta_1 \beta_1' + k \frac{ab\alpha}{(ab, \alpha')}.$$

(ii) If $[m_1, n_1], [m_2, n_2] \in S'_{a,b,c}(\beta, \beta')$, then there exists an integer k such that

$$\vartheta_2 a \alpha_2 = \vartheta_1 a \alpha_1 + k a \frac{\beta'}{(ab,\beta')} \ \ and \ \vartheta_2 \alpha_2' = \vartheta_1 \alpha_1' + k \frac{ab\beta}{(ab,\beta')}.$$

Proof. We prove only (i). By Theorem 3.4,

$$\vartheta_1(b\beta_1 + \beta_1') \equiv \vartheta_2(b\beta_2 + \beta_2') \pmod{\frac{b(a\alpha + \alpha')}{(ab, \alpha')}}.$$

Hence, there exists an integer k such that

$$\vartheta_2(b\beta_2 + \beta_2') = \vartheta_1(b\beta_1 + \beta_1') + k \frac{b(a\alpha + \alpha')}{(ab, \alpha')}.$$
 (6)

By Theorem 2.4, $\vartheta_1(ab\alpha\beta_1-\alpha'\beta_1')=-c=\vartheta_2(ab\alpha\beta_2-\alpha'\beta_2')$. Thus we obtain $\vartheta_1(ab\alpha\beta_1-\alpha\beta_1')=\vartheta_2ab\alpha\beta_2-\alpha'\Big(\vartheta_1(b\beta_1+\beta_1')+k\frac{b(a\alpha+\alpha')}{(ab,\alpha')}-\vartheta_2b\beta_2\Big)$, or $\vartheta_2(a\alpha+\alpha')b\beta_2=\vartheta_1(a\alpha+\alpha')b\beta_1+k(a\alpha+\alpha')b\frac{\alpha'}{(ab,\alpha')}$. Since $a\alpha+\alpha'\neq 0$, we have $\vartheta_2b\beta_2=\vartheta_1b\beta_1+kb\frac{\alpha'}{(ab,\alpha')}$. Substituting this result into (6), we obtain $\vartheta_2\beta_2'=\vartheta_1\beta_1'+k\frac{ab\alpha}{(ab,\alpha')}$.

Now we will introduce an order relation on $S_{a,b,c}(\alpha,\alpha')$ and $S'_{a,b,c}(\beta,\beta')$ on the basis of the results of Lemma 3.5.

Suppose that $[m, n] \in S_{a,b,c}(\alpha, \alpha')$. We define integers m_1, n_1 as follows: let

$$\theta_1 = \left(\beta + \frac{\alpha'}{(ab,\alpha')}, \beta' + \frac{ab\alpha}{(ab,\alpha')}\right), \text{ and } \vartheta_1 = \operatorname{sign}(am + bn + c)\theta_1,$$

$$\alpha_1=\alpha,\alpha_1'=\alpha',\vartheta_1\beta_1=\vartheta\beta+\frac{\alpha'}{(ab,\alpha')},\vartheta_1\beta_1'=\vartheta\beta'+\frac{ab\alpha}{(ab,\alpha')},$$

$$d_{m_1} = \vartheta_1(b\beta_1 + \beta_1'), d_{n_1} = \vartheta_1(a\alpha_1 + \alpha_1'), \text{ and } m_1 = d_{m_1}\alpha_1, n_1 = d_{n_1}\beta_1.$$

Then, we have

$$am_1 + bn_1 + c = (a\alpha + \alpha')\left(\vartheta(b\beta + \beta') + \frac{b(a\alpha + \alpha')}{(ab, \alpha')}\right),$$

hence if $am_1 + bn_1 + c \neq 0$, then $(am_1 + bn_1 + c)|mn$ and $[m_1, n_1] \in S_{a,b,c}(\alpha, \alpha')$.

Similarly, let

$$\theta_2 = \left(\beta - \frac{\alpha'}{(ab,\alpha')}, \beta' - \frac{ab\alpha}{(ab,\alpha')}\right), \vartheta_2 = \operatorname{sign}(am + bn + c)\theta_2,$$

$$\alpha_2=\alpha,\alpha_2'=\alpha',\vartheta_2\beta_2=\vartheta\beta-\frac{\alpha'}{(ab,\alpha')},\vartheta_2\beta_2'=\vartheta\beta'-\frac{ab\alpha}{(ab,\alpha')},$$

$$d_{m_2} = \vartheta_2(b\beta_2 + \beta_2'), d_{n_2} = \vartheta_2(a\alpha_2 + \alpha_2'), \text{ and } m_2 = d_{m_2}\alpha_2, n_2 = d_{n_2}\beta_2.$$

If $am_2 + bn_2 + c \neq 0$, then $(am_2 + bn_2 + c)|mn$ and $[m_2, n_2] \in S_{a,b,c}(\alpha, \alpha')$.

Thus elements in $S_{a,b,c}(\alpha,\alpha')$ are ordered with respect to the order of $\vartheta(b\beta+\beta')$, that is, a pair $[m_1,n_1]$ has precedence over $[m_2,n_2]$ if and only if $\vartheta_1(b\beta_1+\beta_1') \leq \vartheta_2(b\beta_2+\beta_2')$. This order relation is a linear ordering. Since $\vartheta(b\beta+\beta') > 0$, each $S_{a,b,c}(\alpha,\alpha')$ has the least element.

Similarly, elements of $S'_{a,b,c}(\beta,\beta')$ are linearly ordered with respect to the order of $\vartheta(a\alpha + \alpha')$.

Example. Linear ordering on $S_{2,1,-3}(3,1)$ is shown in Fig 2.

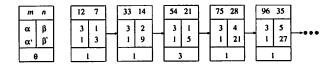


Figure 2: Linear ordering on $S_{2,1,-3}(3,1)$.

Lemma 3.6

(i) A pair [m, n] is the least element of $S_{a,b,c}(\alpha, \alpha')$ if and only if $\vartheta(b\beta + \beta') \leq \frac{|b(a\alpha + \alpha')|}{(ab, \alpha')}$.

(ii) A pair [m,n] is the least element of $S'_{a,b,c}(\beta,\beta')$ if and only if $\vartheta(a\alpha + \alpha') \leq \frac{|a(b\beta + \beta')|}{(ab,\beta')}$.

Proof. We prove only (i). Let [m, n] be an element in $S_{a,b,c}(\alpha, \alpha')$ and $[m_1, n_1]$ an adjacent element to [m, n] with respect to the order on $S_{a,b,c}(\alpha, \alpha')$.

