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Abstract

Let 6(G) denote the minimum degree of a graph . We prove that for
t>4and k > 2, a graph G of order at least (t + 1)k + 2¢2 — 4¢ + 2 with
8(G) > k41— 1 contains k pairwise vertex-disjoint K ,’s.

1. Introduction

We consider only undirected graphs without loops or multiple edges.
For a graph G, we denote by V/(G), E(G) and §(G) the vertex set, the
edge set and the minimum degree of G, respectively. A graph F is called a
t-claw if F is isomorphic to K ;.

Let ¢,k > 2 be integers. In [2], Ota made a conjecture that if G is a
graph with [V(G)| > (¢+1)k+t>—t and 8(G) > k+1—1, then G contains &
vertex-disjoint ¢-claws. As is shown in [2], in this conjecture, the condition
of the minimum degree of G is sharp in the sense that for any fixed ¢ and
k, there exists a graph of arbitrarily large order which has minimum degree
k+t—2 but does not contain k vertex-disjoint {-claws and, if k is sufficiently
large compared with ¢, then the condition on the order of G is also sharp
in the sense that there exists a graph G with |V(G)| = (t+ 1)k +t2 -t —1
and §(G) > k+1—1 such that G does not contain k vertex-disjoint t-claws.
The conjecture is settled affirmatively for ¢t = 2 in [2; Theorem 5] and for
t =3 in [1]. For t >4, it is proved in [2; Theorem 1] that if G is a graph
with [V(G)| > (t+ 1)k +2t> -3t — 1 and §(G) > k+1¢ — 1, then G contains
k vertex-disjoint t-claws. In this paper, we prove the following theorem.

Main Theorem. Lett > 4, k > 2 be integers, and let G be a graph
with [V(G)| > (t+1)k+2t> -4t +2 and §(G) > k+t—1. Then G contains
k pairwise vertez-disjoint t-claws.

We need the following notation and terminology. Let G be a graph.
For a vertex v € V(G), we denote by N(v) = Ng(v) and dg(v) the set of
vertices adjacent to v and the degree of v, respectively. For a vertex set
S C V(G), we write (S) = (S)¢ for the subgraph of G induced by S. For
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disjoint subsets S and T of V(G), we let E(S,T) = Eg(S,T) denote the
set. of edges of G joining a vertex in S and a vertex in 7. When S or T
consists of a single vertex, say S = {x} or T = {y}, we write E(x,T) or
E(S,y) for E(S,T).

2. Preparation for the proof of the theorem

By way of contradiction, suppose that there exists a graph G with
[V(G)] > (t+ 1)k + 2> — 4t + 2 and §(G) > k +t — 1 such that G does
not contain & pairwise vertex-disjoint t-claws. We may assume that G is
an edge-maximal counterexample. Then G contains & — | vertex-disjoint
t-claws, say D, CD, . ¢*=D. Let H = G — (UiZ! V(CY)). Let
P, P(Q), s P(s) be the K, components of H, i.e.,the components of H
isomorphic to K;. Define U = |Ji_, V(P®)) and W = V(H) - U. We
assume that C(V,C®) .. ('*=1) are chosen so that |[E((W))|+ 2[E((U))]
is maximum.

By assumption, I contains no ¢-claw, or equivalently, every vertex of
H has degree at most ¢t — 1. We define n = |V(H)|. Note that n =
[V(G)| = (t +1)(k — 1) > 20> — 3t + 3. For each i, let a!?) be the center
of ) and B = {6 6), ... 5"} be the set of leaves of C1V). In the
following argument, we sometimes fix ¢ and set C' = C'¥). In such case, we
write a, B, by, ba,...,b, instead of a(‘),B(i),b(li),bf_,i), e, bgi), respectively.

We prove several basic lemmas concerning the number of edges be-
tween V(C)) and V(H), which will be used in the subsequent sections.
Throughout the rest of this section, we fix ¢ with 1 < i < & — 1. Thus as
mentioned in the precedmg paragraph, a denotes the center of C' = C{),
and B = {b1,b2,...,b;} denotes the set of leaves of C.

