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Abstract: In this paper. we construct a squag SQG(3n) of cardinality 3n that contains three given
arbitrary squags SQG(n)s as disjoint subquags. Accordingly, we can construct a subdirectly
irreducible squag SQG(3n), for each n 2 7, withn 1 or 3 (imod 6). Also, we want to review the
shape of the congruence lattice of non simple squags SQG(n) for some n and to give a classification
of the class of all SQG(21)s and the class of all SQG(27)s according to the shape of its congruence
lattice. SQG(21)s are classified into three classes and SQG(27)s are classified into four classes.
The construction of SQG(3n), which is given in this paper, helps us to construct examples of each
class of both SQG(21)s and SQG(27)s.

Introduction:
A squag is a groupoid S = (S; . ) Satisfying the identities:
X X=X , X.¥y=y.x , x.(x.y)=y.

We use the abbreviation SQG(n) for a squag of cardinality n. If a squag satisfies
the identity:

x.y).(z.w) = (x.2).(y.w),
then it is called a medial squag. An extensive study of squags can be found in
(5,[7]and [8].

A Steiner triple system is a pair ( P; B ), where P is a set of points and B is a
set of 3-element subsets of P called blocks such that for distinct points p,, p,
€ P, there is a unique block b e B satisfying {p,, po} = b . There is a one to
one correspondence between the squags and the Steiner triple systems [2] [8].
The Steiner triple system ( P; B ) is denoted by STS( n ), if the cardinality of P
is equal to n. Itis well known that a necessary and sufficient condition for the
existence of an STS(n) is n= 1 or 3 (mod 6 ).

Quackenbush [8] proved that most finite squags are simple. In fact, a squag
SQG(n) is simple if n can not be factored into (6n, + i ) (6n, + j) for some n,, n,
and some i, j €{1,3}. In particular, there are only simple SQG(n)s, if n is prime.
Quackenbush [8] also proved that the congruences of squags are permutable,
regular, and Lagrangian and he showed also that any finite simple SQG(n) with
n > 3 is functionally complete. I.e. For any finite simple squag § = (S; . ) with

Is|> 3, the congruence lattice C(S") = 2" ( the Boolean lattice with exactly r

atoms). But the congruence lattice C(SQG(3)" ) has skew congruences. In
particular, the congruence lattice

C(SQG(3)) =
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The basic concepts of universal algebra can be found in [4].
In the following section, we give a construction of an SQG(3n) containing any

three given sub-SQG(n)s. By this construction we may construct a subdirectly
irreducible squag

of cardinality 3n with congruence lattice = E , for each n >9 with

n= lor 3(mod 6) .

In section 3, we will be concerned with a classification of the classes of
SQG(21)s and SQG (27)s according to the shape of its congruence lattice. And
by using the construction given in section 2, we can construct examples of each
class of the determined classes of SQG(21)s and of SQG(27)s. Specially,

examples of subdirectly irreducible squags of SQG(21) and SQG(27) will be
constructed.

2-Construction of an SQG(3n)

All SQG(m)s withm= 1 or 3 (mod 6 ) are simple, if misnot  divisible
by 3 or if m =3n and nz 1 or3 (mod 6 ). Then we may say that the class of
SQG(3n) with n = 1 or 3 (mod 6 ) is the class of squags that may contain non-
simple squags.

Moreover, Quackenbush [8] and Armanious [1] proved that a subsquag S,
of a finite squag S with Is |= 3]s, lis normal iff there are three disjoint
subsquags S; , S; and S; with |s,|=1S,|=|s;|. This algebraic properties
leads us to construct an SQG(3n) having three disjoint sub-SQG(n)s for each n=
1 or 3 (mod 6).

In order to turn an STS=( P ; B ) to a squag =( P ;. ) or conversely we have
the relation:
X.y=y.x:=z & {x,y,z} € B; forany two distinct elements xand y €
P and we also have x . x =x forany x € P [8].
With the help of this correspondence, both algebraic and
combinatorial languages will be used in this article.

