Some Properties of (k, 0)-sets of Cyclic Groups

W.S. Ng

Institute of Mathematical Sciences
Faculty of Science
University of Malaya
50603 Kuala Lumpur
Malaysia

E-mail: ng_wei_shean@hotmail.com

Abstract

Let S be a nonempty subset of the cyclic group \mathbb{Z}_p , where p is an odd prime. Denote the n-fold sum of S as $n \cdot \cdot S$. That is, $n \cdot \cdot S = \{s_1 + \cdots + s_n \mid s_1, \ldots, s_n \in S\}$. We say that S is an (n,0)-set if $0 \notin n \cdot \cdot S$. Let k,s be integers with $k \geq 2$ such that p-1=ks. In this paper we determine the number of (k,0)-sets of \mathbb{Z}_p which are in arithmetic progression and show explicitly the forms taken by those (k,0)-sets which achieve the maximum cardinality.

1 Introduction

Let A be a finite abelian group written additively and S a nonempty subset of A. For any positive integer n, let $n \cdot S$ denote the n-fold sum of S, that is,

$$n \cdot S = \{s_1 + s_2 + \dots + s_n \mid s_i \in S, i = 1, \dots, n\}.$$

In particular, $1 \cdot \cdot S = S$. Let k, l be positive integers. In [1], S is said to be a (k, l)-set if $k \cdot \cdot S \cap l \cdot \cdot S = \emptyset$. We say here that S is a (k, 0)-set if $0 \notin k \cdot \cdot S$. In this paper we consider the case A is the cyclic group \mathbb{Z}_p where p is an odd prime. We write p-1=ks for some integers k, s where $k \geq 2$ and determine the number of (k, 0)-sets of \mathbb{Z}_p which are in arithmetic progression. We also show explicitly the forms taken by those (k, 0)-sets which achieve the maximum cardinality.

2 Number and maximum cardinality of (k, 0)sets

It is easy to see that the largest possible cardinality of a (1,0)-set in \mathbb{Z}_p is p-1 and that there is only one such set, that is, $\{1,\ldots,p-1\}$. We thus only need to consider (k,0)-sets for $k\geq 2$. We first determine the maximum cardinality of a (k,0)-set as follows:

Theorem 2.1 Let p be an odd prime and let k, s be integers with $k \geq 2$ such that p-1=ks. Then the largest possible cardinality of a (k,0)-set in \mathbb{Z}_p is s.

Proof: Let S be a (k,0)-set in \mathbb{Z}_p . Since $k \geq 2$, so $2 \cdot S \neq \mathbb{Z}_p$ and it follows by the Cauchy-Davenport Theorem (see [2, Corollary 1.2.3] or [3, Theorem 2.2]) that $|2 \cdot S| \geq 2|S| - 1$. Since $k \cdot S \subseteq \{1, \ldots, p-1\} \neq \mathbb{Z}_p$, we have by induction that

$$ks = p-1 \ge |k \cdot S| \ge k|S| - (k-1).$$

Thus $|S| \le s + \frac{k-1}{k}$. Since $0 < \frac{k-1}{k} < 1$, it follows that $|S| \le s$.

We now show that there does exist a (k,0)-set of size s in \mathbb{Z}_p . Let $S = \{1, \ldots, s\} \subseteq \mathbb{Z}_p$. Since k(s-1) < p, the elements $k, k+1, \ldots, k+k(s-1)$ are all distinct (modulo p) and hence,

$$k \cdot \cdot S = \{k, k+1, \ldots, ks\}.$$

Obviously, $k \cdot S \cap \{0, 1, \dots, k-1\} = \emptyset$. In particular, $0 \notin k \cdot S$ which implies that S is a (k, 0)-set of size s.

We now determine the number of (k,0)-sets of \mathbb{Z}_p of size t $(1 \le t \le s)$ which are in arithmetic progression.

Theorem 2.2 Let p be an odd prime and let k, s be integers with $k \geq 2$ such that p-1=ks. Then the number of (k, 0)-sets of size t which are in arithmetic progression in \mathbb{Z}_p is

(i)
$$p-1$$
 if $t=1$;

(ii)
$$\frac{(p-1-k(t-1))(p-1)}{2}$$
 if $1 < t \le s$.

In particular, the number of (k,0)-sets of maximum cardinality s which are in arithmetic progression in \mathbb{Z}_p is $\frac{k(p-1)}{2}$.

