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Abstract
A (k; g)-graph is a k-regular graph with girth g. A (k;g)-cage is a
(k; g)-graph with the least possible number of vertices. In this paper, we

prove that all (4; g)-cages are 4-connected, a special case of the conjecture
about (k; g)-cages’ connectivity made by H.L.Fu et al {1]-

1 Introduction

We consider finite simple graphs. Any undefined notation follows Bondy and
Murty [2]. The vertex set, edge set of a graph G are denoted, respectively,
by V(G), E(G). Suppose that V' (or E’) is a nonempty subset of V(G) ( or
FE(G)). The induced subgraph { or the edge-induced subgraph) is denoted by
G[V'] (or G|E"]). The subgraph obtained from G by deleting the vertices in V’
together with their incident edges is denoted by G — V’. The graph obtained
from G by adding a set of edges E' is denoted by G + E'. Let X,Y C V(G),
X =V(G)- X and E(X,Y) = {zy € E(G) | z € X,y € Y}. For a vertex v
of G and a set of vertices S C V(G), we use Ng(v) to denote the set of vertices
in S that are adjacent to v. In this paper, we used‘the subindex to denote the
neighbours of a vertex. For example, N(v) = {vy, v9, v3,v4}. One exception is
that we use X = {z;, 29,23} to denote a vertex cut of a (k;4)-cage. For two
vertices u,v in S C G, let ds(u, v) denote the distance between u and v in S.
The distance between a vertex u and a set of vertices X in § C G, denoted by
ds(u, X), is the minimum distance between u and any vertex in X. For S =G,
we simple use N(G),d(u,v) and d(u, X). Since all cages are connected, the
distances between two vertices are always finite. The following notation is used
very often in this paper. For z € X,H C G, y € V(H) and a positive integer
do, Day(z,Nu(y)) = {v € Nu(y) | du(z,y) < do}. The length of a shortest
cycle in a graph G is called the girth of G. Clearly, adding edges to a graph G
might decrease the girth of G. For convenience, we use smaller cycle to denote
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any cycle of length smaller than g. A k-regular graph with girth g is called a
(k; 9)-graph and a (k; g)-cage is a (k; g)-graph with the least possible number of
vertices. Let f(k;g) denote the number of vertices of the (k; g)-cage.

Cages have been studied widely since introduced by Tutte in 1947 [3]. The
problem of finding cages has a prominent place in both Extremal and Algebraic
Graph Theory. A survey paper by P. K. Wong [4] in 1982 refers to 70 publica-
tions. The study of cages has led to interesting applications of algebra to graph
theory. Recently, it also attracted sorne attention from researchers in computer
science (see [5], [6]). They use new computer search algorithms to find new
cages or provide better bounds of f(k;g).

In 1997, H.L.Fu et al [1] proved a fundamental property of cages. They first
proved that all cages are 2-connected, then they showed that all the cubic cages
are 3-edge-connected and it follows that all the cubic cages are 3-connected.
Furthermore, they conjectured that all (k; g)-cages are k-connected. In this pa-
per, we shall prove that all (4; g)-cages are 4-connected. Note that we cannot
use their approach to prove all (4; g)-cages are 4-connected since the edge con-
nectivity may not equal to the vertex connectivity for k regular graphs where
I 2 4. We shall try to shed some new light on this conjecture by using a new
technic to prove the connectivity of cages. Let X be a 3-cut of a (4;g)-cage
G. Our new technic involves finding two vertices in different components of
G — X with distance furthest away from each other. Then we delete these two
vertices and construct a new 4-regular graph with girth at lesst g. This leads
to a contradiction with the fact that the original graph is a cage. In [7] we have

successfully used this technic to prove (k; g)-cages are k-edge-connected for k is
odd.

2 Preliminary results on the structure of cages

From the fact that (k; 3)-cage is the K4, and (k;4)-cage is the bipartite graph
K x, we assume that g > 5. We shall often use the following monotonicity
theorem (see [1]) with respect of girth and the number of vertices in a cage.

Monotonicity Theorem: For all k >3 and 3 < g, < gq, f(k;91) < f(k; g2).

They also showed that all (k; g)-cages are 2-connected. In [7], we proved
shat (k; g)-cages are 3-connected for k is even. It follows immediately that all
(4; g)-cages are 3-connected. In this paper, we shall prove the following theorem:

Theorem 2.1. All simple (4; g)-cages are 4-connected.

The following lemmas will be used often. To prove Theorem 2.1, we assume
the connectivity of a (4;g)-cage is 3. Let G be a (4;g)-cage with a vertex cut
X = {zla T3, :c:l}'

Lemma 2.1. Let u,v be two vertices of a (4;g)-graph G. If d(u,v) < |g/2],
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then there is only one vertez of N(v), say v1, such that d(u,vy) = d(u,v) - 1
and d(u,v;) = d(u,v) +1 for j = 2,3,4. :

Proof. 1f there are two vertices of N(v), say v, and v,, such that d(u,v) =
d(u,v;) = d(u,v) -1, then we have a smaller cycle with length at most (d(u, v)~
1) x2+2<2x [g/2] < g, a contradiction. Hence; there is only one vertex v,
of N(v) such that d(u,v,) = d(u,v) — 1.