Lemma 2.1. Let v € V(H), and suppose that dg(v)+|E(B,v)| > t. Then
|[E(a, V(H)—{v} = Nyg(v))| <t—=1-dy(v).

Proof. Suppose that |E(a,V(H) — {v} — Nu(v))| >t — dg(v). Then we
can take .X C N(a) N (V(H) — {v} — Ng(v)) such that |[X| =t —dg(v).
On the other hand, by the assumption that |E(B,v)| > t — dy(v), we can
take Y C N(v) N B such that |Y| =1 - dg(v). Then ({a} UX U (B -Y))
contains a t-claw and (Y U {v} U Ny (v)) contains a t-claw. These are mu-
tually vertex-disjoint ¢-claws in (V(C)U V(H)), a contradiction. o

Lemma 2.2. If E(a,V(H)) # 0, then |E(b,,V(H))| <t for every b, € B.

Proof. If there exists b, € B such that |E(b,, V(H))| >t + 1, then we can
find in (V(C)U V(H)) a t-claw with center b, and a t-claw with center a
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which are mutually vertex-disjoint, a contradiction. a

Lemma 2.3. If [(N(b)) U N(bg)) NV (H)| > 2t — 1 for b,,b, € B with
P#q, then [E(b,, V(H))| <t =2 or |E(by, V(H))| <t -2.

Proof. Otherwise, we can find two vertex-disjoint ¢-claws with centers b,
and b, in (V(C') U V(H)), a contradiction. O

Lemma 2.4. Let v € V(H), and suppose that dy(v) + |E(B,v)| >t + 1.
Then |E(bp,V(H) = {v} — Ny (v))] <t =2 for every b, € B.

Proof. Suppose that there exists b, € B such that [E(b,,V(H) — {v} —
Ny (v))| > ¢~ 1. Then ({a,b,} U(V( H) — {v} = Ng(v))) contains a t-claw
and ((B — {b,}) U {v} U N”(v)) contains a t-claw. These are mutually
vertex-disjoint t-claws in (V(C') U V(H)), a contradiction. a

Lemma 2.5. Let P be a K, component of H, and suppose that there exists
a verter v € V(H) — V(P) such that dy(v) + |E(V(C),v)| > t + 1. Then
E(V(C),V(P)) =

Proof. Suppose that E(x,V(P)) # @ for some r € V(C). Then ({z} U
V(P)) contains a t-claw. Also, since dy(v) + |E(V(C) — {z},v)| > t,
({v} U Ng(v) U (V(C) = {z})) contains a t-claw with center v. This is a
contradiction. a

Lemma 2.6. Let P be a Ny component of H, and suppose that there exists a
verterv € V(H)—=V (P) such that |E(V(C'),v)| > 2. Then E(B,V(P)) =,
and hence it follows that |E(V (C), V(P) )| <t

Proof. If byu € E(G) for some b, € B and u € V(P), then since
E(V(C)={bp},v) # 0, by replacing C by a t-claw contained in (b, UV (P)),
we get a contradiction to the maximality of |[E((W))| + 2|E((U))|. a

Lemma 2.7. Let P be a Ky component of H, and suppose that E(V(C), V(
H)—V(P)) #0. Then |E(V(C),V(P))| < t.

Proof. If E(a,V(H) - V(P)) # 0, then by Lemma 2.1, E(B,u) = § for
every vertex v € V(P), and hence |E(V(C),V(P))| = |E‘(a V(P))| < t.
Thus we may assume that E(a, V(H) — V(P)) = . Without loss of gener-
ality, we may assume that E(b,,V(H)—=V(P)) #0. If E(by, V(P)) # 0 for
some p # 1, then by replacing C by a t-claw contained in ({b,} U V(P)),
we get a contradiction to the maximality of |[E((W))| + 2|E({(U))|. Thus
E({b2,...,0:},V(P)) = @. Suppose that |E(V(C), V(P)) |_ |E({a, b1}, V(
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P))] > t + 1. Then there exist two independent edges ax and b,y with
r,y € V(P). By replacing C by a t-claw contained in {(a,bs,... b, z), we
get a contradiction to the maximality of |E({W))| + 2|E((U))|. a

