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Abstract. We restate a recent improvement of the inclusion-
exclusion principle in terms of valuations on distributive lattices
and present a completely new proof of the result. Moreover,
we establish set-theoretic identities and logical equivalences of
inclusion-exclusion type, which have not been considered before.

1 Introduction

A waluation on a distributive lattice (L, A, V) is a mapping v from L into
an abelian group such that v{a A b) + v(a V b) = v(a) + v(b) for all a,b €
L. This concept was introduced by Rota [5] and further investigated by
Geissinger [3]. For valuations on distributive lattices, Rota [5] established
the following variant of the well-known inclusion-exclusion principle:

Proposition 1 ([5]) Letv be a valuation on a distributive lattice (L, A, V).
Then, for any ay,...,a, € L,

v<\n/a,~) - ngﬂ)(—l)”"'v(/\ai) |

i=1 iel

In many applications of the inclusion-exclusion principle such as network
reliability computations (see e.g., {2]) a lot of cancellations can be observed.
(1] provides an improvement of the principle, formulated as a theorem of
measure theory, which covers some (but not necessarily all) of the cancel-
lations. In this paper, we generalize this improvement from measures to
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valuations and present a completely new proof, which is based on a graph-
theoretic argument that replaces the difficult partition in the former proof.
The paper ends with set-theoretic identities and logical equivalences of
inclusion-exclusion type, which seemingly have not been considered before.

2 Improved inclusion-exclusion for valuations
The following theorem generalizes the main result of [1].

Theorem 1 Let v be a valuation on a distributive lattice (L,A,V), ay,...,
an, € L, and X be a set of non-empty subsets of {1,...,n} such that for

any X € X,
Nez <tV a. (1)
zeX i>max X
Then,
n
v (V ai) = Z (—1)“1_1 v (/\ ai) . (2)
i=1 Ic{1,. ..n} iel
g

Proof: For A,B C {1,...,n} define AC Bif A C B and max4 <
min B \ A, where max @ := 0 and min@ := n + 1. Then, it is easy to verify
that C is a partial order on the power set of {1,...,n}, whose minimum
is . In particular, the Hasse diagram of this partial order is connected.
(Figure 1 shows the Hasse diagram for n = 4.) We claim that the Hasse
diagram is also cycle-free: It is a well-known fact from graph theory that
a connected simple graph is cycle-free if and only if the number of edges
is one less than the number of vertices. Thus, since the number of vertices
in the Hasse diagram is 2", we have to check that the number of edges is
2" — 1. Since any I C {1,...,n} has n — max ] immediate successors, the
number of edges is

Z (n—maxI) = n2" - Z ma.xI=n2"—i Z k

Ic{1,..n} IC{1,...,n} k=11€{1,...n}

max I =k
n
=n2"=) k2" = 2" —((n-1)2"+1) = 2" - 1.
k=1

Therefore, the Hasse diagram of C is a tree, which is rooted at the mini-
mum @. By the proposition and the preceding observation, the theorem is

226



proved if
St Agi | =0
JarI jeJ

for each I which is C-minimal in {J € {1,...,n}|I D X for some X € X}.
It is easy to see that

> (-1)“'-1@(/\%) Ev(/\ a,-) - ; (-1)”'*«;(/\ an N a,-)

J3I jeJ i€l i€l jeJ

minJ>maxJ

where = means equality up to sign. By applying Proposition 1 we obtain

Z(—l)l-]l—lv (/\aj) = v (/\a,-) -v (/\ai A V aj) .
JI jeJ iel iel j>max ]

By this, it remains to show that
Nai <0V ai
i€l i>max [/

By the choice of I there is some X € X such that I D X. Then, max ] <
max X, since max > max X would imply {i € I|i < max X} C I, con-
tradicting the minimality of I. Hence,

/\ai <L /\ai <t V a; <i V ai,
icl ieX i>max X i>max I

thus finishing the proof. O

Figure 1: Hasse diagram for n = 4

As a special case we deduce the following result of Narushima and Era [4]:
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Corollary 1 Let v be a valuation on a distributive lattice (L,A,V), (S, Y)
a finite semilattice, {as}ses C L and az Aay < Ggyy for any z,y € S.

Then,
o(ve) = 5 o pe).

sES ICS,1#0 i€l

I is a chain

Proof: The corollary follows from Theorem 1 by defining X as the set of
all incomparable pairs in S and then sorting S topologically. O

3 Set-theoretic identities and logical equiva-
lences of inclusion-exclusion type

We finally deduce some set-theoretic identities and logical equivalences of
inclusion-exclusion type. They seem to be new even in the unimproved
case, that is, when X is chosen as the empty set. (Note that in this case
the sum is extended over all non-empty subsets of the index set.)