If there is a vertex in {vz,v3,vs}. say vy, such that d(u,v;) = d(x,v), then
we have a cycle of length at most 2 x (|g/2) — 1) +1 < g, a contradiction. This
completes the proof. 0

From Lemma 2.1, we know that the following equation holds if d(u,v) =

lg/2] - 1.
[Dg/2—1(u, N(v))| = [{vi € N(v) | d(u,v:) < g/2~1}| = 1 (1)

Lemma 2.2. Let X be a 3-vertex cut of a (4; 9)-graph G where g > 5, and let
w be u component of G — X and H = G|X UV(w)| - E(G[X]). Letz € X,
# € V(w) and |Ny(z)| = i. The following statements hold:

(i) If g is even and dy(z,y) > g/2, |Dgja-1(z, Ny(y))| < i, and moreover
|Dg/2(2, Nu(y))| =1 if i =1 and dy(z,y) = g/2. .

(i) If g is odd and dy(z,y) > |g9/2), |Dyg/2)(z, Nis ()| < i and |Dygp9 i (z,
Nu@)l <1. -

Proof. Since the proofs of the part (i) and part (ii) are very similar, we only give
the proof for the part (i). It is easy to see that (i) is true for du(z,y) > g/2+1
or i = 4. Suppose dy(z,y) = g/2 and i < 3. If (i) is false, there are at least
i+1 paths from z to y; € Ny(y) of length at most g/2 — 1 where 1 < j <i+1.
Since |Ny(z)| = i, then there are two paths, say Pry, and P;,,, having a
common vertex in # € Ny(z). It follows that o/ — P, ,, — y — Pry, — =
is a smaller cycle of length at most 2 X (g/2 —2) + 2 = g — 2, a contradiction.
Hence, |Dy/s_y (2, Ny (y))| < 4. If [Ny(z)] = 1 and dy(z,y) = g/2, there is at
most one vertex y; € Ny(y) with distance g/2 — 1 to z. Let z' be the vertex
in Ny(z) of distance g/2 — 1 to y. It follows that the distance between ' and

{v2.y3,v4} is at least g/2. Hence, there is only one vertex in Ng(y) of distance
to « less than or equal to g/2. O

Lemma 2.3. If G is a (4; g)-cage and has a 3-vertez cut X = {z1, Z2, 23}, it
has the following properties:

(i) For any induced subgraph H of G, |E(H,H)| = 0(rnod 2).

(ii) G is 4-edge-connected.

(i1i)) G — X has at most three components.

(iv) |EGIX)| < 1.

(v) d = min{dy(z;, z;) | z; and z; € X} < g -2 where w is a component of
G~ X and H = G[V(w) U X] ~ E{G|X]).
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Proof. (i) Since for every induced subgraph H of G, we have 3, cy (s du (v)
+|E(H,H)| = 4 x |V(H)| = 0(mod 2) and 3,y du(v) = 0(mod 2). It
follows that |E(H, H)| = 0(mod 2).
(ii) In [7], it has been proved that (k;g)-cages are 3-connected for £ is_even.
1t follows that G is 3-connected. Since G is 3-edge-connected and |E(H, H))| is
even, |[E(H,H)| = 4. That is, G is 4-edge-connected.
(iii) Since G is a 4-regular graph, it follows from (ii) that G — X has at most
three components.
(iv) Let G — X = |J; wi, Gi = GIX U(V (w;)| — E(G[X])) and d; = min{dg,(z;,
%5,) | J1 # Jo and x5, 25, € X} fori =1,2,3.

|E(G[X]) € 2 since |X| =3 and g > 5. If |[E(G|X])| = 2, then d; > g —2
otherwise there exists a smaller cycle in G. Furthermnore, there are only two
components in G — X and there are four vertices in eaclh component that are
adjacent to the vertices in X since g > 5. Let E(G|X]) = {z1z2, z2z3} and
|Ng,(x1)] = [Ng, (z3)] = 2. Let 5;,; € Ng, (z:) and t; ; € N, (=) fori = 1,2,3.

G=G-X+ {sllltg'l,52,1t3,1,33,151,1,53,2t1,2}

is still a 4-regular graph with girth at least g when g > 5. Clearly, G' has three
less vertices than G, a contradiction with G being a (4; g)-cage.

