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Abstract
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the existence of extended 5-cycle systems of order n which have x

idempotent elements.
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1 Introduction

Let AK;} denote the complete multigraph of order n in which exactly A
edges join each pair of vertices and exactly A loops occur at each vertex.
Define an extended (2k+1)-cycle to be a loop, a k-tadpole, or a (2k+1)-cycle
(see Figure 1). An extended (2k + 1)-cycle system of order n and index A
is a decomposition of AK; into extended (2k + 1)-cycles (in what follows,
we will assume that the index is 1, unless otherwise specified). We refer to
a loop as an idempotent element. Let (S, C) be an extended (2k + 1)-cycle
system, and for each extended triple ¢ € C, let ¢(2) denote the distance 2
graph of ¢ (so the graphs ¢(2) and ¢ have precisely the same vertex set, but
two vertices are joined in ¢(2) if and only if they are distance two apart
in ¢). Let C(2) = {c(2) | ¢ € C}. Then (S5,C) is said to be 2-perfect if
(S,C(2)) is also an extended (2k + 1)-cycle system.

Extended (2k + 1)-cycle systems are generalizations of extended triple
systems, which are equivalent to totally symmetric quasigroups when A =1
(see, for example, [4]). Although every extended triple system gives rise to a
quasigroup, it is not true that every extended (2k + 1)-cycle system yields a
quasigroup. However, if the extended (2k+1)-cycle system is 2-perfect, then
it will yield a quasigroup by the standard construction which is described
in [7].

It has been shown by Lindner and Rodger [7] that extended m-cycle
systems can be equationally defined if and only if m € {3,5,7}. Further-
more, it was shown that the equations which define the extended cycle
systems are the same as those which define cycle systems, except that the
idempotent law does not apply.

Since they were first introduced in 1972 by D. Johnson and N. S. Mendel-

sohn [5], extended triple systems have attracted their share of attention.
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Figure 1:

For example, the spectrum for extended triple systems, i.e., the set of orders
for which an extended triple system of order n exists, has been determined
[1] (in fact, Bennett and Mendelsohn gave constructions for extended triple
systems of order n with all possible numbers of idempotent elements). Fur-
thermore, necessary and sufficient conditions for the existence of extended
triple systems of order v and index A which contain extended triple sys-
tems of order n and index A have been determined when A = 1 by Hoffman
and Rodger [4] and when A > 1 by Raines [8]. However, virtually nothing
is known about extended k-cycle systems when & > 3. In particular, the
spectrum for extended 5-cycle systems has not been determined. The main

objective of this paper is to prove the following theorem.

131




Theorem 1.1 Let n =1 or n > 4. Then there ezists an extended 5-cycle
system of order n which contains x idempotent elements iff =0 (mod 5)
ifn=0(mod 5), 2 =1 (mod 5) ifn =1,4 (mod 5), c =4 (mod 5) if
n=2,3 (mod 5), and £ < n/2 if n is even.

It turns out that we obtain a solution for the spectrum problem for

extended 5-cycle systems as a corollary.

Corollary 1.2 There ezists an eztended 5-cycle system of order n if and

onlyifn=1o0rn2>4.

2 Preliminary Results

Before presenting the constructions for extended 5-cycle systems, we intro-
duce some useful definitions and theorems.

Let Q = {1,2,...,2k}, and let H = {{1,2},{3,4},..., {2k - 1,2k}}.
We refer to the two-element subsets of H as holes. If (@,0) is a commu-
tative quasigroup with the property that, for each hole h € H, (h,o0) is
a subquasigroup, then (Q,0) is a commutative quasigroup with holes H.
Figure 2 gives an example of a commutative quasigroup of order 6 with
holes.

We have the following theorem regarding the existence of commutative

quasigroups with holes.

Theorem 2.1 ([6]) For every 2k > 6, there ezists a commutative quasi-
group with holes of order 2k.