At first, we need to write the definitions of some concepts from the graph
theory [6]. A complete bipartite graph K., is a simple graph, in which its set
of vertices V(K, ., ) can be divided into two disjoint sets A and B such that
|A | =n& | Bl=m and the set of edges E (K, ) is exactly the set of all edges
connecting each vertex of A with each vertex of B. A spanning subgraph F of a
graph G is called a 1- factor of G, if deg v=1; V v € V(F). Ifa graph G is the
union of a set of disjoint 1-factors {Fy, F, ..., F}, then the set {F,, F5, ..., Fu}
is called a 1- factorization of G and G itself is called I-factorable.
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Theorem 1( 3 |. Every regular bipartite graph K,,,, is I- factorable.

Let (P; ; By); for i = 1, 2 ,3 be any three STS(n)s with P, n Pj=@; for
i #jand K, be the complete bipartite graph with a set of vertices V(K,,) =P,
U P, and the set of edges of K, consists exactly of the edges connecting points
in P, with points in P,. Also let F = {F\, F,, ..., F,} be a 1-factorization of Kan
By taking any bijactive map
o, :{1,2,...,n} - P;, we define the set of blocks B,;; as the following :

Bias:={{x,y,a, (i)} : forall xy €F; and F;e F}.

For P:=P; UP, U P; and B :=B, U B, U B; UB,,; , then the system (P ; B)
is an STS(3n) . And the proof is in routine manner. We note that F can be any 1-

factorizations and that a, can be any bijective map. This construction of an
STS(3n) = (P; B) will be denoted by:

[((Py; B1) L(Py; B))(Py; Bs); F(P,Py), 0 ).

And the corresponding squag (P ; . ) will also be denoted by:
[P )UP2:2)) V(P35 .3); F(Py, Py), 0.
Where the binary operation *. “ on P defined by

xqy ifx,y eP

X.y:= o,(i) ifxePjandyeP,
z if xe Pyandy € P;and xz €F, -\
z if xe P;andy € P,and yz €Fq ")

and satisfied the identities x.x=x and x.y=y.x.

This construction supplies us with examples of SQG(3n)s that can not be

constructed by the direct product SQG(n) x SQG(3) such as an SQG(3n) with
congruence having non-isomorphic congruence classes each as a sub-SQG(n).

In the next theorem, we give a combinatorial equivalent condition ofa
subsquag to be normal.

Let (Py; By ) be a subspace STS(n) of the STS(3n) := (P ;B ), where P,:=
{a,a, .. ,a} LetP=(P;.) be the corresponding squag of (P ;B )and
Py =(Py;.) be the corresponding subsquag of (P,; B,).

Theorem 2. The corresponding subsquag Py of the squag P is normal iff the set
F ={F,F,...,F,} ,where Fi:=={xy: {x,y} cP-P, & {x,y,a} ¢ B}
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Jorms a I-factorization of a complete bipartite graph K, , with a set of vertices
V(Knn)=P-P,.

Proof . If P; is normal of the squag P, then there is a congruence 0 on P such
that the factor algebra P/0 ={P,=[4;]16,P,:=[x]60,P;:=[y]6 }. We have
the three disjoint subsets P, , P, and P,; each forms a subsquag of P and
Pi.P;=Py;for {i,j,k} ={1,2,3}.

It is well known that the number of the blocks in an STS(m) containing a
fixed element is equal to (m —1)/2.Since a;.P,=P;for a; € P, then for
any a; € P, there are ((3n-1)2 ) — ((n-1)/2) = nblocks b € B in the form
b={a,x,y}suchthatxe P, and ye P;.

This means that any factor F; of F contains n edges and each edge incident
with two vertices one of them x €P, and the other y € P; . Moreover, there is
no edges between two vertices belonging to the same set P, or P; . This implies
that the set F is a |-factorization of a complete bipartite graph K, , having the
set of vertices V(K,,) = P- P, =P, U P; and containing exactly of the edges
connecting points in Py with points in P,.

The other direction, let F be a 1- factorization of a complete bipartite graph
Kon with a set of vertices P- P, divided into two disjoint sets P,= { X, x,, ...,
xo } and P3= {y,,y2,...,¥a };i.6. V(K,,) =P, U P;and the set of edges of
K, consists exactly of the edges connecting points in P, with points in Ps.
From the definition of the 1-factor F; , we have n blocks in the form { a;, x;, yx }
which x; yx is anedgein F;; foranyi=1,2,...,n . This implies that for any
2-element set { x;, x; } ¢ P,,thereisno I-factor Fy with ke {1,2,...,n}
satisfying the edge x; x; € Fy .Therefore, the block b in B which contains the 2-
element set {x;, x; } is one of the following two cases:

(l) b= {xi » Xj yk} or (2) b= {Xi » Xj» Xk}.