(v) By (i) and a simple parity argument, one can easily verify that there is
a vertex, say z; € X, such that |Ng(z;)(V(w)] = 2. First, we consider the
case that G — X has three components or there is a vertex, say z;, such that
|NG(21) NV (w1)| =|Ng(z1) NV (w2)| = 2. Suppose, on the contrary, d > ¢ —1.
We may assume that this minimum distance d occurs in a component where ;
has two neighbours in it. We construct a new graph as follows,

G' = G—z1+{siti | s: € Ne(z)NV(w).t; € Ng(zl)ﬁ(V(G)-—V(w)—X),.i =1,2}.

Clearly, it is still a 4-regular graph. If there is a smaller cycle in G’, this smaller
cycle must contain one of the new edges, say s,ty, and a vertex in X — {5, },
say z2. Since dy(z1,22) 2 g — 1, du(s1,z2) 2> g — 2. It follows that the length
of this smaller cycle is at least g, a contradiction. Hence, d < g — 2. Second,
we consider the case that there is an edge z,z, in X. Suppose, on the contrary,
d > g — 1. Without loss of generality, we may assume that it occurs in w,. By
(i), we may assume that z, has two neighbours, say’s; and s3, in w;, and z, has
two neighbours, ) and £, in wy. Let s3 = Ng(x2){\wy and t3 = Ng(z1) [ we.

G’ZG—QZ[—(BQ'*-{SJ;‘1:=l,2,3}.

Similarly, we can show that G’ is a 4-regular graph and has girth at least g, a
contradiction. Hence, d < g — 2. This completes the proof of (v). O

Algorithm 2.1. Let X = {z,, 23,23} be a J-vertez cut of (4;g)-cage G, w is a
component of G-X and H = G|V (w) ) X|-E(G[X]). Letd = min{dy(z, z;) |
z;,%; € X}. Assume dy(zy,2) = d. Let my € V(w) such that dgy(my, z,) =
|d/2] and dy(my, x2) = [d/2].
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l. 1= l, M[ = {ml}, Xl = {31 € X I dH(:'C,ml) = |_d/2J}U{$1,’82}
2. Ifdy(my,z) 2 |g/2] - 1, STOP.

. . ) 9
3. Consider the neighbour of in;, Ng(rn;) = {m}.m3. mi m$}.

Let mf" be a vertez in Ng(m;) such that dy (mf", x) =dy(mi, x) -+ 1 for
all z € X\; and dy(m?®,z) > dy(ny, 21)+ 1 for allz € X\ X;.

|
Let miy =m; .

Joi=i+].

Let X; = X; U{z € X | dy (2, mis1) = du(z1, mig1)}, M = M; U{misa }.
Go to 2.

Obviously, d > 2 since the induced subgraph H:X| of H contains no edge,
which means that |Ny(m;)] = 4 for all ¢ in Algorithm 2.1. Suppose that
dy(m!, 1) = dy(my,z1)—1 and dy(ml, 22) = dy(my, z5) - 1 Ifdy(mi,z,) <
9/2 — 2 ( g is even) or dy(mi,z1) < |g/2] — 1 ( g is odd), dg(mi,x) =
dp(m;,z) + 1 for all j € {3,4} and z € X;. By Lemma 2.1, there is at most
one vertex m] € {m?, m?} such that dy (z3,m]) < dy(z1,m;). In other words,
there exists a vertex mf® such that dy(m®,z) = dy(m;, z)+1 for all z € X;
and dy(m®,z) > dy(m;,z,) + 1. By (v) of Lemma 2.3, Algorithm 2.1 will
finish in finite steps. At the end, Algorithm 2.1 will find a vertex, u, such that
du(u,z1) = |9/2) = 1,dy(u, z2) = [9/2] = 1 and dy(u, z3) > |g/2] — 1.

Corollary 2.1. If g is odd, d = dy(x1,%2) < g —3 and |Ng(z2) V(w)| £ 2,
we can find a vertex u = myy, € Ny(my) such that dy(u.z) > |g/2] for all
z € X and dy(u,z;) > [g/2].

Proof. Suppose that at the end of Algorithm 2.1, find a vertex, my, such that
dy(mu, =) = |g/2] — 1,dg(mu, z2) — [9/2] — 1 and dy(mu, z3) > |4/2] - 1.
Obviously, my # m since d < g — 3. For each vertex mj € {m?, m}, m}},
du(mi,z) > |g/2] for = = z, or = = z; otherwise there is a smaller cycle of
length 2|g/2]. By part (ii) of Lemma 2.2, we have [D\g/2)(z2, N1 (u))] < 2 since
INe(z2)NV (w)| < 2. This plus dp(my—1, 22) = [g/2|~1 implies that there exist
two vertices in {m{, m}, m{}, say m3 and my, such that dy(m}, z,) > [g/2] for
J = 3,4. For z3, there is at most one vertex in {m}, m{} of distance less that or
equal to |g/2] — 1 otherwise there is a smaller cycle in G. Hence, there exists
one vertex u € {m}, m}} that satisfies this corollary. ]

3 The structural properties of the components
of G- X

Yo the part (i) of Lemma 2.3, we know that |E(X, wi)| is even and 4 <
|E(X,w;)| < 8 where w; is a component of G — X. We will focus on finding a fur-
thest away vertex from X in w = w; according to the number of edgesin B(X,w).
]n}the following, let H = G[V(w)U X|-E(G[X)), d = min{dy(z;, z;) | Ty, T; €
X ,
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31 |E(X,w)| =4 |
Let |[Ng(z1) V(w)] =2 and ING(:z:g)ﬂV(w)l.= [Ne(z3) NV (w)| = 1.