A quasigroup (Q, o) of order n is said to be idempotent if i 0 i = 1 for
each i € Q. We also have the following well-known theorem which will

enable us to complete our construction.
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Figure 2: A commutative quasigroup or order 6 with holes.

Theorem 2.2 ([6]) For every positive integert, there exists an idempotent

commutative quasigroup of order 2t + 1.

Let K, \ K, denote the complete graph of order n with the edges of a
complete graph of order v removed (also referred to as a complete graph of
order n with a hole of size v). To prove our main result, we will employ a

useful theorem on the spectrum for 5-cycle systems of K, \ K, .

Lemma 2.3 ([3]) There ezists a 5-cycle system of K, \ K, whenever n >
%! + 1 and

(i) n,v=1 or5 (mod 10),
(i) n,v=7 or9 (mod 10), or

(iti) n,v =3 (mod 10).

3 The Construction

We begin by proving the necessity of Theorem 1.1.
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Proposition 3.1 If there exists an extended 5-cycle system of order n

which contains x idempotent elements then
(i) n=1orn>4;

(ii)) =0 (mod 5) if n =0 (mod 5), z =1 (mod 5) if n = 1,4 (mod 5),
z=4 (mod 5) ifn=2,3 (mod 5); and

(iti) = < nf2 if n is even.

Proof: Suppose (V,C) is an extended 5-cycle system of order n. We
will show that n ¢ {2,3}. If n < 5, then C cannot contain any 5-cycles,
so C must consist entirely of loops and 2-tadpoles. This means that the
number of edges in K;I must be even, so n ¢ {2,3}.

Now suppose that (V,C) is a 5ECS(n) which contains z idempotent
elements. Suppose n is even. Then each vertex in K has odd degree,
so each vertex must be contained as a vertex of degree 1 in at least one
2-tadpole. This means that there must be at least n/2 2-tadpoles, so at
least n/2 loops will be containeti in some 2-tadpole. Therefore, if n is even,
then z < n/2.

Next consider the number z of idempotent elements which occur in
a 5ECS (V,C). Each loop in K;} is contained in exactly one loop or in
exactly one 2-tadpole in C, so the number of loops z plus the number of
2-tadpoles is n. Furthermore, each edge in K} is contained in exactly
one 5-cycle or in exactly one 2-tadpole. Therefore, the number of edges in
K} which do not occur in any 2-tadpole must be divisible by 5. That is,
n(n—1)/2-2(n—2z) =0 (mod 5). Now if n = 0 (mod 5), then z =0 (mod
5); if n = 1,4 (mod 5), then z = 1 (mod 5); and if n = 2,3 (mod 5), then
z =4 (mod 5). m]

For 4 < n < 13, the appendix contains a 5ECS(n) with z idempotent

elements for all admissible 2. In the next two propositions we will construct
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some 5ECS(n) for other small values of n which are not handled by the

general construction that will appear later.

Proposition 3.2 If n € {14,16,17,18,19}, there erists an extended 5-

cycle system of order n with z idempotent elements for all admissible x.

Proof: In all cases, we will start with an extended 5-cycle decompo-
sition of K}, \ K} with z’ idempotents (note that for v = 4,6 and 8,
the appendix contains such decompositions for z’ = 0 and z’ = 5, and for
v =7 and 9, the appendix contains such decompositions for z’ = 0,5, and
10). Then we will “fill in” the hole of size v with the appropriate extended
§-cycle decomposition of K} with * idempotents.

First suppose n = 14. By Proposition 3.1,z = 1 or £ = 6. The appendix
contains an extended 5-cycle decomposition of K} with 1 idempotent ele-
ment. Using this decomposition to fill in a decomposition of K, \ K} with
0 and 5 idempotents, respectively, gives the desired result.

Next suppose n = 16. By Proposition 3.1, £ = 1 or £ = 6. The appendix
contains an extended 5-cycle decomposition of K& with 1 idempotent ele-
ment. Using this decomposition to fill in a decomposition of K\ K& with
0 and 5 idempotents, respectively, gives the desired result.