In the rest of this section, we consider the case where s > ¢ + 1. For
each a with 1 < a < 1+ 1, we take a vertex u, € V(P(®)). Since

k=1t41 t4+1
DY IEWV(CT), ua)l = Z(dc(ua) —(t=1)) > (t+ Dk,
i=1 a=1
t+1
there exists an index ¢ with 1 <i < & — 1 such that Z [E(V(CD), ug)| >

t+1. Then there exist two edges zu, and yug joining V(C(i)) and {uy, ua, ...

g1} with 2,y € V(CD), z # y and a # 8. Replacing C) by t-claws
contained in (z U V(P(®))) and (y U V(PP))), we obtain k vertex-disjoint
t-claws in G. This is a contradiction. o

3. The case where s ={

We continue with the notation of the preceding section. In order to
prove the main theorem, we shall choose some C)’s, and show that they
together with some vertices in H contain more t-claws, which contradicts
the assumption that G is a counterexample. In this section, we consider the
case where s = . For each a with 1 < o < {, we take a vertex u, € V(P%),
and let v € W,

Lemma 3.1. Suppose that C = C) satisfies |[E(V (C), {u1, ua, ..., u, v})|
>t + 2. Then the following hold.

(2 < [BV(C),v) < 1.

(i) E(B, {u1, 2, ..., 1)) = 0.

Proof. If |[E(V(C),v)| =t + 1, then since |E(V(C),{u1, u2, ..., u,v})| >
t + 2, there exists an edge wru, with z € V(C) and 1 < a < t. Then
both ((V(C) — {z}) U {v}) and ({2} U V(P(®))) contain a t-claw, which is
a contradiction. Hence |E(V (C),v)| < 1.

If E(V(C),v) = 0, then we have |E(V(C), {u1,ua,...,w})| > t + 2.
This implies that there exist two independent edges joining V(C) and
{u1, ua,...,u;}, and hence (V(C) UU) contains two vertex-disjoint {-claws.
This is a contradiction. Hence |E(V(C),v)| > 1.

To show (i) and (ii), we first assume that av € F(G). Then, any edge
bpuq € E(B,{uy,us,...,u;}) would make two vertex-disjoint t-claws in
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(V(C)— {bp}) U {v}) and ({b,} UV (P{®))}, and hence (ii) follows. By (ii),
E(V(C),{u1,ua,...,u}) = E(a,{uy,ua,...,1}), and hence |E(V(C), {v,
vua,. .., u})| < t, which implies that |E(V(C),v)| > 2. This shows (i).
Thus we may assume that av ¢ E(G). Since |E(V(C),v)| > 1, there ex-
ists an edge b,v with 1 < p <t. We claim that E(B—{by}, {u1,u2,..., w})
= . Suppose that there exists an edge byu, with p # ¢. If we re-
place C by the t-claw with center uq contained in ({b,} U V(P(®))} and
set W' = W U(V(C) - {b}) and U’ = U — V(P(¥), then we have
[ECWNI+ZEQU))| > |[E(W))|+2|E((U))|, which contradicts the max-
imality of |E((W))|+ 2|E((U))|. Thus E(B—{b,}, {u1,ua,...,u}) =0, as
claimed. Now since E(V(C),{u1,ua,...,ut}) = E({a,bp}, {u1,ua,...,u})
cannot contain two independent edges, it contains at most ¢ edges. This
implies that |E(V(C),v)| > 2, and (i) follows. Now we have another
edge b,v with ¢ # p. Applying the previous claim to this edge, we have
E(B — {bg},{u1,u2,...,u:}) = 0, and hence E(B,{uy,ua,...,u;}) = 0.
This completes the proof. ]

Define J = {i| 1 <i<k—1, [E(V(CD),{u,ug,...,u,0})| >t +2 ).