Lemma 3.1. There exists u € V(H) such that dy(u, X) > |g/2]. In particu-
lar, dy(u,z9) 2 9/2+1 ordy(u,z3) > g/2+1 if g is even, and u € V(H) such
that dy(u, ) > [9/2] for all z € X if g is odd.

Proof. We distinguish two cases according to the parity of g.
Case 1 g iseven
Subcase 1.1 d =dy(z1,2z3) or d = dg(z1,3)

Without loss of generality, we may assume that d = dy(=z,,z2). Since d <
g — 2 (Lemma 2.3), z,z2 ¢ E(G) otherwise there is a smaller cycle containing
z129 in G. In this subcase, we consider the case that d is odd. For d is even,
the proof is similar. :

From Algorithm 2.1, we can find a vertex m; € H such that dy(my, ;) =
9/2 - L du(mu,z3) = g/2, dy(my,z3) > g/2 — 1. Let Ny(my) = {m} =
my—y,m},m}, m}}. Obviously m; # m;. From Lemma 2.1, we know that
dy(n,z,) = g/2 for j = 2,3,4. Since dy(miy, z2) = g/2 and |Ny(z2)| =
1, we have |Dg/o(z2, Ny(mu))| = 1 from the part (i) of Lemma 2.2. This
implies that dH(m{,xg) = g/2+1 for j = 2,3,4. Since dy(my,z3) > g/2 —
1, we know that |Dg/s_1(z3, Ny(m))| = 1 from (1) and part (i) of Lemma
2.2. Thus, there exists a vertex mj°® € {m?,m3,m3} such that dy (mf°, z3) >
g/2. Clearly, u = m{° satisfies Lemma 3.1 if g is’even. If m{° also satisfies
dy(m{°,z3) > g/2+1, then u = mf" satisfies the distance requirement of
the lemma for 3. Otherwise, we have dH(m{°,:r,3) = g/2. Let myy, = m{",
consider Ny(mu1) = {mj,, = my,m},,,m}, |, m{,,}. From dy(mys1,z;) =
9/2 + 1, we have d;;(mj,,,23) > g/2, for i = 2,3,4. From the part (i) of
Lemma 2.2, we have | Dy/s(3, Nir(mu41))| = 1, and |Dyja—1 (24, N (mu4))| <
2. Since dg(my, 21) = g/2 — 1, thus one vertex u € {m},_, m}, |, m{,} satisfies
dy(u, X) 2 g/2 and dg(u,z3) > g/2 + 1.

Subcase 1.2 d =dy(z,z3) ) )

Suppose d is odd and d < g — 3. By Algorithm 2.1, we can find a vertex
my € H such that dy(my, z2) = ¢/2 — 1,dy(my, z3) = g/2. Ng(my) = {m} =
7n1_|,rn,2,1r§f‘,mf}. Obviously, m; # my. Since [Ny (z2)| = |[Nu(z3)| = 1, we
have dy(m], 2) = /2, du(m], z3) = g/2+1, for j = 2,3,4 by (1) and the part
(i) of Lemma 2.2. Note that dy(my, 1) > g/2 1. From (1) and the part (i) of
Lemma 2.2, we have |Dy/5_(zy, Ny(m;))| < 2. Thus, we can find a vertex m{"
such that dy(m{°,z,) = g/2, dy(mi®, z,) = g/2, and dy(md, z3) > g/2 + 1.
Let u = m{. If we take m; € H such that dy(my,z2) = g/2,dy(my, z3) =
9/2 — 1, similarly as above, we get a vertex u satisfying dy(u, X) > g/2 and
dy(u,z2) > g/2+ 1. Similarly, we can prove the result when d is even and
d<g-3. .