Now suppose n = 17. By Proposition 3.1, £ = 4,9, or 14. The appendix
contains an extended 5-cycle decomposition of K3 with 4 idempotent el-
ements. Using this decomposition to fill in a decomposition of K, \ K7
with 0, 5, and 10 idempotents, respectively, gives the desired result.

Next suppose n = 18. By Proposition 3.1, z = 4 or £ = 9. The appendix
contains an extended 5-cycle decomposition of K with 4 idempotent el-
ements. Using this decomposition to fill in a decomposition of K5 \ K&

with 0 and 5 idempotents, respectively, gives the desired result.
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Finally, suppose n = 19. By Proposition 3.1, z = 1,6,11, or 16. The
appendix contains extended 5-cycle decompositions of K& with 1 and 6
idempotent elements. Using the decomposition with 1 idempotent to fill in
a decomposition of K \ K& with 0, 5, and 10 idempotents, respectively,
handles the cases when ¢ = 1,6, and 11. Also, using the decomposition with
6 idempotents to fill in a decomposition of K E\ K¢ with 10 idempotents

handles the case when z = 16. D

Proposition 3.3 Let n € {21,23,27,29}. Then there exists an extended
5-cycle systems of order n with z idempotent elements for all admissible

z>n/2.

Proof: We need only consider odd values of n since z < n/2 when n is
even. By Lemma 2.3, there exists a 5-cycle system of K, \ K, (and, thus,
a 5-cycle system of K;F \ K}) whenever n > 3¢ + 1 and n,v =1 or 5 (mod
10), n,v = 7 or 9 (mod 10), or n,v = 7 (mod 10). So if n = 21, then
v € {1,6,11};if n = 23, then v € {3,13};if n = 27, then v € {7,9,17}; and
if n = 29, then v € {7,9,17}. In particular, there exists a 5-cycle system of
KX\K}_,,ifn € {21,23,27}, and there exists a 5-cycle system of K3\ K.
Consider n = 21; then there exists a 5-cycle system of KJ; \ K. Replace
the hole of size 11 by a 5ECS(11) with 1, 6, or 11 idempotent elements so
that our resulting 5ECS of K3, contains 11, 16, or 21 idempotent elements.
The cases when n =21 and £ = 1 or 6 are handled in the appendix.

Next consider n = 23. Then there exists a 5-cycle system of K \ K.
Replace the hole of size 13 with a 5ECS(13) with 4 or 9 idempotent elements
to produce a 5ECS(23) with 14 or 19 idempotent elements. The cases when
z =4 or 9 are handled in the appendix.

Now consider n = 27. Then there exists a 5-cycle system of K, \ K.

Replace the hole of size 17 with a 5ECS(17) with 4, 9, or 14 idempotent
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elements, so that the resulting 5ECS(27) has 14, 19, or 24 idempotent
elements. The cases when z = 4 or 9 are handled in the appendix.

Finally consider n = 29. Then there exists a 5-cycle system of K3\ K.
Replace the hole of size 17 with a 5ECS(17) with 4, 9, or 14 idempotent
elements, so that the resulting 5SECS(29) contains 16, 21, or 26 idempotents.
The cases when z = 1,6 or 11 are handled in the appendix.

We are now ready to prove the main theorem.

Theorem 3.4 Let n =1 or n > 4. Then there exists an extended 5-cycle
system of order n which contains z idempotent elements iff r = 0 (mod 5)
ifn=0 (mod 5), z =1 (mod 5) if n = 1,4 (mod 5), z = 4 (mod 5) if
n=2,3 (mod 5), and x < n/2 if n is even.

Proof: The necessity is handled by Proposition 3.1, so we only prove
the sufficiency here. We first note that for n = 1 and for 4 < n < 29,
the appendix contains 5SECS(n) with all admissible numbers of idempotent
elements for those values which have not been considered previously and
which are not addressed by the proof of this theorem. Furthermore, the
appendix contains extended 5-cycle systems with all admissible numbers of
idempotent elements for the graph K7, ; \ K; (that is, K, ; with the
edges and loops of KJT" removed), where 0 < j < 9, j #5.