For case (1), we have x; y, is an edge in a 1-factor F; ; for some j , then there
is a block in B in the form {a;, x;, yx}, contradicting the definition of Steiner
triple systems that there is exactly one block containing {x; , y,}. Hence b must
be in the form of the second case namely b = {x;, x;, x}. This means for any 2-
element subset {x;,x; } P, that there is a block b= {x;, x;, x\}< P, . Which
implies that the set of elements of P, forms a subspace of the system (P ,B).

Similarly, the set of elements of P; forms also a subspace. This completes the
proof of the theorem.

In view of the above Theorem, we may say that any STS(3n) = (P ; B) with
three disjoint subspaces (P; B;), (P,; B,)and (Ps; B;) of cardinality n can be
formulated by the construction given in this section. Le. (P ; B)=[((P;; B)) U
(Py; By)) v (Py; By); F(P,,Py), o, ] for a specified 1-factorization F of K, , with
a set of vertices V(K,,) = P, U P, and a set of edges E(K, ,) consists exactly of
the edges connecting points in P; with points in P, and a certain bijective
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map o, .

Theorem 3. Let (S; B;) be not a sub-STS of any of (P;; B) ;i=1,23. Then
(S; By) is asub-STS(3r) of [((Py; Bi) U (Py; By)) U (Ps; By) ; F(P,Py),00) ] iff
there are three sub-STS( r)= (' S; ; Bs, ) < (P;; By);i=1,23 and asub-I-
Jactorization f = { f; - fiz yeurs f;' } of F on the set of vertices V(K,,)= S, U S,
and a bijective map O, °= O restricted on the subset {i, , iy, ..., i;} such that
(S;Bs)= [((S13Bs,)U(82;Bs,))U(85;Bs,): f(S1,8)) s ]

Proof: Let (S ;Bs) be a sub-STS(m) of [ ((P); B,) W(P,; By))u(P3; Bs) ; F(P,,Py)
y On] ,thenS AP =82 ; fori=1,2,3. Otherwise, ifS, =P & S; = D ; for
i =2, 3, then for a € S, = aS; ¢ S, = a contradiction. Also, fora € S, = aS; c
S &aS, cS;= |S,|= I's;|. Therefore, |, |=|82|= |S;]=r, for somer.
Now, we have for xe S;,y € S;and zo € S; & {x,y, Zy)} € Bg. This
implies that for all i; with Zogi)) € S;, there is a sub-1-factor fij c Fij on K, with
a set of vertices V(K,,) =S, U S, and a set of edges E(K,,) consists exactly of
the edges connecting points in S, with points in S,.
Let R={i,-:za(ij)e Ss },thenTR|=rand f={fij:ije R}isa
sub 1- factorization of F on K, with V(K,,) =S, U S,. Therefore, (S ; Bs) =
[(S1 5 Bs,) U (S2:Bs,))U(Ss3Bs,):/(S1,8), @, ), where o, is equal to
o, restricted on the subset R of the set {1, 2, ..., n}.
The other direction, if (S;; Bsi ) are sub-STS(r)s of (P;; B); i=1,2,3, and
S ={ f‘u , fiz yoeey f;r }is a sub 1-factorization of F on the set of vertices V(K, )=
S; U S, and a bijective map &, : {iy, iz ..., ir } > S; given by %, (i) =, (iy)
forj=1,2,...,r.
Then [((S) ; Bs,) W (S5 Bs, )) v (S;;Bs)); S 51,8, a1 is

directly a sub-STS(3r) of [ ((Py; By) \(Py; B))u(Ps; B;) ; F(P\,P,), o, ]. This
completes the proof of the theorem.

According to the above Theorem, examples of SQG(3n)s with certain
congruence lattice will be constructed in the following theorem and in the next
section.

An STS is planar if it is generated by every triangle and contains a triangle.
A planar STS(n) exits for eachn27and n=1 or 3 (mod 6) [3]. Quackenbush
[8] proved in the next theorem that almost all planar SQG(n)s are simple.