By Lemma 2.3, we know that d < g — 2. Hence, it suffices to show the
lemma for d = g — 2. Clearly, d is even since g is even. Let m; € V(w)
such that dy(m,z;) = ¢/2 — 1 and dy(my,z3) = g/2 — 1. 1t follows that
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du(my, 1) > g/2 otherwise dg(z1,z2) < g—2 and one can use the argument in
Subcase 1.1 to prove the result. Now consider Ny(m) = {m{,--- ,m{}. As-
sume that dy(m!, x0) = g/2-2 and dy(m?, x3) = g/2—2. Let my = m}. From
Lenuna 2.1, dy (g, ;) = g/2 for j = 2,3 and dyy(ma, 1) 2 g/2— 1. Again, we
consider the neighbours of my, that is, Ny (my) = {m} = my,---,m$}. Note
that [Ny (xz2)| = |Ny(z3)| = 1. From the part (i) of Lemma 2.2, dy(mj.z,) =
dy(md, z3) = g/2+41 for j = 2,3,4. From (1) and the part (i) of Lemma 2.2, we
have |Dg /o1 (z1, Ny(m,))| < 2. This implies that there exists a vertex u = mi°
such that dg(z,,u) 2 g/2.

Case 2 g¢gisodd

Again, we only consider the case that d is odd. A similar argument can be
used to prove the case that d is even.

Subcase 2.1 d = dy(zy,22) or d = dy(z1,z3)

Without loss of generality, we may assume that d = dy (), z2). Let My =
{my,+++,mi_1} be the set of vertices as defined in Algorithm 2.1 such that
du(mu-1,m) = |g/2] - 1,du(mu_y, z2) = |g/2] and dy(mu_y, z3) > |9/2] -
1. Since |Ny(z)| = 2 and [Np(z:)| = 1(i = 2,3), we have |D|g5j_1(z1
N (m 1)) < 1, |D gz (22, Ne(my—1))| < 1 and |Dyg/p)—y (3, Nu(mu—1))| <
1 by (1) and part (ii) of Lemma 2.2. Thus, there exists a vertex, say my, in
{V,/;(jm_l), such that dy(r_n;,xl) =|g/2]. dH(m[,(th) = [g/2] and dyy(my.z3) >

g/2]. ) :

Now consider Ny(my) = {m}{ = my — 1,m},--- ,m{}. From part (ii) of
lemma 2.2, we have |D|g/5)(z1, Ny(mu))| < 2 and |D\g/2) (2, N (m))| < 1.
Since dy(my—y1,x1) = [g/2f —1 and dy(mi-1,2;) = |g/2], there must be two
vertices in {m}, m},m}}, say m} and m{, that have distance at least [¢/2]
to both z;, and z3. Since |Dygs9)(z3, Ny(mu))| < 1, there exists a vertex
u € {m}, m{} such that dy(u,z3) > [g/2]. Hence, dy(u,z) > [9/2] for all
z € X.

Subcase 2.2 d = dy(z3,z3)

First, we prove this lemma for d < g — 3. Similar to Subcase 2.1 we can
find M; = {m,,--- ,m}(my; # m,) such that dy(my, z2) = |g/2),dy(my, z3) =
[9/2] and dg(mu, z,) > |g/2] by Corollary 2.1. Since INH(z2)| = |Nu(z3)| =1,
dy(m], z5) = [9/2] and dy(m],z3) = [¢/2] for j = 2,3,4. By part (i) of
Lemma 2.3, we have |Dg/9i(z1, Nt (my))] < 2. There exists a vertex of mj°
such that dy(m{°,z) > [g/2] for all z € X and j = 2,3, 4. .

Now we consider the case that d = g — 2. Clearly, d is odd since g is odd.
Let i, € V(w) such that dy(my, z3) = |¢/2] — 1 and dy(my, z3) = lg/2]. It
follows that dy(my, ;) > |9/2] otherwise dg(zy1,29) < g —3 < d. From part
(ii) of Lemma 2.2, we know that | D9/ (21, Ny (m,))| < 1. Let dy(mt.zg) =
l9/2] — 2 and dy(mi, z3) = |9/2] — 1. Consider {m},m{}. From Lemma
2.1 and part (i) of Lemma 2.2, dy(m], z;) = |g/2] and dy(mi, z3) = [g/2]
for j = 3,4. Hence, there exists a vertex, say m; € {m},m}, such that
di(maz,21) 2 |g/2),du(ma, z2) = |g/2] and dy(my,z3) = [9/2]. Now we
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consider Ny (ing) = {m} = my,m3.m3,mnl}. From part (i) of Lemma 2.2,
dy(ne), z:) > [g/2] for j = 2,3,4 and 7 = 2.3. From part (i) of Leinma 2.2, we
know that |Dyy/s)(21, Nu(me))| < 2 since [Ng(z,)| = 2. Hence, there exists a
vertex m3® € {m3,m3, mi} such that dy(z1,m)) = [9/2]. This completes the
proof. O

32 |E(X,w)| =8

Since G is 4-edge-connected, |E(G|X])] = 0. Without loss of generality, we
assume that [Ng(z1) (| V(w)| = 2 and |Ng(z;) N V(w)| = 3 for i = 2, 3.