Then the parameters of
$$[m_1, n_1]$$
 are $\vartheta_1 \beta_1 = \vartheta \beta + \frac{\alpha'}{(ab, \alpha')}$ and $\vartheta_1 \beta_1' =$

$$\vartheta\beta' + \frac{ab\alpha}{(ab,\alpha')}$$
, or $\vartheta_1\beta_1 = \vartheta\beta - \frac{\alpha'}{(ab,\alpha')}$ and $\vartheta_1\beta_1' = \vartheta\beta' - \frac{ab\alpha}{(ab,\alpha')}$. Thus

$$\vartheta_1(b\beta_1+\beta_1')=\vartheta(b\beta+\beta')\pm \frac{b(a\alpha+\alpha')}{(ab,\alpha')}$$
. Hence, if $[m,n]$ is the least element

of
$$S_{a,b,c}(\alpha,\alpha')$$
, then $\vartheta(b\beta+\beta')-\frac{|b(a\alpha+\alpha')|}{(ab,\alpha')}\leq 0$.

The converse is easily proved.

Lemma 3.7

(i) A pair [m,n] is the least element of $S_{a,b,c}(\alpha,\alpha')$ if and only if $\vartheta(b\beta+\beta')$ is the least positive solution of the equation

$$\frac{\alpha'}{(ab,\alpha')}x - \frac{c}{(ab,\alpha')} \equiv 0 \pmod{\frac{b(a\alpha + \alpha')}{(ab,\alpha')}}.$$

(ii) A pair [m, n] is the least element of $S'_{a,b,c}(\beta, \beta')$ if and only if $\vartheta(a\alpha + \alpha')$ is the least positive solution of the equation

$$\frac{\beta'}{(ab,\beta')}y - \frac{c}{(ab,\beta')} \equiv 0 \pmod{\frac{a(b\beta + \beta')}{(ab,\beta')}}.$$

Proof. We prove only (i). Let [m,n] be the least element of $S_{a,b,c}(\alpha,\alpha')$. By Lemma 3.6, we have $\vartheta(b\beta+\beta') \leq \frac{|b(a\alpha+\alpha')|}{(ab,\alpha')}$. From Lemma 3.2, [m,n] satisfies the congruence

$$\vartheta(b\beta+\beta')\frac{\alpha'}{(ab,\alpha')}-\frac{c}{(ab,\alpha')}\equiv 0\pmod{\frac{b(a\alpha+\alpha')}{(ab,\alpha')}}.$$

Hence $\vartheta(b\beta + \beta')$ is the least positive solution of the equation

$$\frac{\alpha'}{(ab,\alpha')}x - \frac{c}{(ab,\alpha')} \equiv 0 \pmod{\frac{b(a\alpha + \alpha')}{(ab,\alpha')}}.$$

The converse is easily proved.

Corollary 3.8 Let [m, n] be a member of S(1, 1, -1). Then [m, n] is the least element of both $S_{1,1,-1}(\alpha, \alpha')$ and $S'_{1,1,-1}(\beta, \beta')$ if and only if $m+n-1=\pm 1$.

Proof. Suppose that $[m,n] \in S(1,1,-1)$ is the least element of both $S_{1,1,-1}(\alpha,\alpha')$ and $S_{1,1,-1}(\alpha,\alpha')$. By Lemma 3.6, we have $d_m \leq d_n$ and $d_n \leq d_m$, and this reduces to $d_m = d_n$. Since $(d_m,d_n) = (m,n,-1) = 1$ and $d_m,d_n \geq 1$, we have $d_m = d_n = 1$. Then the following two cases arise.

Case $\vartheta = 1$. Since $d_m = \vartheta(b\beta + \beta')$ and $d_n = \vartheta(a\alpha + \alpha')$, we have $d_m = \beta + \beta' = 1$ and $d_n = \alpha + \alpha' = 1$. From $\alpha\beta - \alpha'\beta' = 1$, we have $\alpha' = 1 - \alpha$, $\beta = 2 - \alpha$ and $\beta' = \alpha - 1$. Then $m = d_m\alpha = \alpha$ and $n = d_n\beta = 2 - \alpha$, and we obtain $m + n - 1 = \alpha + (2 - \alpha) - 1 = 1$.

Case $\vartheta = -1$. Similarly we have $d_m = -\beta - \beta' = 1$ and $d_n = -\alpha - \alpha' = 1$. Then $\alpha' = 1 - \alpha$, $\beta = -\alpha$, $\beta' = \alpha - 1$. Then $m = d_m \alpha = \alpha$ and $n = d_n \beta = -\alpha$, and we obtain $m + n - 1 = \alpha - \alpha - 1 = -1$.

Conversely, suppose that $[m,n] \in S(1,1,-1)$ and [m,n] satisfies $m+n-1=\pm 1$. Then $d_m=(m,n-1)=(m,m+n-1)=1$ and $d_n=(n,m-1)=(n,m+n-1)=1$, hence we obtain $d_m=d_n$. By Lemma 3.6, the pair [m,n] is the least element of both $S_{1,1,-1}(\alpha,\alpha')$ and $S_{1,1,-1}(\alpha,\alpha')$.

4 Structure of S(a, b, c)

In the previous section, we introduced $S_{a,b,c}(\alpha,\alpha')$ and $S'_{a,b,c}(\beta,\beta')$ and proved that each one was a linearly ordered set. The order relation can be represented by a directed graph. We define a directed graph on S(a,b,c), and give the necessary and sufficient condition for the graph to be a binary tree.

4.1 A graph on S(a, b, c)

Definition 4.1 Let a directed graph G(a,b,c) be defined as follows:

- 1. the vertex set of G(a,b,c) is S(a,b,c),
- 2. there exists a directed arc from v to v' if and only if these vertices satisfy either of the following two conditions:
- (a) $v, v' \in S_{a,b,c}(\alpha, \alpha')$ and v' is the next element of v with respect to the order on $S_{a,b,c}(\alpha, \alpha')$;
- (b) $v, v' \in S'_{a,b,c}(\beta, \beta')$ and v' is the next element of v with respect to the order on $S'_{a,b,c}(\beta, \beta')$.

Fig. 3 and Fig. 4 show G(3,2,-6) and G(3,2,2), respectively.

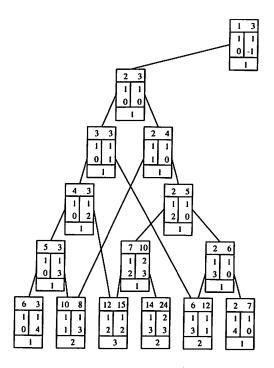


Figure 3: A part of the graph G(3, 2, -6).

A graph G(a,b,c) can be regarded as a representation of the partial order relation on S(a,b,c). Shibata and Seki [4] have shown that the graph G(1,1,-1) has a binary tree structure. G(a,b,c) however does not have binary tree structures in general, for example such as G(3,2,-6). On the other hand, we see that a connected component of graph G(3,2,2) is a binary tree.

