Improved Inclusion-Exclusion for Valuations on Distributive Lattices

Klaus Dohmen

Humboldt-Universität zu Berlin Institut für Informatik Unter den Linden 6 10099 Berlin Germany

Abstract. We restate a recent improvement of the inclusion-exclusion principle in terms of valuations on distributive lattices and present a completely new proof of the result. Moreover, we establish set-theoretic identities and logical equivalences of inclusion-exclusion type, which have not been considered before.

1 Introduction

A valuation on a distributive lattice (L, \wedge, \vee) is a mapping v from L into an abelian group such that $v(a \wedge b) + v(a \vee b) = v(a) + v(b)$ for all $a, b \in L$. This concept was introduced by Rota [5] and further investigated by Geissinger [3]. For valuations on distributive lattices, Rota [5] established the following variant of the well-known inclusion-exclusion principle:

Proposition 1 ([5]) Let v be a valuation on a distributive lattice (L, \wedge, \vee) . Then, for any $a_1, \ldots, a_n \in L$,

$$v\left(\bigvee_{i=1}^n a_i\right) = \sum_{I\subseteq \{1,\ldots,n\}} (-1)^{|I|-1} v\left(\bigwedge_{i\in I} a_i\right).$$

In many applications of the inclusion-exclusion principle such as network reliability computations (see e.g., [2]) a lot of cancellations can be observed. [1] provides an improvement of the principle, formulated as a theorem of measure theory, which covers some (but not necessarily all) of the cancellations. In this paper, we generalize this improvement from measures to

valuations and present a completely new proof, which is based on a graphtheoretic argument that replaces the difficult partition in the former proof. The paper ends with set-theoretic identities and logical equivalences of inclusion-exclusion type, which seemingly have not been considered before.

2 Improved inclusion-exclusion for valuations

The following theorem generalizes the main result of [1].

Theorem 1 Let v be a valuation on a distributive lattice (L, \wedge, \vee) , a_1, \ldots , $a_n \in L$, and \mathfrak{X} be a set of non-empty subsets of $\{1, \ldots, n\}$ such that for any $X \in \mathfrak{X}$,

$$\bigwedge_{x \in X} a_x \leq_L \bigvee_{i > \max X} a_i.$$
(1)

Then,

$$v\left(\bigvee_{i=1}^{n} a_i\right) = \sum_{\substack{I \subseteq \{1,\ldots,n\}\\I \supseteq X \neq x \in X\\I \neq 0}} (-1)^{|I|-1} v\left(\bigwedge_{i \in I} a_i\right). \tag{2}$$

Proof: For $A, B \subseteq \{1, \ldots, n\}$ define $A \subseteq B$ if $A \subseteq B$ and $\max A < \min B \setminus A$, where $\max \emptyset := 0$ and $\min \emptyset := n+1$. Then, it is easy to verify that \subseteq is a partial order on the power set of $\{1, \ldots, n\}$, whose minimum is \emptyset . In particular, the Hasse diagram of this partial order is connected. (Figure 1 shows the Hasse diagram for n=4.) We claim that the Hasse diagram is also cycle-free: It is a well-known fact from graph theory that a connected simple graph is cycle-free if and only if the number of edges is one less than the number of vertices. Thus, since the number of vertices in the Hasse diagram is 2^n , we have to check that the number of edges is $2^n - 1$. Since any $I \subseteq \{1, \ldots, n\}$ has $n - \max I$ immediate successors, the number of edges is

$$\sum_{I\subseteq\{1,\dots,n\}} (n - \max I) = n \, 2^n - \sum_{I\subseteq\{1,\dots,n\}} \max I = n \, 2^n - \sum_{k=1}^n \sum_{\substack{I\subseteq\{1,\dots,n\}\\ \max I=k}} k$$
$$= n \, 2^n - \sum_{k=1}^n k \, 2^{k-1} = n \, 2^n - ((n-1)2^n + 1) = 2^n - 1.$$