Theorem 2 Let Ay,..., A, be sets, and let X be a set of non-empty subsets
of {1,...,n} such that for any X € X, (N cx Az € Uismax x Ai- Then,

where @ denotes symmelric difference, defined by A®B := (A\B)U(B\A).

Proof: Let L be the Boolean algebra generated by A,,...,A,. Then,
(L, @) is an abelian group, in which every element is its own inverse. Hence,
with v being the identity on L, Theorem 2 follows from Theorem 1. O

By choosing X = @ (or applying Proposition 1) we obtain the subsequent

Corollary 2 For any sets Ai,..., A, the following identity holds:

Ua = @ N4

i=1 1€{1,....n} i€l
1#0
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In the sequel, let <, -, A, Vv, B stand for logical equivalence, negation,
conjunction, disjunction and exclusive disjunction, respectively.

Theorem 3 Let Fy,..., F, be propositional formulae, and let X be a set of
non-empty subsets of {1,...,n} such that for any X € X, V ;5 nax x Fi 5 0
logical consequence of /\ze x Fz. Then the following formula is e tautology:

n

VE o H AFR.

= ic{l...., ;
i=1 szvvxe“:c} el
1#£0

Proof: Let L be the Lindenbaum algebra of propositional logic, and for
any classes [F], [G] € L define [F]+[G] := [FBG] = [(-FAG)V (F A=G)}.
Then, as above, (L, +) is an abelian group, in which every element is inverse
to itself. Therefore, with v = idy,, Theorem 3 follows from Theorem 1. O

Remark. Theorem 3 can also be deduced from Theorem 2, since by
Stone [6], the Lindenbaum algebra is isomorphic to a Boolean algebra of
sets.

Corollary 3 The following propositional formula is a tautology:

n

VFE « H /\F,».

i— I1G{1..ees
i=1 (l;ée n} el
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Abstract.

We prove that the number of nonisomorphic minimal 2-colorings
of the edges of Kin+3 is at least 2n less than the number of noni-
somorphic minimal 2-colorings of the edges of K4n42, where n is a
nonnegative integer. Harary explicitly gave all the nonisomorphic
minimal 2-colorings of the edges of K¢ . In this paper, we give all
the nonisomorphic minimal 2-colorings of the edges of K7.

1 Introduction and background results

Definition 1.1 If a graph G with 2-coloring of the edges has the minimum
number of monochromatic triangles then that coloring of G is said to be a
minimal coloring. We denote by M(K3,G) the number of monochro-
matic triangles in a minimal coloring of G.

A.W.Goodman [1] has proved the following result regarding M (K3, K},),
where K, is the complete graph on n vertices. The same result was proved
by Sauve [3] in a more elegant and simple way using the method of weights.

*Supported by CSIR fellowship, India.

ARS COMBINATORIA 64(2002), pp. 231-237



Proposition 1.2 [A. W. Goodman]

M(K3,K,) t(t-1)(t-2) if n =2t
t(t-1) (4t +1) ifn=4t+1,

F(t+1) d-1)  if n=dt+3.

LWIN WIN |-

Definition 1.3 Let G be a graph in which the edges are colored with two
colors, say, red and blue. Let v be any vertex of G. We define the degree
pair of the vertez v as (s,t) where s is the number of red edges incident at
v and t 13 the number of blue edges incident at v.

Sauve [3] has proved the following result about the degree pairs of the
vertices in a minimal coloring of K.

Proposition 1.4 [ L. Sauve | A 2-coloring of the edges of K,, is a min-
imal coloring if and only if the degree pair of

(1) any vertez is (t,t — 1) or (t — 1,t), when n = 2t;

(2) any vertex is (2t,2t), when n =4t +1;

(3) 4t+2 vertices are (2t+1,2t+1) and the degree pair of one exceptional

vertez is (2t,2t + 2) or (2t + 2,2t), when n = 4t + 3.

Definition 1.5 Let G be a graph. Suppose Ci(G) and C2(G) are two 2-
coloring of the edges of G. Ci(G) and C2(G) are said to be non-isomorphic
if and only if the graph defined by one color of C\(G) is not isomorphic to
the graph defined by either color of C2(G).

2 2-Colorings of Ky,.3

In this section we prove that in any minimal coloring of K4,43, if we remove
a suitable vertex we get a minimal coloring of K4,42 and that a minimal
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coloring of Kgp42 can be extended to a minimal coloring of Kyn43 in at
most one way. We construct all the 4 non-isomorphic colorings of K7 using
the non-isomorphic minimal colorings of K¢ given by Harary [2).

B. Radhakrishnan Nair and A. Vijayakumar [4] have proved the fol-
lowing theorem about the number of monochromatic triangles incident at
a vertex v in any 2-edge coloring of a graph G. Their theorem, in our
language is as follows.

