Total domination critical graphs
with respect to relative complements

Teresa W. Haynes
Department of Mathematics
East Tennessee State University
Johnson City, TN 37614 USA

Michael A. Henning*

School of Mathematics, Statistics &
Information Technology
University of Natal
Private Bag X01
Pietermaritzburg, 3209 South Africa

Lucas C. van der Merwe
Division of Mathematics and Science
Northeast State Technical Community College
Blountville, TN 37617 USA

Abstract

A set S of vertices of a graph G is a total dominating set if every
vertex of V(G) is adjacent to some vertex in S. The total domination
number 4:(G) is the minimum cardinality of a total dominating set
of G. Let G be a spanning subgraph of K,, and let H be the com-
plement of G relative to K, 5; that is, Ks,» = G® H is a factorization
of K,,s. The graph G is k;-critical relative to K,,, if v:(G) = k and
7¢(G +e) < k for all e € E(H). We study k¢-critical graphs rela-
tive to K,,s for small values of k. In particular, we characterize the
3¢-critical and 4.-critical graphs.
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1 Introduction

Let G = (V,E) be a graph and let S, X C V. We say that S dominates
X, written § > X, if every vertex in X — S is adjacent to a vertex in S
and we say that S totaelly dominates X, written § >, X, if every vertex
in X is adjacent to a vertex in S (other than itself). In particular, if
X =V — S, then we call the set S a dominating set of G and we write
S = G, while if X = V, then we call S a total dominating set of G and
we write S >; G. If § = {s}, we write {s} > X simply as s > X. The
minimum cardinality of any dominating set (respectively, total dominating
set) of G is the domination number v(G) (respectively, total domination
number v¢(G)). If S is a minimum dominating (respectively, minimum
total dominating) set of G, we call S a v(G)-set (respectively, v;(G)-set).

Total domination was introduced by Cockayne, Dawes, and Hedetniemi [4]
and is studied, for example, in [5, 15]. For a more detailed treatment of dom-
ination related parameters and for terminology not defined here, the reader
is referred to [2, 7]. In particular, for a vertex v in a graph G = (V, E), the
open neighborhood of v is N(v) = {u € V | uv € E}. We denote a path on
n vertices by P,. A nontrivial star is star of order at least two.

A graph G is said to be domination critical if v(G +¢) = 7(G) — 1
for every edge e in the complement G of G. This concept of domination
critical graphs has been studied by, among others, Blitch (1], Sumner [16),
Sumner and Blitch (17], and Wojcicka [19]; and a survey of this work is
found in [18]. The domination critical graphs with domination number two
were characterized in [17], but obtaining a characterization for domination
critical graphs in general is a very difficult problem. In fact, it is still an open
problem even restricted to graphs with domination number three. Haynes,
Mynhardt, and van der Merwe [11]-{14] introduced and studied the total
domination edge critical graphs, that is, graphs G such that 7;(G +¢€) <
7¢(G) for any edge e € E(G). Note that since v:(G) > 2 for any graph G,
a total domination critical graph must have total domination number at
least three. Whereas the addition of an edge to G from the complement G
can change the domination number of G by at most one, it can change the
total domination number by as much as two.

Proposition 1 [12] If G is a graph with no isolated vertez, then for any
edge e € E(G),
7(G) — 2 < 1(G +e) < %(G).
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The graphs G with the property 7:(G + e) = 7¢(G) — 2 for any edge
e € E(G) are called supercritical. It is shown in [11] that a graph G is
supercritical if and only if G is the union of two or more nontrivial complete
graphs.

As is the case with domination critical graphs, obtaining a characteri-
zation for total domination critical graphs is an open problem. Although
families of total domination critical graphs with domination number three
are characterized in [13, 14], not even all these graphs with the smallest
possible total domination number have been characterized.

If G is a spanning subgraph of F, then the graph F — E(G) is the com-
plement of G relative to F with respect to a fixed embedding of G into
F. The idea of a relative complement of a graph was suggested by Cock-
ayne [3] and is studied in {6]. We shall assume that the complete bipartite
graph K, ; has partite sets £ and R (representing “left” and “right”), and
that G @ H = K, is a factorization of K. (If G and H are graphs on
the same vertex set but with disjoint edge sets, then G & H denotes the
graph whose edge set is the union of their edge sets.) Notice that if G is
uniquely embeddable in K, s, then H is unique. We henceforth consider
only spanning subgraphs G of K , such that G is uniquely embeddable in
K, ;. We denote the relative complement H of G by G. (The rest of this
paper deals only with relative complements, so confusion with complements
in the ordinary sense is unlikely.)