Lemma 3.2. There ezists u € V(H) such that dy(u,z) > |9/2] forallz € X
and dy(u, 1) > [g/2] if g is odd, and dy(u,z,) 2 g/2,du(u,z2) > g/2 and
du(y1,z3) 2 9/2—1 ordy(u, 1) > g/2,dy(u, x2) > g/2—1 and dg (1, z3) >
9/2.

Proof. Suppose Ng(z:)(\ V(@) = (i = 2,3). It follows that =, # z} otherwise
the connectivity of G will be 2, a contradiction G being 3 connected. Let
X' =X —zy—x3 + zh + 24 and ' = G|{z2, 23} (JV(w)]. 1t follows that
|E(X’.V(w'))| = 4. Note that conclusions on the furthest away vertex in Lernma
3.1 implies this lemma. O

3.3 |E(X,w)| =6

Case 1 |No(z)\V(w)|=2forallze X
The proofs of the next three lemmas are similar with the proof of Lemma. 3.1.

We omit the proofs from this paper and will put them on the second author’s
home page .

Lemma 3.3. Ifd =g -2, then E(G[X]) # 0.

Lemma 3.4. Ifd = g—2 and |E(G[X])| =1 (assume that z;z; € E(G)), there
ezists a vertez u € V(w) such that dy(u,z;) > 9/2,dy(u, z;) 2 g/2—1 and
du(u,zx) > 9/2, or dy(u,z:) > g/2 — 1,dy(u, z;) > g/2 and dy(u,zx) > g/2
for 2 € X — {zi,z;} and g even. And dy(u,z;) > |9/2] fori=1,2,3 and g
is odd.

Lemma 3.5. Ifd < g — 3, there is a vertez u '€ w such that dy(u, X) > g/2
for g is even, and there is a vertez u € w such that dy(u,X) > |g/2] and
H{z € X | dy(u,z) 2 [g/21}| 2 2 for g is odd. Moreover, there is u € V(H) for
each given x € X such that dy(u, X) > |g/2] and dy(u,z) > [g/2] if g is odd.

Case 2: |Ng(z:) N V(w)| = 3 for some vertex =; € X

Without loss of generality, we may assume that N, (z1) = 3. It follows that
Ny, (z1) = 1. Let Ny,(z1) = z{. This implies that X' = {], 22,23} is also a
3-cut of G and |E(X',w')| = 4, where o/ = G|V (w){J{z1}]. By Lemnma 3.1, we
know that there is a vertex u € V(u') such that dy(u,z) > g/2 for all z € X’
for g is even and dy(u, z1) > [9/2],du(u,z2) > [g/2] and dy (v, z3) > |g/2]
for g is odd. ;
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Lemma 3.6. If [Ng(z) NV (w)| =3 for some vertez o' € X, there is a vertez
u € V(w) such that dg(u,x) > g/2 for all x € X if g is even, and dy(y1.2') 2
lg/2]) and dy(u,z) > [g/2] if g is odd and x € X \ {z'}.

4 Proof of Theorem 2.1

Now we give an operation that can be used on a (4;g)-cage G to construct a
new 4-regular graph with girth at least g. In the other words, G cannot be a
cage if one can apply the Half Split Operation on it.

Half Split Operation :

Let G be a (4;g)-cage, g > 5, and u,v be two vertices in G of distance d(u,v) >
9. Letu; € Ng(u) andv; € Ng(v) fori=1,2,3,4. Ifdg—y—u(wi, v:) = g—1 for
i = 1,2, we construct a new graph G' = G —u~ v +w + {wug, wu,, wos, wvg} +
{uyvi, ugva}, where w is a new vertez. Then G’ is a 4-regular graph and has
girth at least g.

Clearly, G’ is a 4-regular graph. In the following, we show that G’ also
has girth at least g. Let C be a smallest cycle of G’. Suppose |C| < g — 1.
Since G has girth g, C must contain w or one of edges in {wivr,uowa}. If
C contains w and none of {u,v;,usv2}, then it contains exactly two edges of
{wus, wus, wus, wus}. Without loss of generality, we assume that C contains
{ww;, wy;} (5,5 = 3,4). |C| 2 g since dg(u;,v;) > g — 2. If C contains exactly
one of the edges from {u;v),uzvs}, say u1v1, and contains no w, then |C| > ¢
since dg(u;,v1) 2 g — 1. If C contains two edges {ujvy,ugvs} and contains
no w, |C| 2 g since dg_u—v(u1,u2) > g ~ 1, de—y—u(v1,v2) > g — 1 and
de(ui,v;) > g —2(i # j). If C contains w and at least one edge of {uyvy, ugve},
then |C| > g since dg(z,y) > g—2for z € {u3, us,v3,vs} and y € {uy, us, v, v}
and dG‘—u—v(ul, uZ) 2 g — 1. Hence, |C| 29 :

Let X = {z1, 25,23} be a minimum 3-cuts of (4; g)-graph of G, let Uyw; be
the components of G~ X. G; = G|XUV (w;)]|-E(G[X]), d; = min{dg, (z:,z;) |
i # j,zi,2z; € X}. From Lemma 2.3, we know that |E(X,w;)| is even and
4 < [B(X,00) <8, |EGIXD| < 1and & < g2

Proof of Theorem 2.1 We distinguish three cases according to [E(X,w)|.

