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Abstract

Let S be a nonempty subset of the cyclic group Z,, where p
is an odd prime. Denote the n-fold sum of S as n--S. That is,
n--S={s1+---+85.|51,...,5 €S} We say that S is an
(n,0)-set if 0 € n--S. Let k,s be integers with k > 2 such that
P — 1 = ks. In this paper we determine the number of (k, 0)-sets of
Z, which are in arithmetic progression and show explicitly the forms
taken by those (k, 0)-sets which achieve the maximum cardinality.
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1 Introduction

Let A be a finite abelian group written additively and S a noncmpty subset
of A. For any positive integer n, let n--S denote the n-fold sum of S, that
is,

Tl~'S={Sl+32+"°+Sn|Si €S,i=1, ...,n}.

In particular, 1--S = S. Let k,l be positive integers. In (1], S is said
to be a (k,l)-set if k--SNl--S =0. We say here that S is a (k,0)-sct
if 0 g k--S. In this paper we consider the case A is the cyclic group Z,
where p is an odd prime. We write p — 1 = ks for some integers k, s where
k > 2 and determine the number of (k, 0)-sets of Z, which arc in arithmetic
progression. We also show explicitly the forms taken by those (k,0)-sets
which achieve the maximum cardinality.

2 Number and maximum cardinality of (k, 0)-
sets

It is casy to see that the largest possible cardinality of a (1,0)-sct in Z,
is p — 1 and that therc is only one such set, that is, {1,...,p — 1}. We
thus only need to consider (k,0)-sets for £ > 2. We first determine the
maximuin cardinality of a (k, 0)-set as follows:

Theorem 2.1 Let p be an odd prime and let k,s be integers with k > 2
such that p—1 = ks. Then the largest possible cardinality of a (k,0)-set in
Zp is s.

Proof: Let S be a (k,0)-sct in Z,. Since k > 2, 50 2--S # Z, and it follows
by the Cauchy-Davenport Theorem (see [2, Corollary 1.2.3] or [3, Theorem
2.2]) that |2-.S| > 2|S| - 1. Since k--S C {1, ..., p—1} # Zp, we have by
induction that

ks=p—1>|k--S| > k|S| — (k—1).

Thus |S| < s+ &L, Since 0 < < 1, it follows that |S] < s.

We now show that there does exist a (k,0)-set of size s in Zp. Let S =
{1,..., s} € Z,. Since k(s—1) < p, the elements k,k+1, ..., k+k(s—1)
are all distinct (modulo p) and hence,

k--S={kk+1,..., ks}
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Obviously, £ --SN{0,1, ...,k — 1} = 0. In particular, 0 € k - -S which
implics that S is a (k,0)-sct of size s. O

We now determine the number of (k,0)-sets of Z, of size t (1 <t < s)
which are in arithmetic progression.

Theorem 2.2 Let p be an odd prime and let k,s be integers with k > 2
such that p— 1 = ks. Then the number of (k, 0)-sets of size t which are in
arithmetic progression in Zy is

(B)p-1ift=1;

In particular, the number of (k,0)-sets of mazimum cardinality s which are
k(p—1)
R

ifl<t<s.

in arithmetic progression in Z, is

Proof: It is clear that ka # 0 (mod p) for any nonzero element a € Z,;
hence (i) follows casily. In order to show (ii), let S be a (k, 0)-set of size ¢
(1 <t < s) which is in arithmetic progression in Z,. We may write

S={a,a+d,...,a+(t—1)d}

-1
forsomeca € Z,\ {0} and d € {1, ..., pT} Now consider the elements

ka,ka+d, ..., ka+k(t—1)d

inZp. Since k(t —1) < ks—k=p—1—k < p, so the elements ka, ka +
d, ..., ka+k(t—1)d are distinct (modulo p) and by induction we have that

k--S={ka, ka+d,..., ka+k(t-1)d}.
Since S is a (k, 0)-sct, it follows that 0 € k- -S and hence, 0 = ka — id for
some i € {1, ..., k(s —t+1)}. Thus for a given d, there are k(s —t + 1)

possible choices for a. Since there are P possible choices for d, there are

5 — - —1—=k(t—1))(p-
altogether k(s t+21)(7’ 1) — (p—1 k(2 D)p—1) possible choices

for S. a

In the case of (2,0)-sets with maximum cardinality, we obtain the total
number of such scts as follows:

Proposition 2.3 Let p be an odd prime. Then there are exactly 25T sets
of type (2,0) with mazimumn cardinality in Z,.
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Proof: Let S be a (2,0)-set of Z,. Obviously, 0 € S. We also note that
a€ Sifand only if —a = p—a ¢ S. By Theorem 2.1, the maximum

cardinality of a (2,0)-set in Z,, is P

To find nonzero elements ay, ..., Gp-1 of Z, such that a; +a; # 0

(mod p) foranyi,j=1, ..., P;—l, we start by choosing a; to be any nonzero
element of Z,. There are clearly p— 1 possibilities for a,. Sinceas Zp—a)
(mod p), there are p—3 possible choices for az. Then since az # p—a,,p—a2
(mod p), we are left with p — 5 possible choices for az. Continuing in this
way, we are finally left with 2 possible choices for ap-1. Since ordering
of elements is irrelevant in a set, we thercfore have that the number of
(2, 0)-sets of cardinality %’ in Z, is