Haynes and Henning [8] studied domination critical graphs with respect
to the relative complement, that is, the graphs G such that v(G +¢€) =
v(G) — 1 for all e € E(G). In this paper, we study the same concept for
total domination. We say that a graph G is total domination edge critical
relative to K, 4, or just ke-critical, if 7,(G +€) < 1(G) = k for any edge
e € E(G). For an example of a k,-critical graph, let G be obtained from
a star K1 %, £ > 3, by subdividing ¥ — 1 edges once and then adding an
edge between two leaves at distance 3 apart. The graph G is illustrated in
Figure 1.

Figure 1: A k;-critical graph of order 2k for & > 3.
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Obviously, since Proposition 1 considers adding an arbitrary edge from
the ordinary complement, it also applies to adding an edge from the relative
complement. We note that adding an edge to a bipartite graph from its
relative complement can change the total domination number by 0, 1, or 2.
For example, the path Pg:uy,u2,u3,u4, us, ue is a subgraph of K33 where
all three possibilities occur. In particular, v,(Ps + ujus) = 7:(Ps) = 4,
7¢(Pg + uzug) = 7¢(Ps) — 1 = 3, and 7,(Ps + uaus) = 7¢(Ps) —2 = 2.

If 7:(G) = k and 7,(G +¢) = k — 2 for an edge e € E(G), then e is called
a two-edge. As before, if every edge in E(G) is a two-edge, then we say that
G is k¢-supercritical relative to K4 ;. We note that since v,(G) > 2, if G is
k¢-supercritical, then v;(G) > 4. In [10}, we characterized the disconnected
ky-supercritical graphs relative to K, and those for small values of k. In
particular, the following result is given.

Theorem 2 [10] A connected graph G is 4;-supercritical relative to K, 4
if and only if G is obtained from K, , by removing the edges of a perfect
matching.

It is shown in [9] that no tree is total domination critical, and the k-
critical trees with respect to K s are characterized as follows.

Theorem 3 [9] A tree T is k;-critical with respect to K, s if and only if
T is a subdivided star K7, _,, for k > 5, with ezactly one edge subdivided
twice as shown in Figure 2.

Figure 2: A subdivided star with exactly one edge subdivided twice.

Considering graphs that are total domination critical with respect to the
relative complement as opposed to the ordinary complement, the problem
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of characterizing them becomes slightly less difficult. In particular, we are
able to characterize the total domination critical graphs relative to K, 4
with small total domination number; that is, we characterize the 3;-critical
graphs in Section 2 and the 4,-critical graphs in Section 3. (Since 7;(G) > 2
for any graph G, no graph is 2;-critical.) Since the remainder of this paper
deals only with relative complements, we will often omit the phrase “relative
to K ,".

2 3;-critical graphs
The following result characterizes 3;-critical graphs.

Theorem 4 Let K, , have partite sets L and R. For s > 3, a graph G is
3¢-critical relative to K, , if and only if

(1) there ezists a vertez v of L such that deg(v) = s, and
(2) each vertex of R has degree s — 1.

Proof. Let G be a graph with the two properties listed in the theorem.
Clearly, no two adjacent vertices dominate G, and so 1:(G) > 3. How-
ever, the vertex v together with any two vertices in R totally dominate G.
Therefore, 7:(G) = 3. Since for any edge zy € E(G) where z € £ and
y € R,y > L — {z}, it follows that {v,y} >; G + zy. Hence, the graphs G
are 3;-critical.

Conversely, assume that G is 3;-critical. We show first that G has a vertex
of degree s. Suppose that G has no vertex of degree s. Let § = {z,y,z}
be a 7¢(G)-set. Since S induces a P;, we may assume that z € £ and
{y,z} C R. But then deg(z) = s, a contradiction. Hence, G has a vertex
of degree s.

Let v be a vertex of degree s in G. We may assume that v € £, that is,
v > R. Since 7:(G) = 3, s > 3 and no vertex in R dominates £. Hence,
deg(u) < s — 1 for each u € R. For each u € R, let @ denote a vertex
in £ that is not adjacent to u in G. Let S be a 7;(G + u%@)-set. Since G
is 3¢-critical, |S| = 2 and at least one of u and wWis in S. If u ¢ S, then
S = {@,z} where z € R — {u}. But then z » L, and so deg(z) = s,
a contradiction. Hence, u € S and 7 is the only vertex in £ that is not
adjacent to « in G. Thus, deg(u) =s—1forallu e R. O
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3 4;-critical graphs

Our aim in this section is to characterize the 4;-critical graphs relative to
K, s. Note that if G is a 4,-critical graph, then for any edge e € E(G),
2 < 74(G +e€) < 3. Theorem 3 implies that no tree is 4,-critical. If G is 4,-
supercritical, then, by Theorem 2, G is obtained from K, , by removing the
edges of a perfect matching. Our next result characterizes the disconnected
4,-critical graphs.