Case 1: |E(G[X])| =1, |E(X, V(w1))| = 4 and |B(X, V(wp))| = 6

Without loss of generality, we may assume that [Ne(z1) N V(w)| = 2,
INg(z2) NV (wy)| =1 and |Ng(z3) N V(w)|=1.

We first consider the case that g is even. Since |E(X, V(w,))| = 6, suppose
that there exists a vertex uy € V(wy) such that dg,(ug, 1) 2 9/2,dg, (uz, 35) >
9/2,and dg, (uz,23) > g/2 — 1 by Lemma 3.4, Lemma 3.5 and Lemma 3.6. By
Lemma 3.1, there exists a vertex u; € V(w:) such that dg, (u1,2) > g/2 for
all z € X and dg, (u1,73) > ¢/2 + 1. Now consider z3. de(u}, z3) > g/2
for all uj € Ng, (u1). Since |Ng(z1) N V(w1)| = 2 and INc(z2) N V(w)| =1,
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|Dg/2-1(z1, N, (v1))] < 2 and |Dg/2_1(a:2,NG‘ (w1))] £ 1. This implies that
we can find two vertices, u} and uf, from Ng, (u;) such that dg, (u}, z) > ¢/2
for all z € X, and dg, (u?,2,) > g/2 — 1,dg, (u?,22) = 9/2 and dg, (u}, z3) >
g/2. Let Uy = {u € Ng(uy) | dg,(u,z3) > g/2 — 1}. Since dy(uy,z3) >

2 — 1, |Dgja—2(x3, N, (us2))] < 1 by Lemma 2.1. Hence, |Up| > 3. Since
[Na(z1) NV (w2)| < 2, [Dgja-1(x1, Na,(u2))| < 2 by Lernma 2.2. It follows
that one of the vertex in Us, say u}, satisfies dg,(u?,z;) > ¢/2,dg, (ul,z9) 2
9/2 — 1 and dg, (u},z3) > g/2 — 1. Select one vertex from U, \ {u3}, say u}.
It follows that dg,(u},z) > g/2 — 1 for all z € X. Hence, dg(u,uz) > g and
de(ul,ub) > g—1 for i = 1,2. Clearly, we can use the Half Split Operation on
G, a contradiction.

Now we consider the case that g is odd. By Lemma 3.1, there exists a vertex
4 in wy such that dg, (v, z) 2 [¢9/2] for all z € X. By Lemma 3.4, Lemma 3.5
and Lemma 3.6, there exists a vertex us in wy such-that dg, (u2, z) > |g/2] for
all z € X. Since dg, (u1,2) 2 [9/2], dg, (v}, z) > |g/2] for all z € X and u} €
Ng, (u,). Since |Na(a:,)ﬂV(w1)| =1 for i = 2,3, |Dyg/2)(z:, Na, (w1))| < 1 for
i = 2,3 by Lemma 2.2. Thus, we can find two vertices from Ng, (1), say u} and
u, such that dy(zi,ul) > [g/2] fori=2,3 and dy(z;,u]) > |g/2] for j = 1,2.
Since |E(X,V (w2))] = 6, and |Nc(x1)ﬂV(w2)| <2 and dg,(u2,z) > |g/2] for
al z € X, |Dgye)- l(zl,NG,(ug))l < 1. This implies that we can find two
vertlc% from N,,(uz), say u} and u}, such that dg,(z:,ul) > [9/2] — 1 for
= 2,3 and da,(zl,u{) > |g/2] for j = 1,2. Hence, dg(uy,us) > g and
da(ul,uz) > g—1fori=1,2. Clearly, we can apply the Half Split Operation
on G, a contradiction.

Gase 2: |B(GIX])| =0, |B(X, V(w,))] = 4 and |B(X, V(u))| = 8

Without loss of generality, we may assume that [Ng(z1)V(w)| = 2,

[Ng(z2) NV (w1)] = 1 and |[Ng(z3) V()| = 1.. It follows that |[Ng(z1)N
V(@) =2 [Ng(e2) ()V{wa)| = 3 and INa(za) (V(ws)| =

If g is even, from Lemma 3.2, suppose that there exxsts a vertex us € wp
such that dg,(us,z1) > g/2, do,(ug,zg) > g/2, and dg, (us, 23) > g/2— 1. By
Lemma 3.1, there exists a vertex u; € w; such that dg, (u;,z;) = g/2, dg, (w1,
z2) 2 g/2, and de, (y1,23) > g/2+ 1. ]

If g is odd, there exists a vertex u; € w; such that dg, (u,z) > [g/2] for all
z € X by Lemma 3.1. By Lemma 3.2, there exists a vertex u; € ws such that
dg,(u1,z) > |g/2]| forall z € X.