Proof: It is clear that $ka \not\equiv 0 \pmod{p}$ for any nonzero element $a \in \mathbb{Z}_p$; hence (i) follows easily. In order to show (ii), let S be a (k, 0)-set of size t $(1 < t \le s)$ which is in arithmetic progression in \mathbb{Z}_p . We may write

$$S = \{a, a+d, \ldots, a+(t-1)d\}$$

for some $a \in \mathbb{Z}_p \setminus \{0\}$ and $d \in \{1, \ldots, \frac{p-1}{2}\}$. Now consider the elements

$$ka, ka+d, \ldots, ka+k(t-1)d$$

in \mathbb{Z}_p . Since $k(t-1) \leq ks - k = p-1-k < p$, so the elements ka, ka + d, ..., ka + k(t-1)d are distinct (modulo p) and by induction we have that

$$k\cdot\cdot S=\{ka,\,ka+d,\,\ldots,\,ka+k(t-1)d\}.$$

Since S is a (k, 0)-set, it follows that $0 \notin k \cdot S$ and hence, 0 = ka - id for some $i \in \{1, \ldots, k(s-t+1)\}$. Thus for a given d, there are k(s-t+1) possible choices for a. Since there are $\frac{p-1}{2}$ possible choices for d, there are altogether $\frac{k(s-t+1)(p-1)}{2} = \frac{(p-1-k(t-1))(p-1)}{2}$ possible choices for S.

In the case of (2,0)-sets with maximum cardinality, we obtain the total number of such sets as follows:

Proposition 2.3 Let p be an odd prime. Then there are exactly $2^{\frac{p-1}{2}}$ sets of type (2,0) with maximum cardinality in \mathbb{Z}_p .

Proof: Let S be a (2,0)-set of \mathbb{Z}_p . Obviously, $0 \notin S$. We also note that $a \in S$ if and only if $-a \equiv p - a \notin S$. By Theorem 2.1, the maximum cardinality of a (2,0)-set in \mathbb{Z}_p is $\frac{p-1}{2}$.

To find nonzero elements $a_1, \ldots, a_{\frac{p-1}{2}}$ of \mathbb{Z}_p such that $a_i + a_j \not\equiv 0$ (mod p) for any $i, j = 1, \ldots, \frac{p-1}{2}$, we start by choosing a_1 to be any nonzero element of \mathbb{Z}_p . There are clearly p-1 possibilities for a_1 . Since $a_2 \not\equiv p-a_1$ (mod p), there are p-3 possible choices for a_2 . Then since $a_3 \not\equiv p-a_1, p-a_2$ (mod p), we are left with p-5 possible choices for a_3 . Continuing in this way, we are finally left with 2 possible choices for $a_{\frac{p-1}{2}}$. Since ordering of elements is irrelevant in a set, we therefore have that the number of (2,0)-sets of cardinality $\frac{p-1}{2}$ in \mathbb{Z}_p is

$$\frac{(p-1)(p-3)\dots(2)}{(\frac{p-1}{2})!} = \frac{2(\frac{p-1}{2})2(\frac{p-3}{2})\dots2(1)}{(\frac{p-1}{2})!}$$

$$= \frac{2^{\frac{p-1}{2}}(\frac{p-1}{2})(\frac{p-1}{2}-1)\dots(\frac{p-1}{2}-\frac{p-3}{2})}{(\frac{p-1}{2})!}$$

$$= \frac{2^{\frac{p-1}{2}}(\frac{p-1}{2})!}{(\frac{p-1}{2})!}$$

$$= 2^{\frac{p-1}{2}}.$$

3 The (k,0)-sets with maximum cardinality

Let p be an odd prime and let k, s be integers with $k \geq 2$ such that p-1 = ks. In the previous section we have shown that the exact number of (k, 0)-sets of \mathbb{Z}_p with maximum cardinality s which are in arithmetic progression is $k(\frac{p-1}{2})$. In this section we proceed to find out how all these (k, 0)-sets look like. Recall from the proof of Theorem 2.1 that the set $S = \{1, \ldots, s\} \subseteq \mathbb{Z}_p$ is a (k, 0)-set.

Lemma 3.1 Let p be an odd prime and let k, s be integers with $k \geq 2$ such that p-1=ks. Let $S_m=\{(m-1)s+1,(m-1)s+2,\ldots,ms\}$ where $m \in \{1,\ldots,k\}$. Then S_m is a (k,0)-set.

Proof: Consider the elements

$$k(m-1)s + k, k(m-1)s + k + 1, \ldots, kms$$

in \mathbb{Z}_p . Since k(s-1) = p - (k+1) < p, so these elements are all distinct (modulo p) and we thus have by induction that

$$k \cdot S_m = \{k(m-1)s + k, k(m-1)s + k + 1, \dots, kms\}.$$

Note that $0 \notin k \cdot S_m$. For otherwise,

$$k(m-1)s + k + i \equiv 0 \pmod{p}$$

for some $i \in \{0, 1, \ldots, ks - k\}$. That is,

$$(p-1)(m-1)+k+i \equiv 0 \pmod{p}$$

for some $i \in \{0, 1, ..., ks - k\}$. But then

$$m \equiv k + 1 + i \pmod{p}$$

for some $i \in \{0, 1, ..., ks - k\}$. Since $m \in \{1, ..., k\}$, this is impossible. Therefore $0 \notin k \cdot S_m$ and it follows that S_m is a (k, 0)-set.