We will show by direct construction that there exists a SECS(n) (V, C)
with all possible admissible numbers of idempotent elements for the re-
maining values of n which are not handled in the appendix. First, suppose
n =10k + j, where n > 30,0 < j < 9 and j # 5. We define (V,C) with
z = 5y + z idempotent elements. Let V = ({1,2,...,2k} x {0,1,2,3,4})U
{001,002, ...,00;}. We break up the construction according to the different
values of j.

Case 1: j is even.
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Then z = 5y +z < (10k+j)/2 = n/2, so y < k. We begin by assuming
that z is the smallest admissible number of idempotent elements that a
5ECS(10 + j) may contain (so z =0if j=0;z=1if j=4or 6;and z =4
if j = 2 or 8). Furthermore, we assume that 0 < y < k — 1. We place a
5ECS(10 + j) with z idempotents on the vertices ({1,2} x {0,1,2,3,4})U
{001,002, ...,00;} and, for 1 < i < y, we place a 5ECS of Ki’b+j \ KJ'-"
with 5 idempotents on ({2i+1,2i+2} x {0,1,2,3,4}) U {001,002, ...,005}.
Furthermore, for y+1 < ¢ < k -1, we place a 5ECS of Kf;H_j \ KJ'-*' with 0
idempotents on ({2i 4+ 1,2+ 2} x {0,1,2,3,4}) U {o0;,009,...,005}.

Up to this point, we are able to obtain up to 5k —5 idempotents if j = 0,
up to 5k —4 idempotents if j = 4 or 6, and up to 5k — 1 idempotents if j = 2
or 8. It remains to show that we can obtain the following: 5k idempotents if
Jj = 0; 5k +1 idempotents if j = 4 or 6; and 5k +4 idempotents if j = 8 (no-
tice that 5k — 1 is the maximum number of idempotents possible if j = 2).
In all cases, we place a 5ECS of K7, .\ K7 with 5 idempotent elements on
({2¢+41,2i4+2}x{0,1,2,3,4})U{o04,009, ...,00;},for 1 < i< k-1. Ifj =
0, we place a 5ECS(10) with 5 idempotents on {1,2} x {0,1,2,3,4}. Fur-
thermore, if j = 2, we have already produced an ECS for every admissible
number of idempotent elements. Next, if j = 4 or 6, we place a 5ECS(10-+5)
with 6 idempotents on ({1,2} x {0,1,2,3,4}) U {o01,002,...,005}. Fi-
nally, if j = 8, we place a 5ECS(18) with 9 idempotent elements on
({1,2} x {0,1,2,3,4}) U {003,002, . ..,008}.

At this point, each loop and edge contained entirely in the sets {00y, 003,
...,005} and {2i +1,2i+ 2} x {0,1,2,3,4}, for 0 < ¢ < k — 1, has been
placed in exactly one extended 5-cycle. Furthermore, for 0 < i < k—1,
each edge which joins a vertex in {2i + 1,2i + 2} x {0,1,2,3,4} to a ver-
tex in {o0oy,002,...,00;} has been placed in exactly one extended 5-cycle.

We partition the remaining edges into 5-cycles by using a commutative
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quasigroup with holes (@,0). For each pair a,b,€ Q, where a and b are
contained in different holes, we form the 5-cycles {(a, £), (b, 0),(a,€+1),(ao
b,£+3),(b,£+ 1)}, where 0 < £ < 4 and all sums are reduced modulo 5.

Case 2: 3 is odd, 7 # 5.