Lemma 3.2. Y |E(V(CY),v)| > |J|+t+1.
ieJ

Proof. Let |J| = m. By the definition of J, if i ¢ J then |E(V (C)), {uy, us,
couv})| <t+1. Fori € J, |[E(V(CY), {u1,ua,...,4})| < t by Lemma
3.1(i1). Since 6(G) > k+t — 1 and the maximum degree of H is ¢ — 1,

k-1
(t+ 1k < ‘E(U V(C9), {ug, ua, . .. ,ut,v})’ = Z |[E(V(C'D), {uy, ua,
i=1

igJ
o e+ D IBVCH) {ugua, . we D+ Y IE(V(CY),v)| < (2 +
ied ieJ
D(k=1=—m)+tm +>_|E(V(CY),v)].
i€J
Thus > [E(V(CD),0)[ > |J[+t+1. 0
ieJ

We may assume that J = {1,2,...,m} where 1n = |J|, and

IE(V(CY), o) > |E(V(CD),0)| > ... > [E(V(C™),v)| > 2. (3.1)
By Lemma 3.1(i) and Lemma 3.2, there exists { € J with 2 <! < m such
that

l
D UEWV(EC),v)|=1) > (3.2)

i=1
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-1
and such that Z(]E(V(C’(")),v)] — 1) <t —1. Then by Lemma 3.1(i),

i=1
i

Z(|E(V( CUl,v)|—1)<t—1foreach 1 <i<Il—1. (3.3)
i=1
-1 '
Also by Lemma 3.1(i), 1 = 1 < Y _(IE(V(C%),v)| = 1) <t — 1. Thus
i=1
2<1I< L. (3.4)
Lemma 3.3. |E(a), {uy,ua,...,u})| > i for each 1 < i<

Proof. We see from Lemma 3.1 that |E(a'V, {uy,ua,...,u})| > 1. Thus
we may assume 2 < 7 < [. By (3. 1) and (3.3),

Z(lEu (€M), 0)] - 1)

B (), 0] -1 < E <
i i —
Hence |E(a'?, {uy, us, ... u,})|—i>|E(V (CHY, {uy, ..., ue,v})| = |E(V(
Ciye)|—i>(t+2) - (= +1)- ‘—‘—’M>0by (3.4). o

By Lemma 3.3, we may assume that we can take ! independent edges
!

au;. 1 < i <1 On the other hand, (3.2) implies that » _ |E(B%, v)| > 1.
l—l

Hence we can take X C |Ji_, B%) such that X C N(@w)nUi_, B9, |X| =t

Then each of (X U {v}) and (a(‘) UV(PO) for1<i<l contams a l-claw.

These are ! + 1 vertex-disjoint #-claws in ((U,=l 1% (C(’))) U V(H)), which
contradicts the assumption that G is a counterexample.

4. Counting argument

Throughout the rest of this paper, we assume that s < ¢ — 1. In this
section, we find a good vertex in H that can be used later to find an extra

t-claw. Recall that U is the set of vertices contained in the K, components
of H, and W = V(H) — U. We define

I={i|1<i<k=1, B(V(CD),W) =0},
J={i|1<i<k—=1,i¢l, |[E(V(CY),V(H))|>n~-s}.

Note that since n > 202—314+3 and s < t—1, it follows that |[E(V (C)), V(H)
> 2% -4t +5ifi € J.

Lemma 4.1. There exists a verter v € W such that

du(v) + Y [EWV(CD),0) > || +1.
i€J
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Proof. Weset! = |[| and m = |J|, and assume that dH(‘l’)‘i'Z |E(V(C),
ieJ
v)] < m+t—1forallv € W. We first claim that |E(V(C()), )] < (t+1)
for each i € I. If V(C'!) is joined by edges to at most one component of
(U}, then the claim is obvious. If V(C() is joined to at least two compo-
nents of (I’), then by Lemma 2.7, |E(V(C®),U)| < ts < t(t + 1). Thus
the claim follows. Note that this claim implies that
STIEV(C),U)] < (e + DL (4.1)
iel
For i € J, since E(V(C%), W) # 0, it follows from Lemma 2.7 that
|E(V(C) . 17)| < ts. Hence