In order to investigate the structure of G(a, b, c), we first have an insight into the order relation on S(a, b, c). Each vertex [m, n] of G(a, b, c) satisfies one of the following conditions:

Type 1 the least element of both $S_{a,b,c}(\alpha,\alpha')$ and $S'_{a,b,c}(\beta,\beta')$;

Type 2 the least element of either $S_{a,b,c}(\alpha,\alpha')$ or $S'_{a,b,c}(\beta,\beta')$;

Type 3 Otherwise, that is, [m, n] is not the least element of $S_{a,b,c}(\alpha, \alpha')$, and is not of $S'_{a,b,c}(\beta, \beta')$.

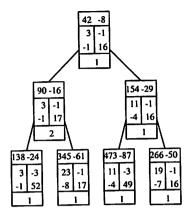


Figure 4: A part of the graph G(3,2,2).

From Lemma 3.6, a vertex [m, n] of G(a, b, c) is of Type 3 if and only if

$$\vartheta(b\beta + \beta') > \frac{|b(a\alpha + \alpha')|}{(ab, \alpha')} \text{ and } \vartheta(a\alpha + \alpha') > \frac{|a(b\beta + \beta')|}{(ab, \beta')}.$$
(7)

The following theorem gives a necessary and sufficient condition for the existence of a pair of Type 3 in a graph G(a, b, c).

Theorem 4.2 G(a,b,c) has elements of Type 3 if and only if $|ab| < c^2$.

Proof. Let us assume that $|ab| < c^2$. We will prove that there is a pair such that $\vartheta = c$ and the condition holds. If $\vartheta = c$, then $(ab, \alpha') = (ab, \beta') = 1$ since $ab\alpha\beta - \alpha'\beta' = -c/\vartheta = -1$. Thus, [m, n] with $\vartheta = c$ is a pair or Type 3 if and only if

$$c(b\beta + \beta') > |b(a\alpha + \alpha')| \text{ and } c(a\alpha + \alpha') > |a(b\beta + \beta')|.$$
 (8)

Let A, B be any integers such that

$$\begin{cases}
cB > |bA|, \\
cA > |aB|,
\end{cases}$$
(9)

$$(A,B) = (a,A) = (b,B) = 1 \text{ and } (a,b)|(AB-1).$$
 (10)

Let α, β be any solution of a diophantine equation

$$ab\alpha\beta - (A - a\alpha)(B - b\beta) = -1,$$

that is,

$$aB\alpha + bA\beta = AB - 1$$
,

and $\alpha' = A - a\alpha$, $\beta' = B - b\beta$. Then, we have $(\alpha, \alpha') = (\alpha, A - a\alpha) = (\alpha, A) = (aB\alpha, A) = (-bA\beta + AB - 1, A) = 1$, $(\beta, \beta') = (\beta, B - b\beta) = (\beta, B) = (bA\beta, B) = (-aB\alpha + AB - 1, B) = 1$. Hence, if we define m, n by $d_m = c(b\beta + \beta') = cB$, $m = d_m\alpha$, $d_n = c(a\alpha + \alpha') = cA$ and $n = d_n\beta$, then [m, n] satisfies (am + bn + c)|mn and the condition (8), that is, [m, n] is a pair of Type 3. From this reason, if we prove the existence of any integers satisfying (9) and (10), the proof completes.

Without loss of generality, we assume that $|a| \ge |b|$. Then the possible orderings are $|b| \le |a| < |c|$, |b| < |a| = |c| and |b| < |c| < |a|. Through this proof, we assume that a and b are positive, since we consider only absolute values of a, b. Three cases arise.

Case 1. $b \le a < |c|$. Putting A = B = sign(c), we find that inequalities (9) and (10) hold.

Case 2. b < a = |c|. Putting A = sign(c)(a+ab+1) and B = sign(c)(ab+1), we have (A,B) = (a,A) = (b,B) = 1 and (a,b)|(AB-1), and the inequalities (9) hold because

$$cB - |bA| = (ab|c| + |c|) - (ab + ab^{2} + b),$$

$$= ab(|c| - b) + (|c| - b) - ab$$

$$\geq ab - ab + (|c| - b)$$

$$= |c| - b$$

$$> 0,$$

$$cA - |aB| = (a|c| + ab|c| + |c|) - (a^{2}b + a)$$

$$= ab(|c| - a) + (|c| - a) + a|c|$$

$$= a^{2}$$

$$> 0.$$

Case 3. b < |c| < a. Let A = sign(c)(ak+abl+1) and B = sign(c)(abl+1), where k and l are any integers such that

$$k > \frac{b(a - |c|)(|c| - b)}{c^2 - ab},$$

$$\frac{k}{|c| - b} - \frac{1}{ab} < l < \frac{k|c|}{b(a - |c|)} - \frac{1}{ab}.$$
(11)

Then A and B satisfy (A, B) = (a, A) = (b, B) = 1 and (a, b)|(AB - 1), and the inequalities (9) follow, since

$$cB - |bA| = (ab|c|l + |c|) - b(ak + abl + 1)$$

$$= ab(|c| - b)l - (abk - |c| + b)$$

$$> (abk - |c| + b) - (abk - |c| + b)$$

$$= 0,$$

$$cA - |aB| = (a|c|k + ab|c|l + |c|) - a(abl + 1)$$

$$= -ab(a - |c|)l + a|c|k - (a - |c|)$$

$$> -a|c|k + (a - |c|) + a|c|k - (a - |c|)$$

$$= 0.$$

Finally, we show that the existence of the positive integer l satisfying (11). The difference between the left and right hand side of (11) is

$$\left(\frac{k|c|}{b(a-|c|)} - \frac{1}{ab}\right) - \left(\frac{k}{|c|-b} - \frac{1}{ab}\right) = \frac{k|c|}{b(a-|c|)} - \frac{k}{|c|-b}
= \frac{k(c^2 - ab)}{b(a-|c|)(|c|-b)}
> 1,$$

hence there is a positive integer in the interval (11).

Conversely, assume that a pair [m,n] is of Type 3 in G(a,b,c). From Lemma 3.6, [m,n] satisfies

$$\vartheta(b\beta+\beta')>\frac{|b(a\alpha+\alpha')|}{(ab,\alpha')} \text{ and } \vartheta(a\alpha+\alpha')>\frac{|a(b\beta+\beta')|}{(ab,\beta')}.$$

Multiplying each side of the inequalities, we have $\vartheta^2(ab, \alpha')(ab, \beta') > |ab|$. Since $\vartheta(ab\alpha\beta - \alpha'\beta') = -c$, both $\vartheta(ab, \alpha')$ and $\vartheta(ab, \beta')$ divides c. Hence $\vartheta(ab, \alpha') \le c$ and $\vartheta(ab, \beta') \le c$. So, we obtain $c^2 > |ab|$.