We let z = by + 2z < 10k + j = n, so we assume that y < 2k. We
begin, as in the previous case, by assuming that z is the smallest admissible
number of idempotents that a 5ECS(10 + j) may contain (so z = 1 if
J=1lor9and 2z =4if j = 3 or 7). Furthermore, we consider the
values of y such that 0 < y < k — 1. We place a 5ECS(10 + j) with
z idempotents on the vertices {1,2} x {0,1,2,3,4}) U {003,002, ..,00;}
and, for 1 < ¢ < y, we place a 5ECS of K, \ K} with 5 idempotents
on ({2¢+ 1,2i + 2} x {0,1,2,3,4}) U {001,002,...,00;}. Also, for y +
1 < i< k-1, we place a 5ECS of Ki'b“- \.KJ"' with 0 idempotents on
({2¢+1,2i + 2} x {0,1,2,3,4}) U {001,009, . ..,00;}.

Next suppose that ¥ < y < 2k — 2, say y = k+ a. Then place a
SECS(10 + j) with z idempotents on the vertices ({1,2} x {0,1,2,3,4})U
{o01,002,...,00;}. Furthemore, for 1 < ¢ < a + 1, place a 5ECS of
K, ; \ Kf with 10 idempotents on ({2i + 1,2i + 2} x {0,1,2,3,4}) U
{001,003, ...,00;}, and for a +2 < i <k — 1, place a 5ECS of K}y, ; \ K}
with 5 idempotents on ({2i+1,2i+2} x {0, 1,2,3,4}) U {001, 003, . ..,00;}.

To this point, we are able to obtain up to 10k — 9 idempotents if j = 1
or 9 and up to 10k — 6 idempotents if j = 3 or 7. It remains to show
that we can obtain the following: 10k — 4 or 10k + 1 idempotents if j = 1;
10k — 1 idempotents if j = 3; 10k — 1 or 10k + 4 idempotents if j = T;
and 10k — 4,10k + 1, or 10k + 6 idempotents if j = 9. In all cases, we
place a 5ECS of K} .\ K} with 10 idempotents on ({2i + 1,2i + 2} x
{0,1,2,3,4}) U {001, 002,...,005}, for 1 < i < k—1. If j = 1, we place
a 5ECS(11) with either 6 or 11 idempotents on ({1,2} x {0,1,2,3,4})U
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{001}, If j = 3, we place a 5ECS(13) with 9 idempotents on ({1,2} x
{0,1,2,3,4}) U {001,002, 003}. Next, if j = 7, we place a 5ECS(17) with
either 9 or 14 idempotents on ({1,2} x {0,1,2,3,4})U {o01,002,...,007}.
Finally, if j = 9, we place a 5ECS(19) with 6, 11, or 16 idempotents on
({1,2} x {0,1,2,3,4}) U {001,002, . ..,009}.

To finish the construction, we partition the remaining edges into 5-
cycles using a commutative quasigroup with holes (@, o). For each pair
a,b,€ Q, where a and b are contained in different holes, we form the 5-
cycles {(a,£),(b,8),(a,8+1),(aob,+3),(b,+1)}, where 0 < £ < 4 and
all sums are reduced modulo 5.

Case 3: j = 5.

Let V ={1,2,...,2k + 1} x {0,1,2,3,4}, and define a 5ECS(n) (V, C)
having z = 5y idempotent elements as follows. For 1 < i < y, place in C the
extended 5-cycles of an ECS(5) having 5 idempotent elements on each of
the sets of vertices {i} x {0,1,2,3,4},and for y+1 < i < 2k+1, place in C
the extended 5-cycles of a 5SECS(5) having no idempotent elements on each
of the sets of vertices {i} x {0,1,2,3,4}. Next, let (V,0) be an idempotent
commutative quasigroup. For each pair a,b € V and for 0 < £ < 4, place
in C the 5-cycles of the form {(a, £), (b,£), (a,£+1),(aob,€+3), (b, £+ 1)}
where all sums are reduced modulo 5. This construction gives ECS(n)s
having all possible admissible numbers of idempotent elements, for n = 5
(mod 10), n > 15. O
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