Theorem 2.1 Let G be a complete graph on n vertices in which the edges
are colored with two colors, say red and blue and r be the number of red
edges in G. For any vertex v of G, let d(v) = the number of red edges
incident at v, N(v) = the set of all vertices which are joined to v by red
color and T (v) = the number of monochromatic triangles which are incident
at v. Then

Tw) = Y dw) - r + % [n - dw) — 1] [n — d(v) — 2.
ueN(v)

Theorem 2.2 Any minimal coloring of Kinys is an extension of a mini-
mal coloring of K412 and the number of non-isomorphic minimal colorings
of Kanys is at least 2n less than the number of non-isomorphic minimal
colorings of Kanyo.

Proof : Consider Ky,43, where n is a nonnegative integer. Any 2-coloring
of the edges of K4,.3 will be a minimal coloring if and only if the degree
pairs of 4n + 2 vertices are (2n+1,2n+1) and the degree pair of one excep-
tional vertex, say P is (2n,2n + 2) or (2n + 2,2n) (1.4). The number of
monochromatic triangles that lie on the vertex P is 2n? (2.1) and using
Goodman’s formula (1.2) we get

M (K3, Kanys) — M(K3, Kqpp2) = 202

So, by removing this vertex P from K4n43 we get a minimal coloring of
K4n42. In other words, any minimal coloring of K4, 43 is obtained precisely
by extending a minimal coloring of K4y, yo.

233



We consider a minimal coloring of K4,+2 and find all possible extensions
of this to a minimal coloring of K4n+3. In any minimal coloring of K42,
the degree pair of any vertex is (2n,2n + 1) or (2n + 1,2n) (1.4). Hence
to extend a minimal coloring of K4,44 to a minimal coloring of Ky,,43, we
have to add a new vertex P and join this with the vertices of K454 in such
a way that the degree pair of P is (2n,2n+2) or (2n 42, 2n) and the degree
pairs of all other vertices are (2n+1,2n+1). It is clear that there is at most
one extension possible. In fact, an extension is possible only when exactly
2n vertices of Kyn2 have degree pair (2n,2n + 1) or exactly 2n vertices of
K442 have degree pair (2n + 1,2n). If C) (Kant3) and Co(Kyns3) are two
minimal colorings of K4,,3 which are extensions of two non-isomorphic
minimal colorings of K4n,42, then Cy(K4n+3) and Co(K4nt3) are also non-
isomorphic, for an exceptional vertex must be mapped to an exceptional
vertex under any isomorphism.

We claim that there exist 2n non-isomorphic minimal colorings of K4, 42
which are not extendable to a minimal coloring of K4pq43.

For each integer k such that 0 < k < 2n + 1, we construct a minimal
coloring Cy of Kyn4» such that C; is non-isomorphic to Cj, for i # j.
Suppose uy,us,...,uUsns1 and vy, vs,... V2041 are the vertices of Kypyo
and the edges are colored with red and blue. The red edges of Cj are
precisely ujuj, for 1 <i<2n+1,1<j<2n+L,i# j, v for 1 <i <
m+1,1<j<2n+1,i#j,andif k>0, usv;, for 1 < i < k. It is easy
check that Cy is a minimal coloring of Kypn40, for each 0 < k < 2n + 1,
Also Cys are all mutually non-isomorphic, because in these colorings all the
monochromatic triangles are of red color and the number of red edges are
distinct.

The minimal colorings
C()a Cl IR Cn—l ) Cn-{-'h Cn+31 .. 7C'2n+l

of K4,,42 are not extendable to get minimal colorings of Kj,4+3. These are
2n in number. Hence the theorem. 0O

Remark: We note that in Theorem 2.2, the colorings C, and C,4, are
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extendable to get minimal colorings of K4,.3 and hence there exists at
least 2 non-isomorphic minimal colorings of K4y43.

Theorem 2.3 There exists precisely four non-isomorphic minimal color-
ings of K.

Proof : Suppose we color the edges by red and blue. Harary (2] has
constructed all the 6 non-isomorphic minimal colorings of K which are
given below in Figures 1 through 6 with only the red edges present.

va Vi V2 Vs

v, v, v, v,
Vo Vs Ve Vs
FIGURE | FIGURE 2
Va v Va2 vy

Vl VA VI V"
Vo Vs Vo Vs
FIGURE 3 FIGURE 4
Va2 Vs Va Vi

v, v, v, v,
Ve Vs Ve Vs
FIGURE 5 FIGURE 6
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By Theorem (2.3) there are at most 4 non-isomorphic minimal colorings
of K7. It is easy to see that the colorings .given in figures 2, 3, 5 and 6 are
extendable to a minimal coloring of K7. These are given below in Figures
7 through 10 with only the red edges present.

va Vi
4

v

7

FIGURE 7 FIGURE 8

FIGURE 9 FIGURE 10

Hence the proof. O
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