Corollary 4.3 If $c^2 \leq |ab|$, each element in S(a,b,c) is the least element of $S_{a,b,c}(\alpha,\alpha')$, or of $S'_{a,b,c}(\beta,\beta')$, or of both.

Proof. By Lemma 4.2, if $c^2 \leq |ab|$, G(a,b,c) has no pairs of Type 3. Hence each pair in G(a,b,c) is either Type 1 or Type 2.

4.2 Binary tree structures

Lemma 4.4 $S_{a,b,c}(\alpha,\alpha')$ and $S'_{a,b,c}(\beta,\beta')$ have at most one element in common.

Proof. Let us assume that $[m_1, n_1], [m_2, n_2] \in S_{a,b,c}(\alpha, \alpha') \cap S'_{a,b,c}(\beta, \beta')$. Since $[m_1, n_1], [m_2, n_2] \in S_{a,b,c}(\alpha, \alpha')$, we have $\alpha_2 = \alpha_1, \alpha'_2 = \alpha'_1$ and there exists an integer k such that

$$\vartheta_2\beta_2=\vartheta_1\beta_1+k\frac{\alpha_1'}{(ab,\alpha_1')},\quad \vartheta_2\beta_2'=\vartheta_1\beta_1'+k\frac{ab\alpha_1}{(ab,\alpha_1')}.$$

Furthermore, since $[m_1, n_1], [m_2, n_2] \in S'_{a,b,c}(\beta, \beta')$, then $\beta_1 = \beta_2, \ \beta'_2 = \beta'_1$. So we have

$$\begin{array}{rcl} \vartheta_2 - \vartheta_1 & = & -c \left(\frac{1}{ab\alpha_1\beta_1 - \alpha_1'\beta_1'} - \frac{1}{ab\alpha_2\beta_2 - \alpha_1'\beta_2'} \right) \\ & = & 0. \end{array}$$

Thus $[m_1, n_1]$ corresponds to $[m_2, n_2]$.

From Corollary 4.3 and Lemma 4.4, we obtain a necessary and sufficient condition so that G(a,b,c) has a binary tree structure.

Theorem 4.5 Each connected component of a graph G(a,b,c) has a binary tree structure if and only if $c^2 \leq |ab|$. This binary tree has the root [m,n] such that

$$\begin{cases}
d_m \leq \frac{|b(a\alpha + \alpha')|}{(ab, \alpha')}, \\
d_n \leq \frac{|a(b\beta + \beta')|}{(ab, \beta')}.
\end{cases} (12)$$

Proof. Every vertex of G(a, b, c) is of outdegree 2. From Lemma 4.3, every vertex, other than the pairs satisfying the condition (12), is of indegree 1.

Let $[m_1, n_1]$ be any vertex of G(a, b, c). If $[m_1, n_1]$ does not satisfy the inequalities (12), either it is the least element of $S_{a,b,c}(\alpha_1, \alpha_1')$ or the least element of $S'_{a,b,c}(\beta_1, \beta_1')$. Without loss of generality, assume that [m, n] is the least element of $S_{a,b,c}(\alpha_1, \alpha_1')$. Then we can trace it to the least element of $S'_{a,b,c}(\beta_1, \beta_1')$. It is an element of $S_{a,b,c}(\alpha_2, \alpha_2')$ for some $\alpha_2, \alpha_2', \beta_2$ and β_2' . If it is the least element in $S_{a,b,c}(\alpha_2, \alpha_2')$, it satisfies (12). If it is not, we can trace it to the least element of $S_{a,b,c}(\alpha_2, \alpha_2')$.

When the step is repeated, the value of $\vartheta(a\alpha + \alpha')$ and $\vartheta(b\beta + \beta')$ decreases keeping positivity. We can arrive, consequently, at the element [m,n] which is the least element of both $S_{a,b,c}(\alpha,\alpha')$ and $S'_{a,b,c}(\beta,\beta')$ for some α , α' , β and β' . It must satisfy (12). Any element is therefore reached from the element [m,n] by a unique directed path. Hence, each component of G(a,b,c) is an infinite binary tree with the root [m,n].

Corollary 4.6 If $c = \pm 1$, each connected component of G(a, b, c) is a binary tree with the root [m, n] such that

$$\begin{cases}
d_m & \leq |bd_n|, \\
d_n & \leq |ad_m|.
\end{cases}$$
(13)

Proof. From the assumption, $c^2 = 1 \le |ab|$ always holds. Hence each connected component of G(a,b,-1) is a binary tree from Theorem 4.5. Since (a,c)=(b,c)=1 from Lemma 2.5, we have $(ab,\alpha')=(ab,\beta')=1$. Since ϑ is a divisor of c, we have $|\vartheta|=1$. Hence $d_m=\vartheta(b\beta+\beta')=|b\beta+\beta'|$ and $d_n=\vartheta(a\alpha+\alpha')=|a\alpha+\alpha'|$, and the condition (12) is rewritten by the condition (13).

Corollary 4.7 ([4]) Each connected component of G(1, 1, -1) is an infinite binary tree with the root [m, n] such that $m + n - 1 = \pm 1$.

Proof. By Corollary 4.6, each connected component of G(1,1,-1) is a binary tree. By Corollary 3.8, each root must satisfy $m+n-1=\pm 1$.

There are infinite components in G(a, b, c) in general. In particular, Shibata and Seki [4] have shown that the structure of the set of pairs such that (m+n-1)|mn and m, n are positive is a binary tree with the root [1,1].

5 Duality of the set S(a, b, -1)

We will investigate the structure of binary trees in the case of c = -1 through Section 5, 6. First, we show that the set S(a, b, -1) includes other linear orders, and another binary tree can be constructed in S(a, b, -1).

5.1 Transformation of a subset of S(a, b, c)

We define a set S(a, b) which is a subset of S(a, b, -1).

Definition 5.1 For the positive integers a, b, a set S(a, b) is a collection of pairs in S(a, b, -1) such that m, n are positive.

We define the following subsets of S(a, b),

$$S_{a,b}(\alpha,\alpha') = S_{a,b,-1}(\alpha,\alpha') \cap S(a,b),$$

$$S'_{a,b}(\beta,\beta') = S'_{a,b,-1}(\beta,\beta') \cap S(a,b).$$

For any pair [m, n] in S(a, b), we have $\theta = 1$ and $\vartheta = 1$, since the value of θ is a divisor of 1 and a, b, m, n are positive.

