# Contractible Edges and Bowties in a k-Connected Graph

### Kiyoshi Ando

Department of Information and Communication Engineering
The University of Electro-Communications
1-5-1, Chofu, Tokyo 182-8585 Japan
email:ando@im.uec.ac.jp

#### Atsushi Kaneko

Department of Computer Science and Communication Engineering Kogakuin University

1-24-2 Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 Japan email: kaneko@sin.cc.kogakuin.ac.jp

Ken-ichi Kawarabayashi Department of Mathematics Keio University

3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522 Japan email: k\_keniti@comb.math.keio.ac.jp

## Kiyoshi Yoshiomoto

Department of Mathematics, College of Science and Technology Nihon University

1-8 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308 Japan email: yosimoto@math.cst.nihon-u.ac.jp

#### Abstract

Let G be a k-connected graph and let F be the simple graph obtained from G by removing the edge xy and identifying x and y in such a way that the resulting vertex is incident to all those edges (other than xy) which are originally incident to x or y. We say that e is contractible if F is k-connected. A bowtie is the graph consisting of two triangles with exactly one vertex in common. We prove that if a k-connected graph G ( $k \ge 4$ ) has no contractible edge, then there exists a bowtie in G.

#### 1 Introduction

C. Thomassen [3] proved the following result.

**Theorem A** Let G be a k-connected graph with no contractible edges. Then G contains a triangle, i.e.,  $K_3$ .

W. Mader [2] proved that there exist many triangles in such graphs.

**Theorem B** Let G be a k-connected graph with no contractible edges. Then G contains at least  $\frac{|V(G)|}{3}$  triangles.

Recently Kawarabayashi [1] obtained the following nice extension of Thomassen's theorem. Denote by  $K_4^-$  the graph obtained from  $K_4$ , i.e., the complete graph on 4 vertices, by removing exactly one edge. In other words,  $K_4^-$  is the graph consisting of two triangles with exactly two vertex in common.

**Theorem C** Let k be an odd integer,  $k \geq 3$ . If a k-connected graph G has no contractible edges, then G contains a  $K_4^-$ .

Note that if G is a 2-connected graph and not isomorphic to  $K_3$  or if G is a 3-connected graph and not isomorphic to  $K_4$ , then it is well known that G has a contractible edge. Thus Theorem A and Theorem B of the above form are meaningful only for  $k \geq 4$ . In this paper we prove the next theorem which is also an extension of Thomassen's theorem. A bowtie is the graph consisting of two triangles with exactly one vertex in common.

**Theorem 1** Let k be an integer,  $k \geq 4$ . If a k-connected graph G has no contractible edge, then G contains a bowtie.

Let G be a finite, undirected graph without loops or multiple edges. We denote by V(G) and E(G) the set of vertices and the set of edges of G, respectively. For a vertex v of G, we denote by  $\deg_G(v)$  the degree of v in G. Let G be a k-connected graph. Let F be the simple graph obtained from G by removing the edge xy and identifying x and y in such a way that the resulting vertex is incident to all those edges (other than xy) which are originally incident to x or y. We say that e is contractible if F is k-connected. A set of points S in a connected graph G is a cutset if G - S is not connected. A cutset of cardinality k is simply called k-cut. Let S be a k-cut of G. Then a fragment of S is a union of at least one, but not all components of G - S. Let A be a vertex subset of G. For a vertex

 $x \in G - A$ , denote by  $N_A(x)$  the set of vertices in A which are adjacent to x in G. Let A and B be two disjoint vertex subsets of G. Then denote by E(A, B) the set of edges of G joining a vertex of A and a vertex of B. When no confusion is possible we will not distinguish between a set of vertices and the subgraph that it induces.

## 2 Preliminary Results

Throughout this section, let G be a k-connected graph containing neither contractible edges nor bowties. In what follows we may assume that G is not isomorphic to  $K_{k+1}$ . Thus an edge e = xy in a k-connected graph G is not contractible if and only if in G there is a k-cut containing two vertices x and y. For notational convenience, let K(a, b, c) denote the subgraph of G which is isomorphic to  $K_3$  and whose vertex set is  $\{a, b, c\}$ . (That is, K(a, b, c) is the triangle consisting of three vertices a, b and c.) Let x be a vertex of G. Then the vertex x is called a good vertex if every edge but one incident to x is contained in a triangle of G. Let xz be the edge not contained in a triangle of G. Then the edge xz is called a nice edge of G. More precisely, let e be an edge of G which is not contained in a triangle of G. Then the edge e is called a nice edge if (at least) one of its end-vertices is a good vertex. We now observe the following.