STIE(V(C),U)] < tsm. (4.2)
ieJ

Also, by the definition of 7 and J, if i ¢ TU J, then
[E(V(C), V(H))| < n—s. (4.3)

Now we estimate the following weighted sum of the degrees of vertices in

—1 Z de:(w) + Z de:(v). First, since §(G) > k+1t -1,

. t
H in two ways:

uel’ veW
(-1 t—1 .
TZ(I(;(U)-*- Zd(,'(lf) 2 (’\'+t— l)(T|U|+|H|) = (/\"*'f—'
uel’ veV
) {(n — s). (4.4)

On the other hand, by (4.1),(4.2) and (4.3),

Y do(w) + Y dato)

uel’ veWw

k=1
= ; (dn(u) + ; |E(V(C), u)l)
k=1 )
+3 (dy(v) + ZlE(V(c"')),v)l)
i=1

veW

= I—;—I(Z dy(u) + (Z+Z+ Z

uel’ iel ied igluJ

+ 3 (a0 + TIECE).01) + 3 [BV (), W)
veW

ied igruJg

< T (3 dut+ T IEQ(C), 011+ 107,01

uel iel ieJ

)IE(V(C“’).U)I)

s (dH(v) +3 |E(w0“’),v)l) + 3 EW(CD), vim)

vel ied igluJ
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t—-1

<
-

(t(t = 1)s+t(t + 1) +tsm)
+(m+t—-1)(n—-ts)+(n—s)(k-=1-1—-m)

=(k+t—1(n—s)+ (2 -1—({+1)(n—5s)

< (k+t—1)(n—s)— (1> -4t +5)l — (2t> — 4t + 4).

Since ! > 0, this contradicts (4.4). o

In the following argument, we consider the vertices in W satisfying the
condition in Lemma 4.1. We define

duo) + T BW(CO), 0] 2 U] +1],

Wy = {v eEw
ied

which is not empty by Lemma 4.1. We also define
Wy ={veW|3ield dy(v) +|E(V(CP),v)| >t +1},

Wa = {v ew - W,’ Ao C J, 2< |Jo] < t — dy(v),

dy(v) + ) |E(V(CY),0)| 2 ol +t}-
i€Jo

Lemma 4.2. The following stalements hold:
(1)Wo C Wy U W,
(ii)If v is a vertex in Wy with dg(v) =t — 1, then v € W).

Proof. Suppose that v € Wy. By the definition of Wj,

Y (EW(CE), )| = 1) >t~ dg (v).

i€J
Thus there exists Jo C J with 1 < |Jo| < t — dy(v) < t such that
|E(V(C),v)| -~ 1> 1 for each i € Jp and

d_(EWV(CD),0)] = 1) 2 t = du(v).
i€J
This proves (oi). Further if dg(v) =t — 1, then |Jo| = 1. Thus (ii) holds. O

Lemma 4.3. Suppose that W; = 0. Fix C = C®) with i € J, and let
b, € B. Suppose that E(B,U) = @ and |E(b,, V(H))| > t + 1, and let
Zy,Za,...,2-1 be t — 1 vertices in V(H) adjacent to b,. Then the follow-
ing inequality holds:

t—1

|E(a, V(H))HIE(bp, VIH) I+ Y (dr(x:)+|E(V(C),2:)]) 2 |E(V(C),V(H)

i=1
N4+t =14+ |E({a, 2, 22,...,2e21))].
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Proof. First we claim that |E(B — {by},V(H) — {z1,22,...,2:-1})] <
t-1