Since $S_{a,b}(\alpha,\alpha')$ and $S'_{a,b}(\beta,\beta')$ are subsets of $S_{a,b,-1}(\alpha,\alpha')$ and $S'_{a,b,-1}(\beta,\beta')$, respectively, Lemma 3.2, Theorem 3.4 and Theorem 3.5 also hold for $S_{a,b}(\alpha,\alpha')$ and $S'_{a,b}(\beta,\beta')$. Hence these sets are linearly ordered sets. Furthermore, the necessary and sufficient condition for the least element in S(a,b) also holds.

Lemma 5.2

- (i) A pair [m, n] is the least element of $S_{a,b}(\alpha, \alpha')$ if and only if $(b\beta + \beta') \leq b(a\alpha + \alpha')$.
- (ii) A pair [m, n] is the least element of $S'_{a,b}(\beta, \beta')$ if and only if $(a\alpha + \alpha') \leq a(b\beta + \beta')$.

Proof. We prove only (i). (ii) is a proposition symmetric to (i). Assume that [m,n] is the least element of $S_{a,b}(\alpha,\alpha')$. Then we have $b\beta - b\alpha' \leq 0$ or $\beta' - ba\alpha < 0$.

The case for $b\beta - b\alpha' \leq 0$. Since $[m,n] \in S(a,b)$, we have $ab\alpha\beta - \alpha'\beta' = 1$ by Theorem 2.4. Then we have $ab\alpha(\beta - \alpha') - \alpha'(\beta' - ba\alpha) = 1$, this yields $\alpha'(\beta' - ab\alpha) = ab\alpha(\beta - \alpha') - 1 < 0$. Since $\alpha' > 0$, we obtain $\beta' - ba\alpha < 0$. By adding both sides of the inequalities $b\beta - b\alpha' < 0$ and $\beta' - ba\alpha < 0$, we have $(b\beta + \beta') - b(a\alpha + \alpha') < 0$.

The case for $\beta' - ab\alpha < 0$. In this case, two cases arise.

- 1. the case of $\alpha' > 0$. In a similar way, we obtain the same result.
- 2. the case of $\alpha' = 0$. Since $ab\alpha(b \alpha') 1 = \alpha'(\beta' ba\alpha) = 0$, we have $ab\alpha(\beta \alpha') = 1$. Hence $a = b = \alpha = 1$, $\alpha' = 0$ and $\beta = 1$ and $\beta' ab\alpha = \beta' 1 < 0$. Because of $\beta' \ge 0$, we have $\beta' = 0$. Hence $b\beta + \beta' = 1$ and $b(a\alpha + \alpha') = 1$, we obtain $(b\beta + \beta') \le b(a\alpha + \alpha')$.

The converse is easily proved.

We define a transformation D of S(a, b) as follows.

Definition 5.3 Let D be a transformation of a set S(a,b) defined as follows:

$$D([m,n])=[m_1,n_1], \quad$$

where

$$\begin{cases} \alpha_1 = \alpha, & \alpha'_1 = \beta' \\ \beta_1 = \beta, & \beta'_1 = \alpha' \\ d_{m_1} = b\beta_1 + \beta'_1, & d_{n_1} = a\alpha_1 + \alpha'_1 \\ m_1 = d_{m_1}\alpha_1, & n_1 = d_{n_1}\beta_1. \end{cases}$$

By this definition, we have $m_1 n_1 = (\alpha' + b\beta)(a\alpha + \beta')\alpha\beta$ and

$$am_1 + bn_1 - 1 = a(b\beta + \alpha')\alpha + b(a\alpha + \beta')\beta - 1$$
$$= ab\alpha\beta + a\alpha\alpha' + b\beta\beta' + (ab\alpha\beta - 1)$$

$$= ab\alpha\beta + a\alpha\alpha' + b\beta\beta' + \alpha'\beta'$$

= $(a\alpha + \beta')(b\beta + \alpha'),$

so that we have $(am_1 + bn_1 - 1)|m_1n_1$. Therefore D is a transformation of S(a,b). It is easily proved that D is a bijection and $D^{-1} = D$.

Example. [22,39] and [26,33] are members of S(2,1). We have D([22,39]) = [26,33] and D([26,33]) = [22,39].

Figure 5: An example of transformation D.

5.2 Duality of S(a,b)

Definition 5.4 Let $R_{a,b}(\alpha, \beta')$ and $R'_{a,b}(\alpha', \beta)$ be subsets of S(a,b) defined as follows:

$$R_{a,b}(\alpha,\beta') = \left\{ [m,n] \in S(a,b) \mid \frac{m}{d_m} = \alpha, \quad \frac{am-1}{d_n} = \beta' \right\},$$

$$R'_{a,b}(\alpha',\beta) = \left\{ [m,n] \in S(a,b) \mid \frac{bn-1}{d_m} = \alpha', \quad \frac{\dot{n}}{d_n} = \beta \right\}.$$

Let $D([m,n])=[m_1,n_1]$. Since D is a bijection of S(a,b), [m,n] corresponds to $[m_1,n_1]$ in one-to-one manner by the transformation D. If [m,n] is a member of $S_{a,b}(\alpha,\alpha')$, then it is immediately proved that $[m_1,n_1]$ is a member of $R_{a,b}(\alpha',\alpha)$. Conversely, if $[m_1,n_1]$ is a member of $R_{a,b}(\alpha,\beta')$, then [m,n] is a member of $S_{a,b}(\alpha,\beta')$. Let P be a proposition on $S_{a,b}(\alpha,\alpha')$, and P_1 be a proposition obtained by exchanging $S_{a,b}(\alpha,\alpha')$ for $R_{a,b}(\alpha,\beta')$ and α' for β' . Since D is a bijection of S(a,b), the proof obtained by exchanging $S_{a,b}(\alpha,\alpha')$ for $R_{a,b}(\alpha,\beta')$ and α' for β' in the proof for P is valid. Hence P_1 is a proposition on $R_{a,b}(\alpha,\beta')$. Similarly, we can rewrite the proposition Q on $S'_{a,b}(\beta,\beta')$ to a proposition Q_1 on $R'_{a,b}(\alpha',\beta)$ by exchanging $S'_{a,b}(\beta,\beta')$ for $R'_{a,b}(\alpha',\beta)$ and α' for β' . We call P_1 and Q_1 dual propositions of P and Q, respectively. The symmetry between $S_{a,b}(\alpha,\alpha')$ and $S'_{a,b}(\beta,\beta')$ also holds between $R_{a,b}(\alpha,\beta')$ and $R'_{a,b}(\alpha',\beta)$. Lemma 3.2, Theorem 3.4 and Lemma 3.5 have dual propositions.

Theorem 5.5 Let [m,n] be any element of S(a,b).

- (i) $(\alpha' + b\beta)\beta' + 1 \equiv 0 \pmod{b(a\alpha + \beta')}$.
- (ii) $(a\alpha + \beta')\alpha' + 1 \equiv 0 \pmod{a(\alpha' + b\beta)}$.