Theorem 5 If G is a disconnected 4;-critical graph relative to K, s, then
G = K2 U Ka-—l,s—l'

Proof. Since 7:(G) = 4, G has exactly two components. If 4 € £ and
v € R are non-adjacent vertices in the same component of G, then G + uv
has two components. Thus any total dominating set of G + uv contains at
least two vertices from each component, and so v(G+uv) > 4, contradicting
the fact that G is 4,-critical. Hence each component is a complete bipartite
graph. If G = 2K, then s = 2 and G is 4,-supercritical relative to K; ; by
Theorem 2. Hence, we may assume that s > 3.

Let G, and G4 be the two components of G. For ¢ = 1,2, let £; and R;
be the partite sets of G; where £ = £;UL2 (and R = R1URz2). Let u € £,
and v € Ra, and let S be a v¢(G + uv)-set. If one of u or v is not in S,
then S must contain at least two vertices from each component of G. But
then |S| > 4, a contradiction. Hence, S contains both u and v. If |[§| = 2,
then G = 2K and s = 2, a contradiction. Hence, |S| > 3. Let w be the
vertex of S, different from u and v. We may assume that w € R;. Then
Rz = {v} and v dominates L. Since s > 3, |R1] > 2. If |[£2| > 2, then
7t(G + wz) = 4 for any vertex z € L3, a contradiction. Hence, |£2| = 1.
Thus, Gz = K2 and Gl = Ks—l,s—l- a

Before proceeding further, we introduce some more notation. Let G be
a ke-critical graph relative to K, , of diameter m. Let ug,u1,...,um be a
diametrical path of G. For i = 0,1,...,m, let V; = {z | d(uo,z) = i}. If
all edges are present between the two independent sets V; and Vi1, we say
that [V, Viya] is full. Necessarily, Vo = {uo}, [Vo, V1] is full, and u; € V; for
i=12,...,m. Fori=0,1,...,m, let v; denote an arbitrary vertex of V;
(possibly, v; = u;).

We will use the following observations.
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Observation 6 (10] If 1:(G + uv) = 7:(G) — 2 for a graph G and an edge
uv € E(G), then every v:(G + uv)-set contains both u and v.

Observation 7 [12] If 1:(G + uwv) < 7:(G) for a graph G and an edge
uv € E(G), then every 7:(G + uv)-set S contains at least one of u and v.
Moreover, if without loss of generality, u € S and v € S, then u is the only
neighbor of v in S.

From Observation 7, we note that for a 4,-critical graph, if v¢(G +uv) = 3,
then there exists a set W of cardinality 3 that totally dominates G + uv
where at least one of u and v is in W. Note that since G is bipartite, W
induces a P3. We use the fact that any (G + uv)-set induces a P3 often
in the following proofs without restating it to avoid excessive repetition. If
exactly one of u and v belongs to W, without loss of generality, say u, then
S = W —{u} totally dominates G —v and we write [z, S] > v. In particular,
when we write [u,S] — v it is understood that v is not dominated by S.
To simplify the notation, if we write [u, S] — v, then we shall assume that
S = {z,y}. First we give bounds on the diameter of a 4,-critical graph.

Theorem 8 If G is a connected 4;-critical graph relative to K, s, then
3 < diam(G) < 4.

Proof. Let G be a connected 4;-critical graph. If diam(G) < 2, then G =
K, s and 7:(G) < 4, a contradiction. Hence, diam(G) > 3. Assume that
diam(G) > 5. Let up,u,...,us be a diametrical path of G, and partition
V into the sets V; as described previously. Consider G + ugvs. Then
Observation 7 states that at least one of up and v5 is in every v:(G +uqvs)-
set W. If both ug and vs are in W, then at least one of V5 and V3 is not
dominated. Thus, either [ug,S] — wvs or [vs,S] — uo. If [ug,S] — vs,
then it is not possible to dominate V4 since S U {uo} induces a P3, while if
[vs, S] — uo, then is is not possible to dominate V;. Both cases produce a
contradiction. Hence, diam(G) < 4. 0O

Let £ and R be partite sets of K, 4, and let G be the family of graphs
G such that G is a connected spanning subgraph of K ; for s > 4 and the
following conditions hold:

(1) There exists a vertex in £ with degree s,

(2) no pair of vertices in R dominates £, and
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(3) for each nonadjacent pair v € £ and v € R, there exists a vertex
w € R such that {v,w} > L — {u}.

Let H be the family of spanning subgraphs G of K, , such that the
relative complement of G is the disjoint union of at least three nontrivial
stars. Note that if s > 3 and G = sK3, then G € H. Hence, by Theorem 2,
H contains the 4;-supercritical graphs.