Theorem 4(8]. Let (P ; B) be a planar STS(n) and (P ; . ) be the
corresponding squag, then either (P ;.) is simpleorn=9.
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Now, we are ready to construct squags having exactly one proper
congruence.

Theorem 5. For each n > 9 with n = 1 or 3 (mod 6), there is a subdirectly
irreducible squag of cardinality 3n .

Proof . For each n > 3 with n= 1 or 3 (mod 6), there is a finite planar STS(n) :=
(Po ; Bo ) [3] and according to Theorem4, we may say that there is a simple
squag SQG(n) :=( Py ;.) foralln>9 withn=1 or 3 (mod 6).

By taking Po := { 1, 2, ..., n}, Pu={x;, X3, ..., X}, P2= {¥1, ¥2, ... , ¥u}»
P; ={z1, 2, ... , Z,} and (P;;B;)=(Py; Bo) fori=1,2,3, where {x;, Xj, X},
{yi, ¥i » v} and {2, z;, z} are blocks of B, , B, and Bj respectively iff {i, j, k }
isa block in By .

Consider the 1-factorization F={F,,Fy, ... ,Fa} withFi={xjw: {j,k,i} €
By ori=j=k} onK,, with a set of vertices V(K,) = P;u P, and a set of edges
E(K,..) consists exactly of the edges connecting points in P, with points in P,.

Without loss of generality we may assume that {1, i, i+1} € By ; for
i =2, 4,..,n-1, and a be a bijective map from {1,2,..,n} onto P; by i - z.,
for i = 2, 3, .., n-1, a(n)=z;and a(l)=z;. Then the corresponding squag
SQG(3n) of the STS(3n) = [ ((Py; B)) U (P3; B2)) U (P3; B;) ; F(Py,Py), 0] has
only one proper congruence @ determined by its congruence classes
[x]J® =Py, [y)]®=Pand [z]® =P;.

To prove that there is no other proper congruences on SQG(3n), suppose 6 is
a proper congruence on SQG(3n) differ than @ , then B, restricted on P; for
i =1, 2, 3 is congruence on the corresponding squag (P; ;. ) of (P; ; B; ). But
(P; ;.) is simple, this implies that the only possible case of the cardinality of the
congruence class of 0 is r[a]B |= 3 with |[a]9 NP |=1.

We have b; ={xy, x;, Xi+; } € By, then [%,]0 U [x;]0 U [x+]0 = sub-STS(9),
for each i=2, 4, ..., n-1. Each of these sub-STS(9)s contains x, , a set of points
of ablock b, € B, and a set of points of a block b; € B;. Therefore, there is one
of these sub-STS(9) containing the element z;.

By using the definition of F; , we may verify that x,yy, Xiyis1, Xis1y; € Fy, for
some even number i . Hence the sub-STS(9) containing the element z, contains
also the blocks {x,, x;, X;+; } and {y,, ¥i, ¥i+1 } for some even number i.

By Theorem 3 and from the definition of F; the sub-STS(9) containing z,
may be constructed by the sub 1-factorization f= {f}, f, i1}, where f, = {x,y,,
XY, Xyt Fi, i ={Xiyi, Xiisn, Xiny1}S Fi and £ ={Xiayier, Xa¥i XiN1}<
Fi+y for some even number i and the bijective map o restricted on the set
{1, i, i+1}. lethe sub-STS(9) containing z; must contain the triple
{a(1), a(i), ai+1)}= {z1, Zisr, Zisa}.

But according to the set of blocks of By, the block containing the two points
z)and z.,is {2, Z; , Z+ }, which is impossible. Then the proof is complete.
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The above Theorem is true for n =7, we use the same idea to construct an
example of a subdirectly irreducible SQG(21) in the next section. But for the
case of n=9, the method used in the proof of the above theorem is not enough to
construct a subdirectly irreducible SQG(27), since the corresponding squag of
the STS(9) is not simple.

To complete our discussion, we will construct examples of
subdirectly irreducible SQG(27)s in the next section.

3-Congruence lattices of SQG(21)s and of SQG(27)s

First of all, asimple SQG(21) and a simple SQG(27) exist according to [3]
and Theorem4.
Now we start to discuss the different classes of SQG(21)s.