**Lemma 2** (a) Let x be a vertex of G such that every edge incident to x is contained in a triangle of G. Then there exists a vertex y in  $N_G(x)$  such that  $N_G(x) \subseteq N_G(y)$ .

(b) Let x be a good vertex of G and let xz be the nice edge of G. Then there exists a vertex y in  $N_G(x) - \{z\}$  such that  $N_G(x) - \{z\} \subseteq N_G(y)$ .

Proof First we shall prove part (a). Set  $N_G(x) = \{u_1, u_2, \ldots, u_m\}$  where  $m \geq k \geq 4$ . Now since every edge incident to x is contained in a triangle and since G contains no bowtie, we may assume that G contains  $K(x, u_1, u_2)$  and  $K(x, u_1, u_3)$ . Thus it is easily seen that for any  $i \geq 4$  the triangle having the edge  $xu_i$  must contain the edge  $xu_1$ . The proof of part (a) is completed by setting  $y = u_1$ . Similarly, we can prove part (b) of the lemma.  $\square$ 

If x is a vertex of G such that every edge incident to x is contained in a triangle of G, then by Lemma 4 there exists a vertex y in  $N_G(x)$  such that  $N_G(x) \subseteq N_G(y)$ . Set  $N_G(x) = \{y, u_2, \ldots, u_m\}$ . The edge xy is called a central edge of x and for  $i \geq 2$ ,  $xu_i$  is called a peripheral edge of x.

**Lemma 3** Let S be a k-cut of G such that S contains an edge e = xz which is not contained in a triangle of G. Let A be a component of G - S such that  $|A| \le 2$ . Then |A| = 2, say  $A = \{a, b\}$ , satisfying the following:

- (i) The vertex a is adjacent to exactly one of  $\{x, z\}$ , say x, and the vertex b is adjacent to z and not to x.
- (ii) For each vertex u in  $S \{x, z\}$ , u is adjacent to both of  $\{a, b\}$ .
- (iii) Both ax and bz are nice edges of G.

Since G is k-connected, the degree of each vertex of G is at least k. Hence if |A| = 1, then e have to be contained in a triangle, so that we have |A| = 2, say  $A = \{a, b\}$ . Since e = xz is not contained in a triangle of G, each vertex of  $\{a, b\}$  cannot be adjacent to both x and z. If each vertex of  $\{a, b\}$  is adjacent to the same vertex of  $\{x, z\}$ , say x, then  $S - \{z\}$  is a cutset of cardinality k - 1, contradicting our assumption that G is k-connected. Thus a is adjacent to exactly one of  $\{x, z\}$ , say x, and b is adjacent to z and not to x. Moreover, for each vertex u in  $S - \{x, z\}$ , u is adjacent to both of  $\{a, b\}$ . In order to establish that both ax and bz are nice edges of G, it suffices to show that neither ax nor bz is contained in a triangle of G. Suppose one of ax and bz, say ax, is contained in a triangle of G, say K(a, x, w), then obviously  $w \notin \{b, z\}$ , so that  $w \in S - \{x, z\}$ . Since  $k \ge 4$ , there is a vertex u in  $S - \{x, z, w\}$ . However,  $K(a, x, w) \cup K(a, b, u)$  is a bowtie of G, a contradiction. This completes the proof of the lemma. 

**Lemma 4** Let  $S_e$  and  $S_f$  be two distinct k-cuts of G such that  $A_e$  is a fragment of  $G - S_e$  and  $B_e = G - S_e - V(A_e)$ , and such that  $A_f$  is a fragment of  $G - S_f$  and

 $B_f = G - S_f - V(A_f).$ If  $A_e \cap A_f = \emptyset$ ,  $A_e \cap B_f = \emptyset$  and  $|A_e \cap S_f| \ge k - 1$ , then either  $|A_f| \le \frac{k}{2}$  or  $|B_f| \le \frac{k}{2}$ .