Therefore, the Hasse diagram of \sqsubseteq is a tree, which is rooted at the minimum \emptyset . By the proposition and the preceding observation, the theorem is

proved if

$$\sum_{J\supseteq I} (-1)^{|J|-1} v \left(\bigwedge_{j\in J} a_j \right) = 0$$

for each I which is \sqsubseteq -minimal in $\{I \subseteq \{1, ..., n\} \mid I \supseteq X \text{ for some } X \in \mathfrak{X}\}$. It is easy to see that

$$\sum_{J\supseteq I} (-1)^{|J|-1} \, v\left(\bigwedge_{j\in J} a_j\right) \equiv v\left(\bigwedge_{i\in I} a_i\right) - \sum_{\substack{J\neq\emptyset \\ \text{min J may I}}} (-1)^{|J|-1} \, v\left(\bigwedge_{i\in I} a_i \, \wedge \, \bigwedge_{j\in J} a_j\right)$$

where ≡ means equality up to sign. By applying Proposition 1 we obtain

$$\sum_{J\supseteq I} (-1)^{|J|-1} v \left(\bigwedge_{j\in J} a_j \right) \equiv v \left(\bigwedge_{i\in I} a_i \right) - v \left(\bigwedge_{i\in I} a_i \wedge \bigvee_{j>\max I} a_j \right).$$

By this, it remains to show that

$$\bigwedge_{i \in I} a_i \leq_L \bigvee_{i > \max I} a_i.$$

By the choice of I there is some $X \in \mathfrak{X}$ such that $I \supseteq X$. Then, $\max I \le \max X$, since $\max I > \max X$ would imply $\{i \in I \mid i \le \max X\} \sqsubset I$, contradicting the minimality of I. Hence,

$$\bigwedge_{i \in I} a_i \leq_L \bigwedge_{i \in X} a_i \leq_L \bigvee_{i > \max X} a_i \leq_L \bigvee_{i > \max I} a_i,$$

thus finishing the proof.

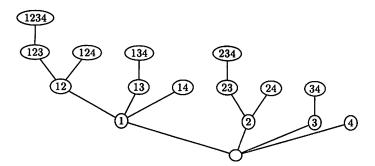


Figure 1: Hasse diagram for n=4

As a special case we deduce the following result of Narushima and Era [4]:

Corollary 1 Let v be a valuation on a distributive lattice (L, \wedge, \vee) , (S, \curlyvee) a finite semilattice, $\{a_s\}_{s \in S} \subseteq L$ and $a_x \wedge a_y \leq_L a_{x \curlyvee y}$ for any $x, y \in S$. Then.

$$v\left(\bigvee_{s\in S}a_s\right) = \sum_{\substack{I\subseteq S,I\neq\emptyset\\I\text{ is a chain}}} (-1)^{|I|-1} v\left(\bigwedge_{i\in I}a_i\right).$$

Proof: The corollary follows from Theorem 1 by defining \mathfrak{X} as the set of all incomparable pairs in S and then sorting S topologically. \square

3 Set-theoretic identities and logical equivalences of inclusion-exclusion type

We finally deduce some set-theoretic identities and logical equivalences of inclusion-exclusion type. They seem to be new even in the unimproved case, that is, when $\mathfrak X$ is chosen as the empty set. (Note that in this case the sum is extended over all non-empty subsets of the index set.)

Theorem 2 Let A_1, \ldots, A_n be sets, and let \mathfrak{X} be a set of non-empty subsets of $\{1, \ldots, n\}$ such that for any $X \in \mathfrak{X}$, $\bigcap_{x \in X} A_x \subseteq \bigcup_{i > \max X} A_i$. Then,

$$\bigcup_{i=1}^{n} A_{i} = \bigoplus_{\substack{I \subseteq \{1,\ldots,n\}\\I \supseteq X \lor X \in X\\I \neq \emptyset}} \bigcap_{i \in I} A_{i},$$

where \oplus denotes symmetric difference, defined by $A \oplus B := (A \setminus B) \cup (B \setminus A)$.

Proof: Let L be the Boolean algebra generated by A_1, \ldots, A_n . Then, (L, \oplus) is an abelian group, in which every element is its own inverse. Hence, with v being the identity on L, Theorem 2 follows from Theorem 1. \square

By choosing $\mathfrak{X} = \emptyset$ (or applying Proposition 1) we obtain the subsequent

Corollary 2 For any sets A_1, \ldots, A_n the following identity holds:

$$\bigcup_{i=1}^n A_i = \bigoplus_{\substack{I \subseteq \{1,\ldots,n\}\\I \neq \emptyset}} \bigcap_{i \in I} A_i,$$

In the sequel, let \leftrightarrow , \neg , \wedge , \vee , \boxplus stand for logical equivalence, negation, conjunction, disjunction and exclusive disjunction, respectively.