If the congruence lattice of SQG(21) has more than one atom , then SQG(21)
must be isomorphic to the direct product SQG(7) x SQG(3). And according to
the next theorem given by Quackenbush [8], we can deduce that the congruence

lattice of an SQG(21) having more than one atom is isomorphic to

Theorem 6[8]. If SQG(n) is a simple planar squag, then the direct product
SQG(n) x SQG(3) has no skew congruences.

To complete the discussion of the congruence lattices of SQG(21)s, we turn
our attention to the class of SQG(21)s having exactly one atom. As a
consequence, we have

SQG(21)s with congruence lattice isomorphic to E(D , and the cardinality of

the congruence classes of ® is 7 or 3 .

To give an example of an SQG(21) having a unique atom & with

congruence classes of cardinality 7, we use the construction given in section 2
and apply the idea of the proof of TheoremS5 as follows:
Consider the STS(7) = ( Py ; By ) with Py= {0, 1,2, 3, 4, 5, 6} and the blocks of
By are the lines of the projective plane PG(2,2); i.e. the set of blocks B, are the
3-element set {i, i+1, i+3 } (mod 7). By taking three disjoint STS(7) = (P;; B;)
i i =1,2,3 given by the disjoint sets P, = {a, a,, ..., a5 }, P;= {bg, by, ..., bg },
P; = {co, €1, ..., ¢ }and the sets of blocks B;; j=1, 2, 3 defined by: a block
{Xi, Xi+1, X;e3} belongs to By for x =a, b, ¢ iff {i, i+1, i+3} (mod 7).

Let F; be the 1-factor defined by:
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F;, = {aibi } v { a; bk . {l, j, k }G Bo }, then F = {Fo, F|, veey Fﬁ} isal-
factorization of the complete bipartite graph K;; with a set of vertices V(K;7) =
P, U P, and a set of edges consists exactly of edges connecting each poins in P,
with each points of P,. And by choosing the bijective mapa.: {0, 1,,...,6} —
P; defined by o (i) = Cqa,), Where a; is the permutation (134526) on P,. Hence
the corresponding squag SQG(21) = (P ;.) of the STS(21) = (P ; B) = [((Py; BY)
U (Py; By) v (P3; By) ; F(P,,P;) , @ ] has only one proper congruence ®
determined by its congruence classes [ o J®= P, , [ bo]J®= P, and [co]® = P;.

To prove that @ is the only proper congruence, suppose O is a proper
congruence of ( P ; .) differ than @, then | [a] 9?= 3and | [aJoP; |=1.

Moreover, for any block {a;, aj.),8y3} € B the union [a;]0 L [a; ] 0L

[a;s3 ] O is a sub-STS(9), for any i = 0,1,...,6 , then there is a sub-STS(9)
containing ¢, . From the definition of a;, we have ¢, related with Fo and any sub
1-factor in F, must contain the edge aghy. This implies that {ag, by, ¢o } isa
block in this sub-STS(9) and the sub l-factor f, of Fo must be equal
(i) { agbo, asbs, asb,}, (ii){ 2obo, azbe, by} or (iii) { agho, asbs, asba}.
As a consequence, when one of the conditions (i), (ii) or (iii) holds, then the
sub-STS(9) must contain one of the triples {co, €3, €4}, { Co, Cs, C1}0r { Co, Cs, €3}
as a block respectively. But none of these triples is a block in B;. This
contradicts the result of Theorem 3 that this sub-STS(9) must consist of a block
of B, , a block of B, and a block of B; . Therefore, there is no other proper
congruence differ than @ .

In fact, we are faced with the question; is there an irreducible SQG(21)
having a proper congruence ® with congruence classes of cardinality 3 ?

Secondly, we turn our attention to the class of SQG(27)s.

If the congruence lattice of an SQG(27) has more than one atom then such
SQG(27) is a subdirect product of medial squags, hence SQG(27) must be a
medial squag. Since each triangle in a medial squag generates a sub- SQG(9),
then a medial squag has 39 distinct sub-SQG(9). Moreover, each sub-SQG of a
medial squag is normal, then the congruence lattice of a medial SQG(27) has 13
atoms and 13 maximum congruences.