Proof Since  $|S_f| = k$  and  $|A_e \cap S_f| \ge k - 1$ , we have  $|(S_f \cap B_e) \cup (S_e \cap S_f)| = |S_f - A_e| \le 1$ . By symmetry, we may assume that  $|S_e \cap A_f| \le \frac{k}{2}$ , so that  $|(S_f \cap B_e) \cup (S_e \cap S_f) \cup (S_e \cap A_f)| \le \frac{k}{2} + 1 < k$ .

This implies that  $A_f \cap B_e = \emptyset$  because G is k-connected. We conclude that  $|A_f| = |S_e \cap A_f| \le \frac{k}{2}$ , which completes the proof.  $\square$ 

**Lemma 5** Let S be a k-cut of G and A be a component of G - S. If  $|A| \ge 3$ , then  $|A| \ge k - 1$ .

*Proof* Let abc be a path of order 3 in A. Set  $B = A - \{a, b, c\}$ .

Case 1 There is a vertex x in S such that  $x \in N_G(a) \cap N_G(b)$ . There is no vertex y in  $S \cup A - \{x, a, b, c\}$  such that  $y \in N_G(b) \cap N_G(c)$ , since otherwise  $K(a, b, x) \cup K(b, c, y)$  is a bowtie of G, contradicting the assumption that G contains no bowtie. Thus  $|E(S, \{b, c\})| \leq k + 1$ . We see that  $|N_B(b) \cup N_B(c)| \geq \deg_G(b) + \deg_G(c) - |E(S, \{b, c\})| - 4$ . Hence  $|N_B(b) \cup N_B(c)| \ge k-5$  and so  $|A| \ge k-2$ . Observe that equality holds only when there are two edges cx and ac in G. Since  $k \ge 4$ , there must be a vertex w in  $N_G(a) - \{x, b, c\}$ . If  $w \in N_G(b)$ , then  $K(b, c, x) \cup K(a, b, w)$  is a bowtie of G. If  $w \in N_G(c)$ , then  $K(a, b, x) \cup K(a, c, w)$  is a bowtie of G. Thus we obtain  $w \notin N_G(b) \cup N_G(c)$  and therefore the number of vertices of A increases by one, implying  $|A| \ge k-1$ .

Case 2 There is no vertex x in S such that  $x \in N_G(a) \cap N_G(b)$ .

There are now two subcases to distinguish.

Case 2a There is no  $K_4^-$  in A.

Since there is no vertex x in S such that  $x \in N_G(a) \cap N_G(b)$ , we have  $|E(S, \{a, b\})| \leq k$ . we also see that  $|N_B(a) \cup N_B(b)| \geq \deg_G(a) + \deg_G(b) - |E(S, \{a, b\})| - 4$ , since there is at most one triangle having an edge ab in G. Hence  $|N_B(a) \cup N_B(b)| \geq k - 4$  and so  $|A| \geq k - 1$ .

Case 2b There is a  $K_4^-$  in A.

We may assume that there are two triangles K(a, b, d) and K(b, c, d) in A, where d is a vertex in B. Since there is no vertex x in S such that  $x \in N_G(a) \cap N_G(b)$ , we obtain  $|E(S, \{a, b\})| \leq k$ . If there is a vertex u in  $N_B(a) \cup N_B(b) - \{d\}$ , then  $K(b, c, d) \cup K(a, b, u)$  is a bowtie of G. Thus we assume that  $N_B(a) \cup N_B(b) - \{d\} = \emptyset$ . Hence we see that  $|N_B(a) \cup N_B(b)| \geq \deg_G(a) + \deg_G(b) - |E(S, \{a, b\})| - 5$  and so  $|A| \geq k - 2$ . Observe that equality holds only when there is the edge ac in G. Since  $k \geq 4$ , there must be a vertex w in  $N_G(c) - \{a, b, d\}$ . If  $w \in N_G(a)$ , then  $K(a, c, w) \cup K(a, b, d)$  is a bowtie of G. If  $w \in N_G(b)$ , then  $K(b, c, w) \cup K(a, b, d)$  is a bowtie of G. Thus we obtain  $w \notin N_G(a) \cup N_G(b)$  and hence the number of vertices of A increases by one, implying  $|A| \geq k - 1$ . This completes the proof of the lemma.  $\square$ 

**Lemma 6** Let x be a vertex of G such that every edge incident to x is contained in a triangle of G and let xz be a peripheral edge of x. Let S be a k-cut of G such that S contains the edge xz. If A is a component of G - S, then  $|A| \ge k - 1$ .