Lemma 5.6

(i) If $[m_1, n_1], [m_2, n_2] \in R_{a,b}(\alpha, \beta')$, then

$$(\alpha'_1 + b\beta_1) \equiv (\alpha'_2 + b\beta_2) \pmod{b(a\alpha + \beta')}.$$

(ii) If $[m_1, n_1], [m_2, n_2] \in R'_{a,b}(\alpha', \beta)$, then

$$(a\alpha_1 + \beta_1') \equiv (a\alpha_2 + \beta_2') \pmod{a(\alpha' + b\beta)}.$$

Lemma 5.7

- (i) For $[m_1, n_1]$, $[m_2, n_2] \in R_{a,b}(\alpha, \beta')$, there is an integer k, such that $b\beta_2 = b\beta_1 + kb\alpha'$ and $\beta_2' = \beta_1' + kab\alpha$.
- (ii) For $[m_1, n_1], [m_2, n_2] \in R'_{a,b}(\alpha', \beta)$, there is an integer k, such that $a\alpha_2 = a\alpha_1 + ka\beta'$ and $\alpha'_2 = \alpha'_1 + kab\beta$.

We introduce order relations on $R_{a,b}(\alpha,\beta')$ and $R'_{a,b}(\alpha',\beta)$ in similar way to Section 3.

Theorem 5.8

- (i) $R_{a,b}(\alpha, \beta')$ is a linearly ordered set with respect to the order of $(\alpha' + b\beta)$. The difference of the value $(\alpha' + b\beta)$ of an adjacent pair is $(a\alpha + \beta')$.
- (ii) $R'_{a,b}(\alpha',\beta)$ is a linearly ordered set with respect to the order of $(a\alpha + \beta')$. The difference of the value $(a\alpha + \beta')$ of an adjacent pair is $(\alpha' + b\beta)$.

Example. Fig. 6 shows linear ordering on $R_{3,2}(2,1)$.

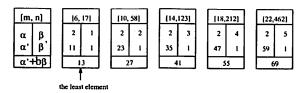


Figure 6: Linear ordering on $R_{3,2}(2,1)$.

By the dual proposition of Lemma 5.2, the necessary and sufficient condition for the least element of $R_{a,b}(\alpha,\beta')$ and $R'_{a,b}(\alpha',\beta)$ is given as follows.

Lemma 5.9 For $[m, n] \in S(a, b)$,

- (i) A pair [m, n] is the least element of $R_{a,b}(\alpha, \beta')$ if and only if $\alpha' + b\beta \le b(a\alpha + \beta')$.
- (ii) A pair [m,n] is the least element of $R'_{a,b}(\alpha',\beta)$ if and only if $a\alpha + \beta' \leq a(\alpha' + b\beta)$.

5.3 Binary tree structure

We will represent the structures of S(a,b) by $R_{a,b}(\alpha,\beta')$ and $R'_{a,b}(\alpha',\beta)$ in similar way to Section 4.

Definition 5.10 Let $G_R(a,b)$ be a directed graph defined as follows:

- 1. A vertex set of $G_R(a,b)$ is S(a,b);
- 2. There is a directed arc from v to v' if and only if these vertices satisfy either of the following conditions:
- (a) $v, v' \in R_{a,b}(\alpha, \beta')$ and v' is the next element of v with respect to the order on $R_{a,b}(\alpha, \beta')$;
- (b) $v, v' \in R'_{a,b}(\alpha', \beta)$ and v' is the next element of v with respect to the order on $R'_{a,b}(\alpha', \beta)$.

By the dual proposition of Corollary 4.6, the structure of $G_R(a,b)$ is a binary tree.

Theorem 5.11 Each connected component of a graph $G_R(a,b)$ is an infinite binary tree with the root [m,n] such that $\alpha' + b\beta \leq b(a\alpha + \beta')$ and $a\alpha + \beta' \leq a(\alpha' + b\beta)$.

Let a graph $G_S(a,b)$ be an induced subgraph of G(a,b,-1) by S(a,b). $G_S(a,b)$ has the binary tree structure presented in Corollary 4.6. In particular, for a=b=1, both $G_S(1,1)$ and $G_R(1,1)$ are binary trees with the root [1,1].

Theorem 5.12 Graph $G_S(1,1)$ is a binary tree with the root [1,1].

Proof. From Corollary 4.7, any root of $G_S(1,1)$ satisfies $m+n-1=\pm 1$. Since m,n are positive, m=n=1 is the unique solution. Therefore $G_S(1,1)$ has only one connected component with the root [1,1].

Theorem 5.13 Graph $G_R(1,1)$ is a binary tree with the root [1,1].

Proof. The necessary and sufficient condition for the root of the binary tree is $(\alpha' + \beta) \leq (\alpha + \beta')$ and $(\alpha + \beta') \leq (\alpha' + \beta)$ from Theorem 5.11. Hence we have $(\alpha' + \beta) = (\alpha + \beta')$ or $\alpha - \alpha' = \beta - \beta'$. Since $\alpha\beta - \alpha'\beta' = \beta(\alpha - \alpha') + \alpha'(\beta - \beta') = 1$, we have $(\beta + \alpha')(\alpha - \alpha') = 1$. Since $\alpha, \beta \geq 1$ and $\alpha', \beta' \geq 0$, we obtain $\beta + \alpha = \alpha - \alpha' = 1$. Hence $\alpha = \beta = 1$ and $\alpha' = \beta' = 0$. This pair is [1, 1].

6 Structure of double binary trees

In this section, we show that S(a,b) has a double binary tree structure, that is, a graph $G_S(a,b)$ is connected by arcs of graph $G_R(a,b)$. For $v,v' \in S(a,b)$, if v' is the next element of v in $S_{a,b}(\alpha,\alpha')$ (resp. $S'_{a,b}(\beta,\beta')$), then we call v' the left son (resp. right son) of v in $G_R(a,b)$, and v the father of v' in $G_R(a,b)$.