For any atom 0 of a medial SQG(27), the interval [ 6, 1] is isomorphic to the

congruence lattice C(SQG(3)Y) =

We observe that if in an SQG(27) each triangle generates an SQG(9), then it
satisfies the distributive law x.(y.z)=(x.y).(x.2)[5](7] and contains 39
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distinct sub-SQG(9)s. This implies for any sub-SQG(9) = (Py;. )and any x ¢ P,
that (x . Py ;. ) and ( Py; . ) are disjoint sub-SQG(9)s. Therefore, any sub-
SQG(9) is normal [8]. Consequently, the congruence lattice of SQG(27)
contains 13 maximum congruences. Moreover, the intersection of any two
distinct maximal congruences of such SQG(27) is a congruence with
congruence classes of cardinality 3. Hence for any maximal congruence of such
SQG(27) there is a non-comparable minimal congruence ( i.e. an atom). This
means that if in an SQG(27) each triangle generates an SQG(9), then it is
isomorphic to the direct product SQG(9) x SQG(3), which implies that it must
be a medial squag,.

From the foregoing discussion, we have only two interesting classes of
SQG(27)s each of them is subdirectly irreducible as follows:

(i) The class of SQG(27)s in which the congruence lattice

C(SQG(27) =

(ii) The class of SQG(27)s in which the congruence lattice

C(SQG(27) = . E .

To give examples for these two classes, we use a description of three
STS(9)s similar to the previous construction of the SQG(21). We consider the
STS(9) = (Po; By ) as the affine plane on the set of points Po={ 1,2, 3, 4, 5, 6,
7,8,9 } and its set of lines given by the set of blocks:

Bo={{1,2,3},{4,5,6}, {7,8,9},{1,4,7}, {2,5, 8}, {3, 6,9}, {1,6, 8},
{2,4,9}, {3,5, 7}, {1,5,9}, {2,6, 7}, {3, 4, 8}}.

By taking three disjoint STS(9)s = ( P, ; B,)forr=1,2,3 given by the
diSjOiﬂt sets P| = { ag, a3, ..., a9 }, Pz = { b|, bz gy b9}, P3 = {C], C2y ...y Co }and
the sets of blocks B, for r = 1, 2, 3 defined by:

{xi, xj, X} € B,; forx=a, b, ciff {i, j, k} € B,.

Let F; be the I-factor defined similarly as the construction of SQG(21) by F;
= {ab; } U {ajb:{i,j,k }e By}, then F={F, F,, ..., Fo} is a 1-factorization
of the complete bipartite graph Koo with a set of vertices V(Kg9) = P, U P, and

a set of edges consists exactly of edges connecting each poins in P, with each
points in P,.
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Hence the corresponding squag SQG(27) = (P ;. ) of the STS(27)=(P ; B) =
[((Py; By)w (Py; By) v (P3; Bs) ; F(Py,P,), o ] gives examples of the above two
cases as follows:

Example of case (i) if the bijective map o : {1, 2, ..., 9} — P; defined by o (i)
= Cayfi) » where oy is the permutation (46) on P, .

Example of case (ii) if the bijective map o : {1,2,...,9} — P; defined by a (i)
= Cog(i) » where oy is the permutation (12)(34)(68) on P,.

To prove that the constructed squag SQG(27) = (P ; . ) with the permutation
o9 = (46) having a congruence lattice as in the case (i), it is enough to show that
the refation 6 = { (x, ¥) : (x.a).y € {a,, a,, a3} and a € {ay, a,, a3} } is the
unique atom of the congruence lattice C(SQG(27).

First, we have to prove that {a,, a,, a;} is a normal subsquag.

We have three subsloop S, = {a, , a;, a3} of P, S; = {b;, b;, b3} of P, and §; =
{c, , ¢z, c3} of P; and the sub 1-factorization f ={f; , f, , fi} givenby
fi={ab,ab;,a3b}JcF,fh=1{aby,a by, ab }Jc Frand
fy={a; by, a, by, 2, by }c F; of F. Then by Theorem 3, the structure (S ; Bs) =
[((Si ; Bs,) v (S2; Bs, ) )V (S3;Bs,);f(S1,82), ey, ] is a subsloop of
[((Py; B)) © (Py; By)) U (Py; By) 5 F (P,Py) , @ ], where o, (i) = (i) =i
fori=1,2,3.