**Proof** By Lemma 2, there is a vertex y in  $N_G(x)$  such that  $N_G(x) \subseteq N_G(y)$ . Set  $N_G(x) = \{u_1 = y, u_2 = z, \ldots, u_m\}$   $(m \ge k \ge 4)$ , where xy is a central edge of x and  $xu_i$  is a peripheral edge for  $m \ge i \ge 2$ . Letting

**Lemma 7** Let x be a good vertex of G and let xz be a nice edge incident to x. Let S be a k-cut of G such that S contains the edge xz. If A is a component of G - S, then  $|A| \ge k - 1$ .

Proof By Lemma 2, there is a vertex y in  $N_G(x) - \{z\}$  such that  $N_G(x) - \{z\} \subseteq N_G(y)$ . Set  $N_G(x) = \{u_1 = y, u_2 = z, \ldots, u_m\}$  where  $m \ge k \ge 4$ . Letting B = G - S - A, we observe that  $N_A(x) \ne \emptyset$  and  $N_B(x) \ne \emptyset$ , since S is a k-cuts of a k-connected graph G. This implies that  $y \in S$ , so that S contains three vertices x, y and z. We may assume that  $u_3 \in N_A(x)$ . If  $|A| \ge 3$ , then it follows from Lemma 5 that  $|A| \ge k - 1$ . Therefore assume that  $|A| \le 2$ . Since S contains the edge e = xz which is not contained in a triangle of G, it follows from Lemma 3 that |A| = 2, say  $A = \{u_3, b\}$ , satisfying the following:

(i) The vertex  $u_3$  is adjacent to x and not to z and b is adjacent to z and not to x.

(ii) For each vertex u in  $S - \{x, z\}$ , u is adjacent to both of  $\{u_3, b\}$ . However,  $K(u_3, b, u_4) \cup K(u_3, x, y)$  is a bowtie of G, a contradiction. This completes the proof of the lemma.

## 3 Proof of Theorem 1

Now armed with Lemmas 2-7, we are in the position to give a proof of Theorem 1. We start with the following simple case.

Case 1 There exists a vertex x in G such that every edge incident to x is contained in a triangle of G.

As in Lemma 4, let xy be a central edge of x and so  $N_G(x) \subseteq N_G(y)$ . Set  $N_G(x) = \{y, u_2, \ldots, u_m\}$ . For each peripheral edge e of x, let  $S_e$  be

a k-cut of G containing the edge e and let  $A_e$  be a component of  $G-S_e$ . Choose e,  $S_e$  and  $A_e$  in such a way that among all such edges, k-cuts and components,  $A_e$  is a component minimal with respect to inclusion. Set  $B_e=G-S_e-A_e$ . We may assume that  $e=xu_2$ .  $N_A(x)\neq\emptyset$ , say  $u_3$ , since S is a k-cut of a k-connected graph G. Setting  $xu_3=f$ , let  $S_f$  be a k-cut of G containing the edge f and let  $A_f$  be a fragment of  $G-S_f$ . Set  $B_f=G-S_f-A_f$ . Note that by Lemma 6,  $|A_e|$ ,  $|B_e|$ ,  $|A_f|$ ,  $|B_f|\geq k-1$ . We claim that

- (i)  $A_e \cap A_f = \emptyset$  or  $B_e \cap B_f = \emptyset$  and
- (ii)  $A_e \cap B_f = \emptyset$  or  $B_e \cap A_f = \emptyset$ .