Theorem 3 Let F_1, \ldots, F_n be propositional formulae, and let \mathfrak{X} be a set of non-empty subsets of $\{1, \ldots, n\}$ such that for any $X \in \mathfrak{X}$, $\bigvee_{i>\max X} F_i$ is a logical consequence of $\bigwedge_{x\in X} F_x$. Then the following formula is a tautology:

$$\bigvee_{i=1}^{n} F_{i} \leftrightarrow \bigoplus_{\substack{I \subseteq \{1,\ldots,n\}\\I \supseteq X \forall X \in X}} \bigwedge_{i \in I} F_{i}.$$

Proof: Let L be the Lindenbaum algebra of propositional logic, and for any classes $[F], [G] \in L$ define $[F] + [G] := [F \boxplus G] = [(\neg F \land G) \lor (F \land \neg G)]$. Then, as above, (L, +) is an abelian group, in which every element is inverse to itself. Therefore, with $v = \mathrm{id}_L$, Theorem 3 follows from Theorem 1. \square

Remark. Theorem 3 can also be deduced from Theorem 2, since by Stone [6], the Lindenbaum algebra is isomorphic to a Boolean algebra of sets.

Corollary 3 The following propositional formula is a tautology:

$$\bigvee_{i=1}^n F_i \leftrightarrow \coprod_{\substack{I \subseteq \{1,\ldots,n\}\\I \neq \emptyset}} \bigwedge_{i \in I} F_i.$$

References

- [1] K. Dohmen, An improvement of the inclusion-exclusion principle. Arch. Math. 72 (1999), 298-303.
- [2] K. Dohmen, Inclusion-exclusion and network reliability, Electron. J. Comb. 5 (1998), paper no. 36.
- [3] L. Geissinger, Valuations on distributive lattices I-III. Arch. Math. 24 (1973), 230-239, 337-345, 475-481.
- [4] H. Narushima, H. Era, A variant of inclusion-exclusion on semilattices, Discrete Math. 21 (1978), 215-217.

- [5] G.-C. Rota, On the combinatorics of the Euler characteristic, Studies in Pure Mathematics (papers presented to Richard Rado on the occasion of his sixty-fifth birthday), London, 1971, 221–233.
- [6] M. Stone, The theory of representations of Boolean algebras, Trans. Am. Math. Soc. 40 (1936), 37-111.

Non-isomorphic Minimal Colorings of K_{4n+3}

V Vijayalakshmi *

Department of Mathematics, University of Bombay, Vidyanagari, Bombay - 400098, India. e-mail: vijaya@math.mu.ac.in

Abstract

We prove that the number of nonisomorphic minimal 2-colorings of the edges of K_{4n+3} is at least 2n less than the number of nonisomorphic minimal 2-colorings of the edges of K_{4n+2} , where n is a nonnegative integer. Harary explicitly gave all the nonisomorphic minimal 2-colorings of the edges of K_6 . In this paper, we give all the nonisomorphic minimal 2-colorings of the edges of K_7 .

1 Introduction and background results

Definition 1.1 If a graph G with 2-coloring of the edges has the minimum number of monochromatic triangles then that coloring of G is said to be a minimal coloring. We denote by $M(K_3, G)$ the number of monochromatic triangles in a minimal coloring of G.

A.W.Goodman [1] has proved the following result regarding $M(K_3, K_n)$, where K_n is the complete graph on n vertices. The same result was proved by Sauve [3] in a more elegant and simple way using the method of weights.

^{*}Supported by CSIR fellowship, India.