Zd”(l',‘) — e, where e = |E({zy,2a,...,2,-1)}|- We replace C by the -
=1
claw contained in {a,b,, ®,22,...,8-1). Let H' = (V(H) - {21,22,...,
1 PU(V(C) - {a,b,})), and let U’ be the union of the vertex sets of the
Ky components of H'. Also weset S=(B—{b,})NU".
If S = @, then the claim immediately follows from the maximality of
|[E(W))| + 2|E({U))]. Thus we may assume that S # 0. Let y € N(b,) N
(V(H) = {21,...,2¢-1}). Then for any b € S, b is adjacent to y since
otherwise we can find two vertex-disjoint ¢-claws in (a,b, Ng/(d)} and in
(bp, &1, x2,...,2,-1,y), a contradiction. Hence there exists a K, compo-
nent P’ C (U’) such that {y} US C V(P'). Note that [N (b,) N (V(H) -
{x1,...,221})| > 2 by the assumption that |E(b,,V(H))| > ¢ + 1. Since
the above observation holds for any choice of y € N(b,)N(V(H) - {21,...,
xy—1}), it follows that 1 < |S| < t—2. This implies that (V(C)—{b,}) 2 K.
On the other hand, since W, = @ and dy(y) + |E(y,V(C))| > du(y) +
|E(B,y)| = |E(y, {z1, 22, ...,z D+ E(y, V(H)={21, 22, ..., 2o 1, y}) |+
|S|+l = |E(ya {xla Lay... swl—l})|+dp'(y)+l = IE(yv {wll T2,... )wt-—l})l""
t, we obtain E(y,{z1,22,...,2—1}) =0 and dy(y) =t —-1-|S|.

Now, replace C' by the t-claw contained in (b,,z,22,...,%;—1,¥) and
set H” = ((V(C) — {b,}) U(V(H) - {x1,22,...,2¢-1,y})). Then by the
maximality of |E(W)| + 2|E(U)|, it follows that

t—1
0< (D du(=i) +duly) — ) — (IE(B = by, V(H) = {z1,22,..., &1 })| -
i=1
t—1
IS|4+t=1) = (O _du(x:) — ) — |[E(B = by, V(H) — {21, 22,...,2:-1})], as
i=1
claimed.
Consequently,
-1

|E(a,V(H))| + |E(by, V(H))| + > |E(V(C), )|

= |E(V(C), V(H)| + E({a.b,}, (1,22, 11} - [B(V(C) -
{a.b,},V(H) = {&1,22,..., 221 })]

t—1 t—1
> |E(V(C), VIH) |+ (t =1+ ) |E(a,2:)]) = (Y du(z:) —e)
i=1 i=1
t—1
= |E(V(C),V(H))| +t = 1+ |E((a,z1,22,...,ze-1))| = (D_ du(z:)).
This completes the proof of Lemma 4.3. =t m]

5. Proof of the main theorem
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In this section, we continue with the notation of the preceding sections,
and complete the proof of the main theorem. We first consider the case
where 1V, = 0.

Case I: Wy =10
We take a vertex v € Wy, and fix it. By Lemma 4.2(i), v € Ws. Also,
by Lemma 4.2(ii), dyy (v) <t —2. We see from the proof of Lemma 4.2 that
there exists Jo C J with 2 < |Jo| < t = dg(v) such that |E(V(C®), v)| > 2
for each i € Jy and such that dy (v) + Z [E(V(C),v)| > |Jo| + t. Note
ieJdo
that dy(v) + |Jo| < L.

Lemma 5.1. For each (! = C) with i € Jy, one of the following states-
ments holds:

(i) [E(a.V(H) = {v} = Ng(v))| > t = du(v).

(ii)av ¢ E(G) and |E(b,,V(H) — {v} — Nu(v))| > (t — 1)|Jo| for some
by € B.