If  $A_e \cap A_f \neq \emptyset$  and  $B_e \cap B_f \neq \emptyset$ , then  $|(S_e \cap A_f) \cup (S_e \cap S_f) \cup (S_f \cap A_e)| = |(S_e \cap B_f) \cup (S_e \cap S_f) \cup (S_f \cap B_e)| = k$ , since  $|(S_e \cap A_f) \cup (S_e \cap S_f) \cup (S_f \cap A_e)| + |(S_e \cap B_f) \cup (S_e \cap S_f) \cup (S_f \cap B_e)| = |S_e| + |S_f| = 2k$  and since G is k-connected. Notice that  $(S_e \cap A_f) \cup (S_e \cap S_f) \cup (S_f \cap A_e)$  is a k-cut containing the edge f. It is easily seen that  $|A_e| > |A_e \cap A_f|$ , contradicting the assumption that  $A_e$  is minimal. So we have  $A_e \cap A_f = \emptyset$  or  $B_e \cap B_f = \emptyset$ . Reasoning in a similar way we obtain  $A_e \cap B_f = \emptyset$  or  $B_e \cap A_f = \emptyset$  as claimed. In the following argument we will use only (i) and (ii), and will not use the assumption that  $A_e$  is a (minimal) component. Therefore, by symmetry we can assume that  $A_e \cap A_f = \emptyset$ ,  $A_e \cap B_f = \emptyset$  and so  $A_e = A_e \cap S_f$ . By Lemma 6,  $|A_e \cap S_f| = |A_e| \geq k - 1$ . Thus by Lemma 4, we have either  $|A_f| \leq \frac{k}{2}$  or  $|B_f| \leq \frac{k}{2}$ , which contradicts the fact that  $|A_f| \geq k - 1$  and  $|B_f| \geq k - 1$ . This completes the proof of Case 1.

Now assume that for each vertex x of G there is at least one edge e incident to x such that e is not contained in a triangle of G.

#### Case 2 There exists a good vertex x in G.

Let e = xz be the nice edge incident to x, i.e., the edge not contained in a triangle of G. Let  $S_e$  be a k-cut containing the edge e and let  $A_e$  be a component of  $G - S_e$ . Choose e,  $S_e$  and  $A_e$  in such a way that among all such edges, k-cuts and components,  $A_e$  is a component minimal with respect to inclusion. Set  $B_e = G - S_e - A_e$ . Two@cases are distinguished, depending on whether or not  $A_e$  contains a vertex w incident to a nice edge.

Case 2a  $A_e$  contains a vertex w incident to a nice edge.

Let f be a nice edge incident to w. (Note that w is not necessarily a good vertex.) We use the same notation as in Case 1. By Lemma 7,  $|A_e|$ ,  $|B_e|$ ,  $|A_f|$ ,  $|B_f| \ge k - 1$ . Thus by the same argument as in Case 1, we can derive a contradiction.

Case 2b A<sub>e</sub> contains no vertex incident to a nice edge.

Notice that  $|B_e| \ge k-1$  and that  $S_e$  is a k-cut containing an edge e such that e is not contained in a triangle of G. Therefore, for each edge e not contained in a triangle of G, let  $S_e$  be a k-cut of G containing the edge e and let  $A_e$  be a component of  $G - S_e$ . Choose e,  $S_e$  and  $A_e$  in such a way that among all such edges, k-cuts and components,

- (i)  $A_e$  contains no vertex incident to a nice edge and  $|B_e| \ge k-1$ , where  $B_e = G S_e A_e$  and
- (ii) subject to (i), Ae is a component minimal with respect to inclusion.

(We give a proof along the same lines as that given in Case 1. In order to see this, we use the same notation.) Let w be a vertex in  $A_e$  and f be an edge incident to w which is not contained in a triangle of G. Let  $S_f$  be a k-cut of G containing the edge f.  $A_f$  is a fragment of  $G - S_f$  and set  $B_f = G - S_f - A_f$ . Using the minimal property of  $A_e$ , by the same argument as in Case 1, we obtain

- (i)  $A_e \cap A_f = \emptyset$  or  $B_e \cap B_f = \emptyset$  and
- (ii)  $A_e \cap B_f = \emptyset$  or  $B_e \cap A_f = \emptyset$ .

First suppose that  $B_e \cap A_f = \emptyset$  and  $B_e \cap B_f = \emptyset$ . Then  $B_e \subseteq B_e \cap S_f$  and so  $|B_e \cap S_f| = |B_e| \ge k-1$ . By Lemma 4, either  $|A_f| \le \frac{k}{2}$  or  $|B_f| \le \frac{k}{2}$ , say  $|A_f| \le \frac{k}{2}$ . By Lemma 3 and Lemma 5,  $|A_f| = 2$  and w is incident to a nice edge of G, since f is contained in  $S_f$  and since w is an end-vertex of f such that f is not contained in a triangle of G. This contradicts the assumption that w is not incident to a nice edge of G.

