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Abstract

We show how to produce algebraically a complete orthogonal set of
Latin squares from a left quasifield and how to generate algebraically a
maximal set of self-orthogonal Latin squares from a left nearfield.

INTRODUCTION

A set A = {A;,A,,..., A} of Latin squares of order n is mutually
orthogonal provided A; is orthogonal to A; for each i # j. The first general
results on the construction of mutually orthogonal Latin squares were given
by MacNeish [4] in 1922. For n a prime, he showed how to construct a set
of n— 1 mutually orthogonal Latin squares of order n. For any n, no larger
set can exist, so a set of n — 1 mutually orthogonal Latin squares of order
n is called a complete set of mutually orthogonal Latin squares. A Latin
square which is orthogonal to its transpose is said to be a self-orthogonal
Latin square. The term “self-orthogonal” was introduced in 1970 by R. C.
Mullin and E. Nemeth [6]; however, the problem of constructing a Latin
square orthogonal to its transpose seems to have been considered first by
S. K. Stein (7] in 1957. In 1971, N. S. Mendelsohn (5] showed how to
construct a Latin square orthogonal to its transpose for every order n such
that n # 2 (mod 4), or n # 3 (mod 9), or n # 6 (mod 9). And in 1973-74
Brayton, Coppersmith, and Hoffman [1] and [2] showed that there exists a
self-orthogonal Latin square of order n for n # 2,3, 6.

We define an orthogonal set of Latin squares {A;, Az,...,A,} to be
orthogonal, self-orthogonal or 0OSO, if {A1,AT, A2, AZ,..., A, AT} is an
orthogonal set. For Latin squares of order 7 let N(n) denote the maximum
number of mutually orthogonal Latin squares and let S(n) denote the size
of a maximal OSO set. Certainly S(n) < N(n)/2 and due to the results of
Brayton, Coppersmith, and Hoffman, S(r) > 1 for n # 2, 3,6.

This paper is an extension of G. Graham and C. Roberts [3]. Here
we establish a connection between maximal sets of self-orthogonal Latin
squares and nearfields.

ARS COMBINATORIA 64(2002), pp. 193-198



QUASIFIELDS, NEARFIELDS, AND LATIN SQUARES

A left quasifield is a nonempty set of elements R and two binary op-
erations + and * on R such that (R,+) is an abelian group with additive
identity, 0; (R—{0}, #) is a loop with multiplicative identity, 1; for all a € R,
0* a = 0; and the left distributive law holds—that is, for all a,b,c € R,
ax(b+c) = axb+ax*c. A left nearfield is a left quasifield in which (R—{0}, )
is a group. In 1936, H. J. Zassenhaus (8] determined all finite nearfields.

It is very straightforward to show that foralla € R, a*0=0.

Lemma 1. For allz,y€ Randw € R— {0}, if z*w=y*w, thenz =y

Proof: If z # 0. Then z*w # 0 since (R— {0}, *) is a loop, hence y*w # 0.
Also y # 0 since 0 * w = 0. Then z,y,w € R — {0}. By cancellation in
(R-{0},%),z=y. Ifz=0. Then z*w =0=y=*w. Since w # 0, then
necessarily y =0, i.e. x =y.

Theorem 1. Let (R,+,*) be a left quasifield with additive identity 0
and multiplicative identity 1 in which R has n > 4 elements. Order the
elements of R as {0,1,73,74,...,7,}. For each z € R such that z # 0 and
z # 1 define C? to be the Latin square with elements cf; = (j — i) *z+1
for i,j € R. The set

C={C?|2€R and 2#0 and 2#1}

is a set of n — 2 mutually orthogonal Latin squares.
Proof: For each z # 0,1 suppose cf; = cf;,. Then

(G-t)*z+i=(k—19)*x2z+1

(-t *z2=(k—1)*z
By Lemma 1,
(-9 =(k-1)
Whence,
i=k

and the rows of C? are permutations of R.
If ¢ = cf;, then

G- wz+i=(—k)rz+k

(G-—i)*z+i-j=(—k)*z+k—j

194



G-i)*z—(F—-d)*x1=(G—1)*2—(j —1i)
= -k)*z—(F-k)
=G —-k)*xz—(j—Fk)*1
By left distributivity
G-D*x(z-1)=({-k)=*(z-1)
As above it follows that
i=k

Whence the columns of C* are permutations of RB. That is, C? is a Latin
square.

To establish orthogonality, suppose that (c3;,c¥;) = (c2cl) and z #
y. Since ¢f; = cpg,

(1) (G—d)*z+i=(q—p)*z+p
and since cf; = ¢},
) (j—i)*y+i=(q—p)*y+p

Subtracting (2) from (1) and using the left distributive law, we find

G- *(z—p)=(g-p)*(2-v).
Hence by Lemma 1,
(3) j—i=q-p
Substituting into (1) results in (j —¢)*z+i=(j—¢)*2+p,soi=pand
then from (3), j = gq.

Theorem 2. Let R be a left quasifield as specified in Theorem 1 and let
C~ be the Latin square with elements ¢;; =i — j. The set CU{C~} is a
set of n — 1 mutually orthogonal Latin squares.