Proof. Since i € Jy C J, we have

|E(V(C),V(H)| > n—s+1>22—4t+5. (5.1)
Since v ¢ W) and i € Jy, 2 < |E(V(C),v)| < t. Suppose that (i) does
not hold. Then |E(a,V(H) — {v})] <t =1—=dg(v) + |[Nug(v)| =t - L
If E(a,V(H)) # 8, then by Lemma 2.2, |E(b,V(H))| < t for each b € B,
and hence |E(V(C),V(H))| = |E(a, V(H))|+|E(B,V(H))| < t*+1, which
contradicts (5.1). Thus E(a,V(H)) = 0. Since |E(V(C),v)| > 2, we see
from Lemma 2.6 that

E(V(C),V(H)) = E(B,W). (5.2)
Hence by (5.1), there exists b, € B such that |[E(b,,W)| > £+ 1. Let
Zy,La,.... .21 € N(bp) NIV, Since W, = B, dy(z;) + |E(z:, V(O))| < t
for each 1 < i < t — 1. Consequently by Lemma 4.3, |E(b,, W)| >

t—=1
|E(V(C),W)|+t—1+|E(<x1,xz,...,wf-lm—(Z{dn(mi)ﬂfs(m,V(C))l})
=1

> |E(V(C), W) = 2 + 2t — 1+ |[E({z1, 22, ..., xe—1))| > 2% — 4t 4+ 5 —
2420 —1>t>—20+4>2t— 1. By Lemma 2.3, for each b € B — {b,},
|E(b, W)| < t—2. This shows that |E(b,, W)| > 2t* —4t+5—(t-1)(t—2) =
2 —1+3.

Hence | E(bp, V(H)={v}=Nu(v))| = |E(bp, W)|—|E(bp, {v}UNH (v))| >
|E(bp, W)= 1= [N (v)] > |E(bp, W)|+]Jo| —t—1 > t* =t +3+|Jo| -t -1 >
1(t = 2) + ol > IJol(t = 2) + o] > |Jol(t = 1).

This completes the proof of Lemma 5.1. o

Now, we shall find |Jo|+1 vertex-disjoint t-claws in {{;c 5, V(COYWV(H)),
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which will contradict the assumption that G is a counterexample. We may
assume that Jy = {i| 1 < i < |Jp|}. We may also assume that for an integer
h with 0 < h < |Jo], €' = C satisfies (i) in Lemma 5.1 for all 1 < i < h,
and €' = C') satisfies (i) in Lemma 5.1 for all h + 1 < i < |Jo|. Moreover,
for C' = C) with h 4+ 1 < i < {Jo|, we may assume that b; is the vertex b,
satisfying the condition of Lemma 5.1(it). By the choice of Jo,
STUEW(C), )| = 1) > t = du(v).
ieJo
This inequality implies that for each i(1 < i < |Jo|), we can choose a subset
X ¢ N(v) nV(CH) such that
[Jol
XD < IEW(CD, ) =1, 3 IXD| =t ~dn(v)
i=1
“and )
a ¢ X for 1 <i<h, b ¢ X for h+1< i< |Jol.
Then we can find a t-claw with center v in ({v} U Ny(v) U Ul-‘i"ll Xy,
Note that by the condition in Lemuma 5.1(ii), we have a() ¢ X)) also for
h+1<i<|Jol.

We define Y'() = V(C) - X for 1 <i< hand Y = {a, "} for
h+1<i<|Jo|. We take disjoint subsets Z{?) of V(H) — {v} = Ny (v) for
1 < < |Jo| such that

ZW ¢ N(a), [29] = XD for 1< i < h,

ZO c NG, 120 =t = 1for h+1< i< |Jyl.
This can be done by determining Z{) from i = 1 up to |Jo|, because for
1<i<h,
i [Jol

Z XV < Z IXU| =1 —dy(v) < |E(D,V(H) - {v} = Nu(v))],

j=1 Ji=1
and for h+ 1 < i < |Jol,

h

SN+ (-1 (i—h) < (= 1)i < (E=1)]Jo]
j=1
< |E®Y, V(H) - {v} = Nu ().

“Then for each i with 1 < i < |Jg|, (Y PUZ) contains a t-claw with center
a'? or 61" depending on whether i < h or i > h+1. Obviously, these {-claws
and the t-claw in ({v} U Ng(v) U U!{__"ll X @) are pairwise vertex-disjoint.
This contradicts the assumption that G is a counterexample, and completes
the proof for Case 1.
Case 2: W, # 0.