Similarly to case 1, we can apply the Half Split Operation on G, a contra-
diction.

Case 3: |E(G[X])| =0, |E(X, V(w1))| = 6 and |E(X, V(we))| = 6

If INg(z:) N V(w;)| = 3, for some z; € X and wj, which can be re-
duced to Case 1 by the discussion of Lemma 3.6. Thus, we may assume that

ING(x)ﬂV(w,)[ =2 for all z € X. By Lemnma 3.3, we have d; < g — 3 where
i=1,2.

If g is even, there exists a vertex w1 € w; such that dg,(u;,z) > g/2 for
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all = € X and exists a vertex up; € wy such that dg,(ug,z) > g/2 for all
z € X. Let Ny, (u1) = {u},u},«},ul} and N,,(u;) = {ul, v3, 43, ud}. Since
de,(u1,2) 2 g/2 for all z € X, |Dgjo—1(zi,Ng,(w1))| < 2 for i = 1,2,3 by
Lemma 2.2. If there is a vertex ug € V(G1) such that dg, (u,z) > g/2 + 1 for
all z € X, then dg(ug,u2) = g + 1. Clearly, the following newly constructed
graph G’ is a 4-regular graph with girth at least g, a contradiction.

G' =G —up —uy + {siti|si € No(uwo), t; € Ne(w),i=1,---,4}

This implies that there exist two vertices in Ng, (u), say u! and u2, such that
{z € Xlde, (ui,2) = g/2—1}] <1 for i = 1,2 since | X| = 3 and Ng(u,) = 4.
We consider two subcases here. First, there is one vertex, say 2, of X such that
dg, (u},71) = 9/2-1 and dg, (u}, 71 ) = g/2—1. It follows that dg, (3, z;) > /2
fori=1,2 and j = 2,3. In G,, there exist two vertices in Ng, (uz), say u} and
u3, such that dg,(ub,z;) > g/2 for i = 1,2 and-dg,(u},z;) > g/2 — 1 for
it=1,2and j =2,3 by Lemma 2.2. Hence, dg(u},u})=g—1fori=1,2 and
dc(uy, ug) = g. We can apply the Half Split Operation on G, a contradiction.
Second, there are two distinct vertices, say z; and x5, such that dy (ul,zy) =
9/2 -1 and dy(u?, z5) = g/2 — 1. If follows that dy(ul,z;) > g/2 fori = 1,2,
i# jand x; € X. In Gy, we can find two sets of vertices from Ng,(us), say
Up = {u3',u3?} such that dg,(u,z,) > ¢/2 (u € Uj) and Uy = {uj}, u§*} such
that dg, (u, z2) > 9/2(u € U,) by Lemma 2.2. If U, = U,, de(v,u") 2 g—1
for v’ € {u},u}} and u” € U;. Otherwise, let 43! € U, \ U, and ul! € U, \ Uy.
It follows that dg(ul,uf!) > g —1 and do(u},uf') > g— 1. We can apply the
Half Split Operation on G, a contradiction.

If g is odd, by Lemma 3.5, suppose we can find a vertex Uy € wy such
that dg, (u2,21) 2 [9/2], do,(usz, z2) > [9/2] and dg, (12, z3) > lg/2]). Again
hy Lemma 3.5, we can find a vertex u; € w, such that de, (w1, z1) > |g9/2],
de(ul»xﬁ) 2 |_g/2J and dGl("lvxli) 2 [9/2]' Let Nwl(ul) = {u%tu¥!ugnu§}
and Ny, (u2) = {u}, 3,43, ul}. In Gy, dg, (v, z3) > l9/2] for all u € Ng, (u;)
since dg, (u1,%3) > [¢/2]. Since dg, (w1, ;) > |g/2] fori =1,2, [Dygs21-1(21,
Ng,(w1))| £ 1 and [Digs2j-1(z2, Ng,(%1))] <1 by Lemma 2.1. Hence, there
exists two vertices in Ng, (u1), say u} and u}, such that dg, (u}, z) > lg/2] for
i = 1,2 and for all z € X. In Gy, since dg,(uz,z;) > |g/2] for i = 1,2, so
dg,(uj, ;) > |g/2] forall j=1,--- ;4 and i = 1,2. Since da,(u2,z3) > |g/2],
Dyy/21-1(x3, Ng, (u2))] < 1 by Lemma 2.2. Hence, there exist two vertices in
Ng, (uz), say uj and u3, such that dg, (u}, z) > |g/2] forall z € X and i = 1,2.
It follows that dg(uf,u}) > g — 1 and dg(u?,u2) > g — 1. We now can apply
the Half Split Operation on G, a contradiction. This completes the proof of
Theorem 2.1. 0
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