Similarly, if we choose the subsloops S,* = {a; , a3 , ag} of P,,S,' =
{b; , bg , by} of P, and S;* = {cy, cg, cg} of P; and the sub |-factorization f*=
{ f;, fy.fo} givenby f;= {a; by, a3 by, a9 b5 }C Fy, 3= {agbg,a; by, a9 by }
< Fg and fy= {ag by, a; by, ag by }< Fy of F. Then by Theorem 3, the structure
(8°:Bs ) =I((Si* 5 Bs )V (82" 5 Bsy ) )V (S i Bsye ) s f (81, 827 ), e ] i
a subsloop of [ ((Py; B) W (Py; By)) L (P3; Bs) ; F(P,Py), a ], where 0-‘11'3 (i) =
a(iy=ifori=7,8,9.

This means that S and S* are two disjoint subsloop of cardinality 9, then the
subset S = { a, , a, , a; , by, bz, b3, ¢y, Cz, c3} forms a normal subsloop of
(P ; . ) [8). This implies that the intersection Py " S = { a, , a, , a;} is a normal
subsloop.

To prove that 0 is the unique atom; it is enough to prove that the constructed
squag SQG (27) is not medial. We have:
(C| . C6) . (a| . az) =Cg . a3 = b4 and (C] . a|) . (Cg . az) = b| . b9=b5 N which
implies that (c; . cg) . (a; . a2) #(cy.a;).(Cs.az) (i.e. the constructed squag
SQG(27) is not medial). Then the constructed squag SQG (27)=(P;.)isan
example of case (i).

Now we come to the case (ii), to prove that the corresponding SQG (27)

with the permutation o = (12)(34)(68) has a congruence lattice as in the case
(ii). We have a maximum congruence ® determined by its congruence classes
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P; ;i=1,2,3, then we have to prove that ® is the unique proper congruence of
the SQG(27).

First, we have the constructed squag SQG(27) is not medial because of :
(c1 .cs).(aj.a)=cy9.a3=bgand (c;.a;).(cs.a;)=bs.bz=b,, this means
that (¢ . c¢) . (a; . @) # (Cy . a)) . (Cs . @) (1. e. the medial law is not satisfied).

Moreover, if a squag SQG(27) has two distinct congruences with
congruence classes of cardinality 9, then the intersection of them is a
congruence of SQG(27) with a congruence classes of cardinality 3.
Consequently, it is enough to show that the constructed squag SQG(27) in case
(ii) has no congruence © with congruence classes of cardinality 3.

Suppose that the constructed SQG(27) =(P ; . ) has a congruence 0 with
6 [=3>0cdorond=0 ( the diagonal congruence). Suppose 6 N ® =0
, then (P ; .)is a subdirect product of the direct product of two medial squags.
Hence the case 8 N @ =0 is refused because of the constructed squag (P ;. ) is
not medial. Consequently, 8 is properly contained in ¢ .
Therefore, © restricted on P; i. e. B, is a congruenceonP;;i=1,2,3 .Asa
consequence, there is a sub-SQG(9) having three parallel blocks S, = {a,, a,, a;}
€ By, S; = {b; bj, by} € B, and S; = {c, ¢y, ¢,} € B; . Furthermore, there is a
sub-1-factorization f = { fic F,, f; ¢ F, fic F; } forming with the triple
{Ca(1)s Carz) Cary} the same sub-SQG(9), but {ca(1), Cagzy, Cagzy}= {C2, €1, €4} is noL
block in By . This contradicts the result of Theorem3, that this sub-SQG(9) must
be equal [((S: ; Bs,) U (S5 Bs,))V(S3;Bs,);f(S1,82), 0y, ], where
where Otnyg @) = a(i)

According to the previous example (ii) of a subdirectly irreducible SQG(27),
we can improve the result of thoerem$ as follows:

There is a subdirectly irreducible squag of cardinality 3n ; for each n > 3 with n
= | or 3 (mod 6), having a congruence lattice isomorphic to E& .
Moreover, if n > 9, then the congruence classes of 8 are isomorphic to any

simple squag of cardinality n .
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