Let v € W,. By the definition of W), we can take a t-claw ¢' = C¥)
with 7 € J such that dy (v) + |E(V(C),v)| >t + 1. Then by Lemma 2.5,
we have E(V(C'),U) = 0, and hence
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|E(V(C),W)| = |E(V(C),V(H))|>n—s+1>2%—-4t+5. (5.4)
Lemma 5.2 E(a, W) = 0.

Proof. Suppose that E(a, W) # . By Lemma 2.1, we have |E(a, W —
(D] = |B@,W - {v} - Nu(@)] + |E@Na(@)| < t -1 dy(v) +
|E(a, Ng(v))| <t —1—dg(v) + |Nu(v)| =t -1, and hence |E(a, W)| < t.
On the other hand, we see from Lemma 2.2 that for each vertex b, €
B, |E(b,, W)| < t. Hence |E(V(C),W)| = |E(a, W)|+|E(B,W)| < t+t"
wluch contradicts (5.4).

Note that it follows from Lemma 5.2 that

dy(v) + |E(B,v)| >t+ 1. (5.5)
Hence by Lemma 2.4,
|E(b,W — {v} — Nu(v))| <t —2 for every b € B, (5.6)

which implies that |E(b, W)| < 2t — 2 for every b € B. We see from
(5.4) and Lemma 5.2 that there exist at least three vertices b6 € B such
that |E(b,W)| > 2t — 3. By (5.6), this implies that |[Ny(v)| > t — 2.
Let S = {b € B| |E(b,W)| > 2t —3}. Thus |S| > 3. We first con-
sider the case where |Ny(v)| = t — 2. For each b € S, we have [N(b) N
(W —{v} — Ng(v))| =t —2 and N(b) D {v} U Ng(v) by (5.6), and hence
|E(b,W)| = 2t — 3. In particular, S C N(v) and it follows from (5.4) and
Lemma 5.2 that |S| > 5, and hence [Ny (v)|+|N(v)NB| > |[Ng(v)|+|S| >
(t—2)+5 > t+2. Consequently, taking b, € S and z € Ng(v), we
see that ({by,a,2} U (N(by) N (W {v} - NH( ))) contains a t-claw and
((N(@)n(B—{by})) U{v}U (Ng(v)—{z})) contalns at-claw, a contradiction.

We now consider the case where |Ng(v)| =t — 1. If there exists b, € S
such that byv & E(G), then |N(bg) N (W — {v} — Nu(v))| = t — 2 and
N(bg) D Nu(v), and hence, taking £ € Npy(v), we see from (5.5) that
((N(v) N B) U {v} U (Ng(v) — {z})) contains a t-claw and ({bs,a,z} U
(N(bg) N (W {v} — Ng(v)))) contains a t-claw, a contradiction. Thus
S C N(v). Suppose that there exists b, € S such that [N (b,) n(W {v} -
Ny (v))] =t — 2. Note that |[N(b,) N ({v} UNg(v))|>t—=1in partlcular,

N(by) N Ny(v) # 0. Also recall |S| > 3, and hence |[Ng(v)| + |N(v)

Bl|>@t-1)+3=t+2. Consequently, taking € N(b )ﬂ Ny (v), we
see that ({bp,a,z} U (N(b) N (W — {v} — Ny (v)))) contains a ¢-claw and
((N(v)N(B={bp}))U{v}U(Ng (v)—{z})) contains a t-claw, a contradiction.
Thus [N (b) N (W — {v} — Ng(v))] =t —3 for all b € S, which means that
[IN()) NW| =2t -3 for all b € S. This together with (5.4) and Lemma
5.2 implies that |S| > 5, and hence |Ny(v)|+ |[N(v)NB| > (t—1)+5 >
t + 3. Consequently, taking b, € S and z,y € Ny(v) with z # y, we
see that ({bp,a,z,y} U ((N(bp) N (W — {v} — Ng(v)))) contains a t-claw
and ((N(v) N (B - {bp})) U {v} U (N (v) — {z,y})) contains a t-claw, a
contradiction.
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This completes the proof of the main theorem. D
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