For a subset $S = \{a_1, \ldots, a_s\} \subseteq \mathbb{Z}_p$ and integer $r \in \mathbb{Z}_p \setminus \{0\}$, we use the notation rS to denote the set $\{ra_1, \ldots, ra_s\}$. It is clear that $k \cdot (rS) = r(k \cdot S)$ for any positive integer k.

Lemma 3.2 Let $S = \{a_1, \ldots, a_s\} \subseteq \mathbb{Z}_p$ where p is a prime number. If S is a (k, 0)-set, so is $rS = \{ra_1, \ldots, ra_s\}$ where $r \in \mathbb{Z}_p \setminus \{0\}$.

Proof: We show that $0 \notin k \cdot (rS)$. If $0 \in k \cdot (rS)$, then $ra_{i_1} + \cdots + ra_{i_k} \equiv 0 \pmod{p}$ for some $i_1, \ldots, i_k \in \{1, \ldots, s\}$. That is, $r(a_{i_1} + \cdots + a_{i_k}) \equiv 0 \pmod{p}$. Since $r \not\equiv 0 \pmod{p}$, it follows that $a_{i_1} + \cdots + a_{i_k} \equiv 0 \pmod{p}$. But this implies that $0 \in k \cdot S$ which contradicts the fact that S is a (k, 0)-set. Hence $0 \notin k \cdot (rS)$.

Lemma 3.3 Let p be an odd prime and let k, s be integers such that p-1 = ks. Let $S_m = \{(m-1)s+1, (m-1)s+2, ..., ms\}$ where $m \in \{1, ..., k\}$. Then $iS_m = (p-i)S_{k+1-m}$ for $i \in \{1, ..., \frac{p-1}{2}\}$.

Proof: Note that

$$S_{k+1-m} = \{(k-m)s+1, (k-m)s+2, \ldots, (k+1-m)s-1, (k+1-m)s\}.$$

Then

$$(p-i)S_{k+1-m}$$

$$= (-i)S_{k+1-m}$$

$$= \{(-i)((k-m)s+1), (-i)((k-m)s+2), \dots, (-i)((k+1-m)s-1), (-i)(k+1-m)s\}$$

$$= \{(-i)(-ms), (-i)(-ms+1), \dots, (-i)((1-m)s-2), (-i)((1-m)s-1)\}$$

$$= \{ims, i(ms-1), \dots, i((m-1)s+2), i((m-1)s+1)\}$$

$$= \{i((m-1)s+1), i((m-1)s+2), \dots, i(ms-1), ims\}.$$
Since $S_m = \{(m-1)s+1, (m-1)s+2, \dots, ms\}$, we therefore have that $iS_m = \{i((m-1)s+1), i((m-1)s+2), \dots, ims\} = (p-i)S_{k+1-m}.$

Theorem 3.4 Let p be an odd prime and let k, s be integers with $k \geq 2$ such that p-1=ks. Then the $k(\frac{p-1}{2})$ subsets of type (k,0) and size s which are in arithmetic progression in \mathbb{Z}_p are of the form $iS_m = \{i((m-1)s+1), i((m-1)s+2), \ldots, ims\}$ where $i \in \{1, \ldots, \frac{p-1}{2}\}$ and $m \in \{1, \ldots, k\}$.

Proof: By Lemma 3.1, S_m is a (k,0)-set for $m \in \{1, \ldots, k\}$ and by Lemma 3.2 so is iS_m for $i \in \mathbb{Z}_p \setminus \{0\}$. By Lemma 3.3, $iS_m = (p-i)S_{k+1-m}$ for $i \in \{1, \ldots, \frac{p-1}{2}\}$ and $m \in \{1, \ldots, k\}$. Therefore, there are altogether $k(\frac{p-1}{2})$ distinct subsets of the form iS_m . By Theorem 2.2, there are exactly $k(\frac{p-1}{2})$ subsets of type (k,0) and size s which are in arithmetic progression in \mathbb{Z}_p . Therefore the sets of the form iS_m where $i \in \{1, \ldots, \frac{p-1}{2}\}$ and $m \in \{1, \ldots, k\}$ are all the sets in \mathbb{Z}_p of type (k,0) and size s which are in arithmetic progression.

References

- [1] T. Bier and A. Y. M. Chin, "On (k, l)-sets in cyclic groups of odd prime order", Bull. Austral. Math. Soc., to appear.
- [2] H. Mann, "Addition Theorems: The Addition Theorems of Group Theory and Number Theory", Interscience Tracts in Pure and Applied Mathematics, No. 18, John Wiley, New York/London/Sydney, 1965.
- [3] M. B. Nathanson, "Additive Number Theory: Inverse Problems and the Geometry of Sumsets", GTM 165, Springer, New York/Berlin/Heidelberg, 1996.