Proof: Let C* € C. Suppose (c};,¢;;) = (54, Cpq) for some i,j,p, and g.
Then since ¢}; = ¢,
(4) (G-)xz+i=(g-p)*2+p
and since ¢;; = ¢,
i-j=p—4q
or
(5) j—i=q-p

Substituting (5) into (4), we get i = p, and substituting this result into (5),
we get j =q.
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Lemma 2. Any set of mutually orthogonal Latin squares can contain at
most one symmetric Latin square.

Proof: Suppose A and B are symmetric Latin squares and A and B are
orthogonal. By symmetry a;3 = ag; and b2 = bg;, so the ordered pairs
(a12,b12) and (ag;,b2;) are identical. Thus, A and B are not orthogonal.

Lemma 3. In each C* the main diagonal is (0,1,73,74,...,7n).

Lemma 4. For n even, C contains no symmetric Latin square.

Proof: By Lemma 3 each element of R appears exactly once on the di-
agonal of each C* € C. For any Latin square in C to be symmetric, each
element in R must appear the same number of times in the upper triangular
part of the Latin square as in the lower triangular part. Thus, each element
of R must appear (n — 1)/2 times in the upper and lower triangular part
of a symmetric Latin square. But for n even, this is impossible, since n—1
is odd and (n — 1)/2 is not an integer.

In a left nearfield it is easy to see that for each a,b € R, a* (-b) =
—(a*b).
Lemma 5. For each b in a left nearfield R, (—1) * b = —b.
Proof: (—1)#*(—1) = —((—1) *1) = —(—1) = 1. If it were the case that
for some b’ € R, (—1) *b' +b' #0. Then
(=1) % ((=1) #b' +b) = (1) * ((-1) * b)) + (-1) * ¥/
= (1) % (~1)) # b/ (=1)
=1xb +(-1)*b
=(-1)*b' +¥b
=1x*((=1)*d +¥')
By Lemma 1 we would have —1 = 1. But then
(=) %0 +b' =1xb'+0' =b'*1+b =b"*(-1)+¥ =0,
a contradiction. It follows that for all b € R, (—~1) *b= —b.

Lemma 6. In a left nearfield (R,+,*), for each a,b,c € R, (—a) *b =
—(a *b).
Proof: If a =0, then —a =0 and (—a) *b=—(a*b) =0. If a # 0, then

a lx[(—a)xb+axb)l=a"'*((—a)*xb) +a ' *(axb)
=(a"'x(—a)) xb+(a"  *a)xd
=(—(a"'*a))*b+1xb
=(-1)*b+b
=—(1*b)+0d by Lemma 5
=0
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Since a™! # 0, then (—a) * b+a* b =0, that is, (—a) * b= —(a*b).

Lemma 7. For R a left nearfield, C*,C¥ € C are transposes if and only if
z+y=1
Proof: Suppose that

z+y=1

Then for all 4,7 € R and © # j,

(j-d)*(z+y)=7—1i
-i)*xz+(G—-i)*y=37—1i
(—d)*xz+i=—([{-i)*y)+j

But by Lemma 6, —(a * b) = (—a) * b, so

G-d)rz+i=(-J)*y+j
¢ = i
Hence,
C:c:(cvy)T

On the other hand, if C* = (C¥)7, the computation above reverses to
show that z +y = 1.

Theorem 3. For n even and R a nearfield C is the expansion of an OSO
set.

Proof: Since (R,+) is a group, for every z € R there exists a unique
solution y € R to the equation  +y = 1. By Lemma 4 since n is even, C
contains no symmetric Latin square. Therefore, for every z € R the unique
solution y to 2 +y = 1 is not z. Furthermore, by Lemma 7, C® and CV are
transpose Latin squares. Thus, C is the expansion of an OSO set.

Theorem 4. For n odd and R a nearfield, C = O U {S} where O is the
expansion of an OSQO set and S is a symmetric Latin square.

Proof: Since (R,+) is a group, for every £ € R there exists a unique
solution y € R to the equation z +y = 1. Since (R,+) is abelian, the
solutions occur in pairs. One pair of solutions is (0, 1). Since n and n—2 are
odd and since by Lemma 2 there is at most one symmetric Latin square in a
set of mutually orthogonal Latin squares, there is exactly one z € R—{0, 1}
such that z 4+ = 1 and C* = S is symmetric. There are (n — 3)/2 pairs
(z,y) such that z,y € R— {0,1}, z # y and z +y = 1. For these pairs
(x,y), C= = (C¥)T and consequently O = {C*,C¥ |z,y € R—{0,1}, = #
y and z +y = 1} is the expansion of an OSO set.
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In summary, from Theorems 2, 3 and 4, when R is a nearfield of even
order, the associated set C is the expansion of an OSO set and CU{C"} is
a complete set of mutually orthogonal Latin squares. When R is a nearfield
of odd order, the associated set C consists of the expansion of an OSO set O
and one symmetric Latin square S. Furthermore, CU{C~}=0U{S,C"}
is a complete mutually orthogonal set.
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