Proposition 1.2 [A. W. Goodman]

$$M(K_3, K_n) = \frac{1}{3} t (t-1) (t-2) if n = 2t,$$

$$= \frac{2}{3} t (t-1) (4t+1) if n = 4t+1,$$

$$= \frac{2}{3} t (t+1) (4t-1) if n = 4t+3.$$

Definition 1.3 Let G be a graph in which the edges are colored with two colors, say, red and blue. Let v be any vertex of G. We define the degree pair of the vertex v as (s,t) where s is the number of red edges incident at v and t is the number of blue edges incident at v.

Sauve [3] has proved the following result about the degree pairs of the vertices in a minimal coloring of K_n .

Proposition 1.4 [L. Sauve] A 2-coloring of the edges of K_n is a minimal coloring if and only if the degree pair of

- (1) any vertex is (t, t-1) or (t-1, t), when n = 2t;
- (2) any vertex is (2t, 2t), when n = 4t + 1;
- (3) 4t+2 vertices are (2t+1,2t+1) and the degree pair of one exceptional vertex is (2t,2t+2) or (2t+2,2t), when n=4t+3.

Definition 1.5 Let G be a graph. Suppose $C_1(G)$ and $C_2(G)$ are two 2-coloring of the edges of G. $C_1(G)$ and $C_2(G)$ are said to be non-isomorphic if and only if the graph defined by one color of $C_1(G)$ is not isomorphic to the graph defined by either color of $C_2(G)$.

2 2-Colorings of K_{4n+3}

In this section we prove that in any minimal coloring of K_{4n+3} , if we remove a suitable vertex we get a minimal coloring of K_{4n+2} and that a minimal

coloring of K_{4n+2} can be extended to a minimal coloring of K_{4n+3} in at most one way. We construct all the 4 non-isomorphic colorings of K_7 using the non-isomorphic minimal colorings of K_6 given by Harary [2].

B. Radhakrishnan Nair and A. Vijayakumar [4] have proved the following theorem about the number of monochromatic triangles incident at a vertex v in any 2-edge coloring of a graph G. Their theorem, in our language is as follows.

Theorem 2.1 Let G be a complete graph on n vertices in which the edges are colored with two colors, say red and blue and r be the number of red edges in G. For any vertex v of G, let d(v) = the number of red edges incident at v, N(v) = the set of all vertices which are joined to v by red color and T(v) = the number of monochromatic triangles which are incident at v. Then

$$T(v) = \sum_{u \in N(v)} d(u) \ - \ r \ + \ \frac{1}{2} \ [n - d(v) - 1] \ [n - d(v) - 2].$$

Theorem 2.2 Any minimal coloring of K_{4n+3} is an extension of a minimal coloring of K_{4n+2} and the number of non-isomorphic minimal colorings of K_{4n+3} is at least 2n less than the number of non-isomorphic minimal colorings of K_{4n+2} .

Proof: Consider K_{4n+3} , where n is a nonnegative integer. Any 2-coloring of the edges of K_{4n+3} will be a minimal coloring if and only if the degree pairs of 4n+2 vertices are (2n+1,2n+1) and the degree pair of one exceptional vertex, say P is (2n,2n+2) or (2n+2,2n) (1.4). The number of monochromatic triangles that lie on the vertex P is $2n^2$ (2.1) and using Goodman's formula (1.2) we get

$$M(K_3, K_{4n+3}) - M(K_3, K_{4n+2}) = 2n^2.$$

So, by removing this vertex P from K_{4n+3} we get a minimal coloring of K_{4n+2} . In other words, any minimal coloring of K_{4n+3} is obtained precisely by extending a minimal coloring of K_{4n+2} .

We consider a minimal coloring of K_{4n+2} and find all possible extensions of this to a minimal coloring of K_{4n+3} . In any minimal coloring of K_{4n+2} , the degree pair of any vertex is (2n, 2n+1) or (2n+1, 2n) (1.4). Hence to extend a minimal coloring of K_{4n+2} to a minimal coloring of K_{4n+3} , we have to add a new vertex P and join this with the vertices of K_{4n+2} in such a way that the degree pair of P is (2n, 2n+2) or (2n+2, 2n) and the degree pairs of all other vertices are (2n+1, 2n+1). It is clear that there is at most one extension possible. In fact, an extension is possible only when exactly 2n vertices of K_{4n+2} have degree pair (2n, 2n+1) or exactly 2n vertices of K_{4n+2} have degree pair (2n+1, 2n). If $C_1(K_{4n+3})$ and $C_2(K_{4n+3})$ are two minimal colorings of K_{4n+3} which are extensions of two non-isomorphic minimal colorings of K_{4n+2} , then $C_1(K_{4n+3})$ and $C_2(K_{4n+3})$ are also non-isomorphic, for an exceptional vertex must be mapped to an exceptional vertex under any isomorphism.