We now characterize the 4;-critical graphs.

Theorem 9 A connected graph G is 4;-critical relative to K, s if and only
ifGE€GUH.

Proof. Suppose G € G UH. We first show that v;(G) > 4. Clearly,
no two adjacent vertices dominate G, and so 7¢(G) > 3. Suppose that
S = {z,y,z} is & 7;(G)-set. Since S induces a P;, we may assume that
z € £ and {y, 2z} C R. Hence, z > R, and so deg(z) = s, while {y, 2} > L.
But then G ¢ G U H, a contradiction. Hence, v:(G) > 4.

FacT: If G € H, then G is 4,-critical.

PROOF. Each vertex of G is either the center of a star or an endvertex
of a star in G. If G = sK2, then G is 4;-supercritical by Theorem 2 and
therefore 4,-critical. Hence we may assume that there is a vertex u € £
that is the center of a star in G of order at least 3. Since |£| = |R|, there
is therefore a vertex v € R that is the center of a star in G of order at
least 3. Let u; (v;, respectively) be adjacent to u (v, respectively) in G.
Then, {u,v,u1,v1} totally dominates G. Therefore, 7;(G) = 4. To see that
G is 4,-critical, consider G + uv where u € £ and v € R. We may assume
that u is the center and v is an endvertex of the same star in G. Then,
{u,u’,v} >=¢ G + uv for any vertex v’ € £ — {u}, and so 7¢(G + uv) < 3.
The result follows. O

Fact: If G € G, then G is 4;-critical.

PRrooOF. Let z € £ be a vertex of G such that z = R. Then there exists a
pair of nonadjacent vertices u € £ and v € R. Moreover, there is a vertex
w € R where {v,w} = £ — {u}. Thus, {z,v,w,z} >, G where z € N(u)
implying that v,(G) = 4. To see that G is 4;-critical, consider G +uv where
u € £ and v € R. By condition (3), we know that there exists a vertex w
such that {v,w} > £ in G + uv. By condition (1), there exists a vertex z
that dominates R. Thus, {v,w, z} »: G +uv, and 50 7¢(G +uv) < 3. The
result follows. O
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The sufficiency now follows from the above two facts.

Next we consider the necessity. Suppose that G is 4,-critical. Let u € £
and v € R be nonadjacent vertices in G. Observation 7 implies that one of
{u,v} »¢ G +uv, {u,v,2} = G +uv, [v,S] = v, and [v,S] — u holds. We
consider two cases.

Claim 1 If G has no vertez of degree s, then G € H.

Proof. We first prove the following fact.
FACT: At least one of u and v has degree s — 1 in G.

PROOF. Suppose deg(u) < s—2. Hence, {u,v} ¥: G +uv and there exists

a vertex w # v such that uw € E(G). We show that deg(v) = s — 1. If
[4, 8] — v, then we may assume that z € £ (to dominate w) and y € R
(to dominate £). But then deg(y) = s, a contradiction. Hence, {u,v,z} >,
G +uvor[v,S] = u If {u,v,2} >; G + uv, then z € L (to dominate
w), and so deg(v) = s — 1, as desired. If [v,S] — u, then, since no vertex
has degree s, {z,y} C £ and so deg(v) = s — 1, as desired. Hence, if
deg(u) < s — 2, then deg(v) = s — 1. Similarly, if deg(v) < s — 2, then
deg(u)=s-1.0

It follows from the above fact that at least one of u and v is a leaf in
G. This is true for every pair of nonadjacent vertices with one vertex in £
and the other in R. Hence, since each vertex of G has degree at least 1, G
is the disjoint union of nontrivial stars. Moreover, since G is a connected
subgraph of K, ,, G is the disjoint union of at least three nontrivial stars.
Thus, G € H. This proves Claim 1. O

Claim 2 If G has a vertez of degree s, then G € G.

Proof. Without loss of generality, we may assume that z € £ has degree s.
Since v;(G) = 4, we know then that s > 4, no vertex in R has degree s, and
no pair of vertices in R dominates £. Hence conditions (1) and (2) hold.
Since G is connected, every vertex in £ has a neighbor in R implying that
no vertex in R can have degree s — 1. Hence, deg(v) < s —2 for each v € R.
In particular, {u,v} ¥; G + uv. If {u,v,w} ~; G +uv, then w € R. But
then {v,w,z} >, G, a contradiction. If [u,S] — v, then, since each vertex
in R has degree at most s — 2, both z and y must belong to R. But then
{z,y,2} >¢ G, a contradiction. Hence, (v, S] — u. Then, we may assume
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that z € R and y € £. Thus, {v,z} > £ — {u}, and condition (3) holds.
Hence, G € G. This proves Claim 2. O

The necessity now follows from Claims 1 and 2. O
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