(P-D(-3)...2) _ 2(5)2(%%)...2(1)
(254! (234)!
27 (o) (B2 = 1) .. (gt - B)
B ()"
_ 257t (251)!
(234!
= 2°7,

3 The (k,0)-sets with maximum cardinality

Let p be an odd prime and let &, s be integers with k > 2 such that p—1 =
ks. In the previous section we have shown that the exact number of (k,0)-
sets of Z, with maximum cardinality s which are in arithmetic progression
is k(%‘l) In this section we proceed to find out how all these (k, 0)-sets look
like. Recall from the proof of Theorem 2.1 that theset S = {1, ..., s} CZ,
is a (k,0)-set.

Lemma 3.1 Let p be an odd prime and let k, s be integers with k > 2 such
that p— 1 =ks. Let Sy, = {(m—1)s+1,(m—1)s+2, ..., ms} where
me€ {1, ..., k}. Then Sy, is a (k,0)-set.

Proof: Consider the elements

km—-1Ds+kk(m—-1)s+k+1,..., kms
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in Zp. Since k(s — 1) = p — (k+ 1) < p, so these elements are all distinct
{modulo p) and we thus have by induction that

k- Sp={k(m-1)s+kk(m-1)s+k+1,..., kms}.
Note that 0 &€ k - -S,,,. For otherwise,
klm-1)s+k+i=0 (mod p)
for some i € {0,1, ..., ks — k}. That is,
p-D(m-1)+k+i=0 (modp)
for some i € {0,1, ..., ks — k}. But then
m=k+1+i (modp)

for some i € {0,1, ..., ks — k}. Since m € {1, ..., k}, this is impossible.

Therefore 0 € k - -Sp, and it follows that Sy, is a (k,0)-sct. O
For a subset S = {ai, ..., a;} C Z, and integer r € Z, \ {0}, we
use the notation 7S to denote the set {ra;, ..., ras}. It is clear that

k--(rS) =r(k--S) for any positive integer k.

Lemma 3.2 Let S = {a1, ..., as} C Z, where p is a prime number. If S
is a (k,0)-set, so is 7S = {ray, ..., ra,} wherer € Z, \ {0}.

Proof: We show that 0 € k--(rS). If 0 € k--(rS), then ra;, +---+ra;, =0
(mod p) for some iy, ..., 4 € {1, ..., s}. Thatis, r(a;, +---+a;) =0
(mod p). Since r # 0 (mod p), it follows that a;, +--- + a;, =0 (mod p).
But this implies that 0 € k. .S which contradicts the fact that S is a
(k,0)-set. Hence 0 € &k - -(rS). a

Lemma 3.3 Let p be an odd prime and let k, s be integers such that p—1 =
ks. Let Sm={(m—1)s+1,(m—1)s+2, ..., ms} wherem € {1, ..., k}.
Then iSpy = (p — ©)Sk+1-m fori € {1, ..., ”;—1}

Proof: Note that

Skt1-m = {(k—m)s+1,(k—m)s+2,..., (k+1-m)s—1,(k+1—m)s}.
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Then
(p—9)Sk+1-m
(=2)Sk+1-m
= {(=)((k—m)s+1),(-)((k—m)s+2),...,
(=) ((k+1-m)s—1), (—i)(k+1—m)s}
{(=i)(=ms), (=i} (-=ms + 1), ..., (=1)((1 = m)s — 2),
(=i)((1 - m)s - 1)}
= {ims,i(ms—1), ..., i((m—1)s +2), i((m —1)s + 1)}
= {i((m—1s+1),i((m—-1)s+2), ...,i(ms — 1),ims}.
Since S = {(m —1)s +1,(m —1)s +2, ..., ms}, we thercforc have that
iSm = {i((m = 1)s + 1),i((m = 1)s +2), ..., ims} = (p — i) Sk41-m-

O

Theorem 3.4 Let p be an odd prime and let k,s be integers with k > 2
such that p—1 = ks. Then the k(%l) subsets of type (k,0) and size s which
are in arithmetic progression in Z, are of the form iSm = {i((m — 1)s +
1),i((m—1)s+2), ..., ims} wherei € {1, ..., %1} andme{l,...,k}.
Proof: By Lemma 3.1, Sy, is a (k,0)-set for m € {1, ..., k} and by Lemma
3.2 so is iSy, for i € Z, \ {0} . By Lemma 3.3, iSm = (p — ©)Sk+1-m
fori € {1,..., 2} and m € {1, ..., k}. Thercfore, there are altogether
k(f’;—l) distinct subsets of the form iSy,. By Theorem 2.2, there arc cxactly
k(%l) subsets of type (k,0) and size s which are in arithmetic progression
in Z,. Thercfore the sets of the form S, where 7 € {1, ..., 221} and

m € {1, ..., k} arc all the scts in Z, of type (k,0) and size s which are in
arithmnetic progression. O
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