6.1 Preservation of father-son relation

Let $[m_{R1}, n_{R1}]$ be elements in $S_{a,b}(\alpha_{R1}, \alpha'_{R1})$, and $[m_{R2}, n_{R2}]$ be the next element of $[m_{R1}, n_{R1}]$ in $S_{a,b}(\alpha_{R1}, \alpha'_{R1})$. Their parameters are

$$\alpha_{R2} = \alpha_{R1}, \ \alpha'_{R2} = \alpha'_{R1}, \ \beta_{R2} = \beta_{R1} + \alpha'_{R1}, \ \beta'_{R2} = \beta'_{R1} + ab\alpha_{R1}.$$

Let $[m_{S1}, n_{S1}]$ be the next element of $[m_{R1}, n_{R1}]$ with respect to the order on $R_{a,b}(\alpha_{R1}, \beta'_{R1})$. Then

$$\alpha_{S1} = \alpha_{R1}, \ \alpha'_{S1} = \alpha'_{R1} + ab\alpha_{R1}, \ \beta_{S1} = \beta_{R1} + \beta'_{R1}, \ \beta'_{S1} = \beta'_{R1}.$$

Let $[m_{S2}, n_{S2}]$ be the next element of $[m_{R2}, n_{R2}]$ with respect to the order on $R_{a,b}(\alpha_{R2}, \beta'_{R2})$. Then

$$\alpha_{S2} = \alpha_{R2}, \ \alpha'_{S2} = \alpha'_{R2} + ab\alpha_{R2}, \ \beta_{S2} = \beta_{R2} + \beta'_{R2}, \ \beta'_{S2} = \beta'_{R2}.$$

Hence we have

$$\alpha_{S2} = \alpha_{R2} = \alpha_{R1} = \alpha_{S1},
\beta_{S2} = \beta_{R2} + \beta'_{R2} = (\beta_{R1} + \alpha'_{R1}) + (\beta'_{R1} + ab\alpha_{R1})
= (\beta_{R1} + \beta'_{R1}) + (\alpha_{R1} + ab\alpha_{R1})
= \beta_{S1} + \alpha'_{S1},
\alpha'_{S2} = \alpha'_{R2} + ab\alpha_{R2} = \alpha'_{R1} + ab\alpha_{R1} = \alpha'_{S1},
\beta'_{S2} = \beta'_{R2} = \beta'_{R1} + ab\alpha_{R1} = \beta'_{S1} + ab\alpha_{S1}.$$

From above equations, both $[m_{S1}, n_{S1}]$ and $[m_{S2}, n_{S2}]$ are elements of $S_{a,b}(\alpha_{S1}, \alpha'_{S1})$, and $[m_{S2}, n_{S2}]$ is the next element of $[m_{S1}, n_{S1}]$ with respect to the order on $S_{a,b}(\alpha_{S1}, \alpha'_{S1})$. This relation is shown in Figure 7. By symmetry between $S_{a,b}(\alpha, \alpha')$ and $S'_{a,b}(\beta, \beta')$, any father-son relation in $G_S(a,b)$ is preserved with respect to the tracing of directed arcs by $R_{a,b}(\alpha,\beta')$. Furthermore, by symmetry between $R_{a,b}(\alpha,\beta')$ and $R'_{a,b}(\alpha',\beta)$, any father-son relations in $G_S(a,b)$ are preserved with respect to the tracing of directed arcs by $R'_{a,b}(\alpha',\beta)$ of $G_R(a,b)$. Now the following theorem is obtained.

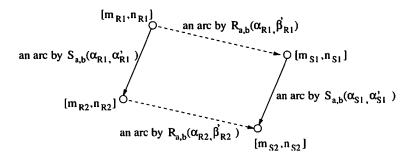


Figure 7: Preservation of the father-son relation in $G_S(a,b)$.

Theorem 6.1 Any father-son relation in $G_S(a,b)$ is preserved with respect to the tracing directed arcs of $G_R(a,b)$.

This theorem implies $G_S(a, b)$ and $G_R(a, b)$ construct double binary tree structures in S(a, b).

6.2 Preservation of the least element

Let [m,n] be the least element of $S_{a,b}(\alpha,\alpha')$, and let [m,n] and $[m_1,n_1]$ belong to $R_{a,b}(\alpha,\beta')$. Then $\alpha_1=\alpha$, $\beta_1'=\beta'$, and there exists a positive integer k such that $\alpha_1'=\alpha'+kab\alpha$, $\beta_1=\beta+k\beta'$. Thus we obtain

$$d_{m_1} = b\beta_1 + \beta_1' = (b\beta + \beta') + kb\beta' = d_m + kb\beta',$$

 $d_{n_1} = a\alpha_1 + \alpha'_1 = (a\alpha + \alpha') + kab\alpha = d_n + kab\alpha.$

Since [m, n] is the least element of $S_{a,b}(\alpha, \alpha')$, we have $bd_n - d_m \ge 0$ and

$$bd_{n_1} - d_{m_1} = (bd_n - d_m) + kb(ab\alpha - \beta').$$
 (14)

By the definition of the parameters, we have $d_n abm = d_m d_n ab\alpha$ and $d_m(am-1) = d_m d_n \beta'$. By subtracting the second equation from the first, we obtain $d_m d_n (ab\alpha - \beta') = am(bd_n - d_m) + d_m$. The right hand side of this equation is positive, this yields $ab\alpha - \beta' > 0$. We have $bd_{n_1} > d_{m_1}$ from the equation (14), that is, $[m_1, n_1]$ is the least element of $S_{a,b}(\alpha_1, \alpha'_1)$.

Lemma 6.2 Let [m,n] be the least element of $S_{a,b}(\alpha,\alpha')$. If $[m_1,n_1]$ is a succeeding element to [m,n] in $R_{a,b}(\alpha,\beta')$, then $[m_1,n_1]$ is the least element of $S_{a,b}(\alpha_1,\alpha'_1)$.

Next, let [m,n] be the least element of $S'_{a,b}(\beta,\beta')$ and $[m,n],[m_2,n_2] \in R_{a,b}(\alpha,\beta')$. Then, we have $d_n \leq ad_m$ and

$$ad_{m_1} - d_{n_1} = (ad_m - d_n) + kab(\beta' - \alpha). \tag{15}$$

From the definition, we have $d_m(am-1) = d_m d_n \beta'$ and $d_n m = d_m d_n \alpha$. By subtracting the second equation from the first one, we have

$$d_m d_n (\beta' - \alpha) = m(ad_m - d_n) - d_m.$$

The case of $d_n < ad_m$. Since $m \ge d_m$ and $d_m, d_n \ge 1$, we have $\beta' - \alpha \ge 0$. Therefore, (15) yields $ad_{m_1} > d_{n_1}$, so that $[m_1, n_1]$ is the least element of $S'_{a,b}(\beta_1, \beta'_1)$.

The case of $ad_m = d_n$. In this case, we obtain $\beta' - \alpha < 0$ and $ad_{m_1} < d_{n_1}$. Therefore $[m_1, n_1]$ is not the least element of $S'_{a,b}(\beta_1, \beta'_1)$. Since $d_n|(am-1)$ and (a, am-1) = 1, we have $(d_n, a) = 1$. Moreover, since $(d_m, d_n) = 1$ and $(ad_m, d_n) = 1$, we have $a = d_m = d_n = 1$. We obtain m = n = 1 because $m = (b\beta + \beta')\alpha$ and $n = (a\alpha + \alpha')\beta$.