We claim that there exist 2n non-isomorphic minimal colorings of K_{4n+2} which are not extendable to a minimal coloring of K_{4n+3} .

For each integer k such that $0 \le k \le 2n+1$, we construct a minimal coloring C_k of K_{4n+2} such that C_i is non-isomorphic to C_j , for $i \ne j$. Suppose $u_1, u_2, \ldots, u_{2n+1}$ and $v_1, v_2, \ldots v_{2n+1}$ are the vertices of K_{4n+2} and the edges are colored with red and blue. The red edges of C_k are precisely u_iu_j , for $1 \le i \le 2n+1, 1 \le j \le 2n+1, i \ne j$, v_iv_j for $1 \le i \le 2n+1, 1 \le j \le 2n+1, i \ne j$, and if k>0, u_iv_i , for $1 \le i \le k$. It is easy check that C_k is a minimal coloring of K_{4n+2} , for each $0 \le k \le 2n+1$, Also C_k s are all mutually non-isomorphic, because in these colorings all the monochromatic triangles are of red color and the number of red edges are distinct.

The minimal colorings

$$C_0, C_1, \ldots, C_{n-1}, C_{n+2}, C_{n+3}, \ldots, C_{2n+1}$$

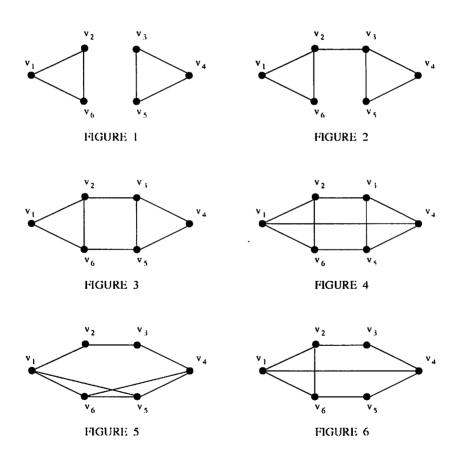
of K_{4n+2} are not extendable to get minimal colorings of K_{4n+3} . These are 2n in number. Hence the theorem.

Remark: We note that in Theorem 2.2, the colorings C_u and C_{u+1} are

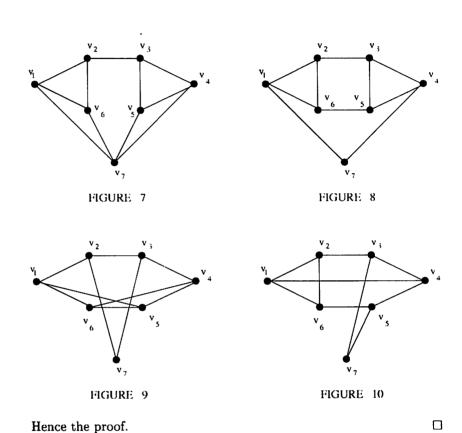
extendable to get minimal colorings of K_{4u+3} and hence there exists at least 2 non-isomorphic minimal colorings of K_{4u+3} .

Theorem 2.3 There exists precisely four non-isomorphic minimal colorings of K_7 .

Proof: Suppose we color the edges by red and blue. Harary [2] has constructed all the 6 non-isomorphic minimal colorings of K_6 which are given below in Figures 1 through 6 with only the red edges present.



By Theorem (2.3) there are at most 4 non-isomorphic minimal colorings of K_7 . It is easy to see that the colorings given in figures 2, 3, 5 and 6 are extendable to a minimal coloring of K_7 . These are given below in Figures 7 through 10 with only the red edges present.



Acknowledgement: I thank Prof. S.S. Sane for his help in preparing this paper.

References

[1] A.W. Goodman, On sets of acquaintances and strangers at any party, American Mathematical Monthly, Vol. 66 (1959) 778 - 783.