Next suppose that either  $A_e \cap A_f = \emptyset$  and  $B_e \cap A_f = \emptyset$  or  $A_e \cap B_f = \emptyset$  and  $B_e \cap B_f = \emptyset$ . By symmetry we may assume that  $A_e \cap A_f = \emptyset$  and  $B_e \cap A_f = \emptyset$ . Hence  $A_f \subseteq A_f \cap S_e$ . If  $|A_f| \le 2$ , then it follows from Lemma 3 that by the same argument as above we see that w is incident to a nice edge of G. Thus assume that  $|A_f| \ge 3$ . By Lemma 5, we have  $|A_f| \ge k-1$ . By Lemma 4, either  $|A_e| \le \frac{k}{2}$  or  $|B_e| \le \frac{k}{2}$ . Since  $|B_e| \ge k-1$ , we have  $|A_e| \le \frac{k}{2}$ . By Lemmas 3 and 5, we know that  $|A_f| = 2$  and w is incident to a nice edge of G, a contradiction.

Finally suppose that  $A_e \cap A_f = \emptyset$  and  $A_e \cap B_f = \emptyset$ . Hence  $A_e \subseteq A_e \cap S_e$ .

If  $|A_e| \leq 2$ , then it follows from Lemma 3 that by the same argument as above we see that w is incident to a nice edge of G. Thus assume that  $|A_e| \geq 3$ . By Lemma 5, we have  $|A_e| \geq k-1$ . By Lemma 4, either  $|A_f| \leq \frac{k}{2}$  or  $|B_f| \leq \frac{k}{2}$ . By symmetry we may assume that  $|A_f| \leq \frac{k}{2}$ . By Lemma 3 and Lemma 5, we see that  $|A_f| = 2$  and w is incident to a nice edge of G, a contradiction.

Case 3 There exists no good vertex in G, i.e., there exists no nice edge in G.

Recall that for each vertex x of G there is at least one edge e incident to x such that e does not contained in a triangle of G. For each edge e not contained in a triangle of G, let  $S_e$  be a k-cut of G containing the edge e and let  $A_e$  be a component of  $G - S_e$ . Choose e,  $S_e$  and  $A_e$  in such a way that among all such edges, k-cuts and components,  $A_e$  is a component minimal with respect to inclusion. Set  $B_e = G - S_e - A_e$ . Let f be an edge not contained in a triangle of G such that f is incident to a vertex of  $A_e$ . Let  $S_f$  be a k-cut of G containing the edge f and let  $A_f$  be a fragment of  $G - S_f$ . Set  $B_f = G - S_f - A_f$ . By the same argument as in Case 1, we see that

- (i)  $A_e \cap A_f = \emptyset$  or  $B_e \cap B_f = \emptyset$  and
- (ii)  $A_e \cap B_f = \emptyset$  or  $B_e \cap A_f = \emptyset$ .

As in Case 1, by symmetry we can assume that  $A_e \cap A_f = \emptyset$ ,  $A_e \cap B_f = \emptyset$  and so  $A_e = A_e \cap S_f$ . If  $|A_e| \leq 2$ , then it follows from Lemma 3 that there is a nice edge of G. Thus assume that  $|A_e| \geq 3$ . By Lemma 5, we have  $|A_e| \geq k-1$ . By Lemma 4, either  $|A_f| \leq \frac{k}{2}$  or  $|B_f| \leq \frac{k}{2}$ . By symmetry we may assume that  $|A_f| \leq \frac{k}{2}$ . Again it follows from Lemma 3 and Lemma 5 that  $|A_f| = 2$  and there is a nice edge of G, which completes the proof of Theorem 1.  $\square$ 

## References

- [1] K. Kawarabayashi, Note on contractible edges in k-connected graphs, preprint.
- [2] W. Mader, Generalizations of critical connectivity of graphs, Discrete Mathematics Vol. 72 (1988) 267-283.
- [3] C. Thomassen, Non-separating cycles in k-connected graphs, Journal of Graph Theory Vol. 5 (1981) 351-354.