Lemma 6.3 Let [m,n] be the least element of $S'_{a,b}(\beta,\beta')$ and let $[m_1,n_1]$ be an element succeeding to [m,n] in $R_{a,b}(\alpha,\beta')$. If a=b=1 and [m,n]=[1,1], then $[m_1,n_1]$ is not the least element of $S'_{a,b}(\alpha_1,\alpha'_1)$. Otherwise, $[m_1,n_1]$ is the least element of $S'_{a,b}(\alpha_1,\alpha'_1)$.

By symmetry between $R_{a,b}(\alpha, \beta')$ and $R'_{a,b}(\alpha', \beta)$, the following results are obtained.

Lemma 6.4 Let [m,n] be the least element of $S_{a,b}(\alpha,\alpha')$. If $[m_1,n_1]$ is a succeeding element to [m,n] in $R'_{a,b}(\alpha',\beta)$, $[m_1,n_1]$ is the least element of $S_{a,b}(\alpha_1,\alpha'_1)$.

Lemma 6.5 Let [m,n] be the least element of $S'_{a,b}(\beta,\beta')$ and $[m_1,n_1]$ be a succeeding element to [m,n] in $R'_{a,b}(\alpha',\beta)$. If a=b=1 and [m,n]=[1,1], then $[m_1,n_1]$ is not the least element of $S'_{a,b}(\alpha_1,\alpha'_1)$. Otherwise, $[m_1,n_1]$ is the least element of $S'_{a,b}(\alpha_1,\alpha'_1)$.

From the above lemmas, we obtain the following theorem.

Theorem 6.6 Let [m,n] be any root of $G_S(a,b)$. For $ab \geq 2$, every pair in the component which contains [m,n] in $G_R(a,b)$ is also a root of some component of $G_S(a,b)$.

6.3 Double binary tree in the case of $ab \geq 2$

 $G_S(a,b)$ and $G_R(a,b)$ have a double binary tree structure in the case of ab > 2. The following lemmas lead to this fact.

Lemma 6.7 Let a, b be positive integers.

- (i) $S_{a,b}(\alpha, \alpha')$ and $R_{a,b}(\alpha, \beta')$ have at most one element in common.
- (ii) $S'_{a,b}(\beta, \beta')$ and $R'_{a,b}(\alpha', \beta)$ have at most one element in common.

Lemma 6.8 Let ab > 2.

- (i) $S_{a,b}(\alpha, \alpha')$ and $R'_{a,b}(\alpha', \beta)$ have at most one element in common.
- (ii) $S'_{a,b}(\beta,\beta')$ and $R_{a,b}(\alpha,\beta')$ have at most one element in common.

Proof. Easily proved.

Both $G_S(a,b)$ and $G_R(a,b)$ consist of infinite components, and by Theorem 6.1, 6.6, Lemma 6.7 and Lemma 6.8, S(a,b) has the double binary tree structure presented in Fig 8. We draw only arcs in $G_R(a,b)$ which connect roots of $G_S(a,b)$ in Fig. 8. The fact is that there are arcs of $G_R(a,b)$ connecting vertices in the corresponding position in each of binary trees of $G_S(a,b)$.

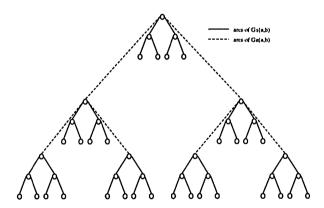


Figure 8: The double binary tree structure for the case of $ab \ge 2$.

6.4 Binary tree structure in S(1,1)

In the case of a = b = 1, the relations between $G_S(1,1)$ and $G_R(1,1)$ are described in the following lemma.

Lemma 6.9 *Let* a = b = 1.

(i) $S_{1,1}(1,0)$ and $R'_{1,1}(0,1)$ are identical. Otherwise, $S_{a,b}(\alpha,\alpha')$ and $R'_{a,b}(\alpha',\beta)$ have at most one element in common.

(ii) $S'_{1,1}(1,0)$ and $R_{1,1}(0,1)$ are identical. Otherwise, $S'_{1,1}(\beta,\beta')$ and $R_{1,1}(\alpha,\beta')$ have at most one element in common.

Proof. We prove only (i). If a=b=1, then [1,1] is the least element of both of $S_{1,1}(1,0)$ and $R'_{1,1}(0,1)$. The parameters of [1,1] are $\alpha=\beta=1$ and $\alpha'=\beta'=0$. For any element $[m_1,n_1]$ in $S_{1,1}(1,0)$, there exists an integer k, such that $\alpha_1=1$, $\alpha'_1=0$ and $\beta_1=1$, $\beta'_1=k$. For any element $[m_2,n_2]$ in $R'_{1,1}(0,1)$, there exists an integer k', such that $\alpha'_2=0$, $\beta_2=1$ and $\alpha_2=1$, $\beta'_2=k'$. If $[m_1,n_1]$ is a member of $S_{1,1}(1,0)$, then $[m_1,n_1]$ is a member of $R'_{1,1}(0,1)$ since $\alpha'=0$ and $\beta=1$. Conversely, if $[m_1,n_1]$ is a member of $R'_{1,1}(0,1)$, then $[m_1,n_1]$ is in $S_{1,1}(1,0)$. Hence these two sets are identical.

Otherwise, we must have $\alpha' \neq 0$. In this case, it is easily proved that $S_{a,b}(\alpha, \alpha')$ and $R'_{a,b}(\alpha', \beta)$ have at most one element in common.

Both $G_S(1,1)$ and $G_R(1,1)$ consist of a single binary tree with the root [1,1]. Hence, by Theorem 6.1, Lemma 6.7 and Lemma 6.9, $G_S(1,1)$ and $G_R(1,1)$ are binary trees in dual relation with each other. Fig. 9 shows $G_S(1,1)$ and $G_R(1,1)$.

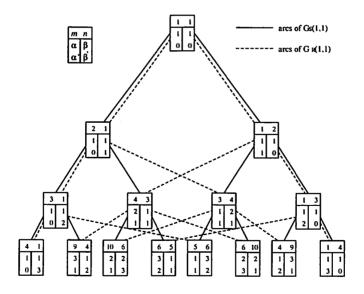


Figure 9: Binary tree structure of $G_R(1,1)$ and $G_S(1,1)$

References

- [1] R.L. Graham, D.E. Knuth, and O. Patashnik, Concrete Mathematics: A foundations of computer science, (2nd ed.), Addison-Wesley, 1994.
- [2] T. Araki and Y. Shibata, Isomorphic factorizations of complete bipartite graphs into forest, Ars Combinatoria, 53 (1999) 271–281.
- [3] H. N. Shapiro, Introduction to the theory of numbers, John Willey & Sons, New York, 1983.
- [4] Y. Shibata and Y. Seki, The isomorphic factorizations of complete bipartite graphs into trees, Ars Combinatoria, 33 (1992) 3-25.