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Abstract

Let G be a k-connected graph and let ' be the simple graph
obtained from G by removing the edge zy and identifying z and y
in such a way that the resulting vertex is incident to all those edges
(other than zy) which are originally incident to = or y. We say that
e is contractibleif F is k-connected. A bowtie is the graph consisting
of two triangles with exactly one vertex in common. We prove that if
a k-connected graph G (k > 4) has no contractible edge, then there
exists a bowtie in G.
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1 Imntroduction
C. Thomassen [3] proved the following result.

Theorem A Let G be a k-connecled graph with no contractible edges.
Then G contains a iriangle, i.e., K3.

W. Mader [2] proved that there exist many triangles in such graphs.

Theorem B Let G be a k-connecied graph with no contractible edges.
Then G contains at least ll%gll triangles.

Recently Kawarabayashi [1] obtained the following nice extension of
Thomassen’s theorem. Denote by K the graph obtained from Kj, i.e.,
the complete graph on 4 vertices, by removing exactly one edge. In other
words, K is the graph consisting of two triangles with exactly two vertex
in common.

Theorem C Let k be an odd integer, k > 3. If a k-connected graph G has
no contractible edges, then G contains a K .

Note that if G is a 2-connected graph and not isomorphic to K3 or if
G is a 3-connected graph and not isomorphic to K4, then it is well known
that G has a contractible edge. Thus Theorem A and Theorem B of the
above form are meaningful only for ¥ > 4. In this paper we prove the next
theorem which is also an extension of Thomassen’s theorem. A bowtie is
the graph consisting of two triangles with exactly one vertex in common.

Theorem 1  Let k be an integer, k > 4. If a k-connected graph G has
no contractible edge, then G contains a bowtie.

Let G be a finite, undirected graph without loops or multiple edges.
We denote by V(G) and E(G) the set of vertices and the set of edges of
G, respectively. For a vertex v of G, we denote by degg(v) the degree
of v in G. Let G be a k-connected graph. Let F be the simple graph
obtained from G by removing the edge zy and identifying  and y in such
a way that the resulting vertex is incident to all those edges (other than
zy) which are originally incident to = or y. We say that e is contractible
if F is k-connected. A set of points S in a connected graph G is @ cutsel
if G — S is not connected. A cutset of cardinality k is simply called k-cut.
Let S be a k-cut of G. Then a fragment of S is a union of at least one, but
not all components of G — S. Let A be a vertex subset of G. For a vertex
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z € G — A, denote by N4(z) the set of vertices in A which are adjacent
to z in G. Let A and B be two disjoint vertex subsets of G. Then denote
by E(A, B) the set of edges of G joining a vertex of A and a vertex of
B. When no confusion is possible we will not distinguish between a set of
vertices and the subgraph that it induces.

2 Preliminary Results

Throughout this section, let G be a k-connected graph containing neither
contractible edges nor bowties. In what follows we may assume that G is
not isomorphic to K. Thus an edge e = zy in a k-connected graph G is
not contractible if and only if in G there is a k-cut containing two vertices
z and y. For notational convenience, let K(a, b, c) denote the subgraph
of G which is isomorphic to K3 and whose vertex set is {a, b, c}.(That is,
K(a, b, c) is the triangle consisting of three vertices a, b and c.) Let  be
a vertex of G. Then the vertex z is called a good verter if every edge but
one incident to z is contained in a triangle of G. Let zz be the edge not
contained in a triangle of G. Then the edge zz is called a nice edge of G.
More precisely, let e be an edge of G which is not contained in a triangle of
G. Then the edge e is called a nice edge if (at least) one of its end-vertices
is a good vertex. We now observe the following.

Lemma 2 (a) Let z be a vertex of G such that every edge incident to =
is contained in a triangle of G. Then there ezists a vertez y in Ng(z) such
that Ng(z) C Ng(y).

(b) Let x be a good vertez of G and let zz be the nice edge of G. Then there
ezists a vertez y in Ng(z) — {2z} such thal Ng(z) — {z} C Ng(y).

Proof TFirst we shall prove part (a). Set Ng(z) = {u1, uz, ..., tum}
where m > k > 4. Now since every edge incident to z is contained in a
triangle and since G contains no bowtie, we may assume that G contains
K(z, u1, uz) and K(z, uy, uz). Thus it is easily seen that for any i > 4
the triangle having the edge zu; must contain the edge zu;. The proof of
part (a) is completed by setting y = u;. Similarly, we can prove part (b)
of the lemma. O

If z is a vertex of G such that every edge incident to z is contained in a
triangle of G, then by Lemma 4 there exists a vertex y in Ng(z) such that
Ng(z) C Ng(y). Set Ng(z) = {y, u2, ..., um}. The edge zy is called a
central edge of x and for i > 2, zu; is called a peripheral edge of .

Lemma 3  Let S be a k-cut of G such that S contains an edge e = z2
which is not conlained in a iriangle of G. Let A be a component of G — S
such that |A| < 2. Then |A| =2, say A = {a, b}, satisfying the following:
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(i) The vertez a is adjacent to ezactly one of {z, z}, say , and the vertez
b is adjacent to z and not to x.

(i) For each vertez u in S — {z, z}, u is adjacent to both of {a, b}.

(iii) Both az and bz are nice edges of G.

Proof Since G is k-connected, the degree of each vertex of G is at
least k. Hence if |A| = 1, then e have to be contained in a triangle, so
that we have |A| = 2, say A = {a, b}. Since e = zz is not contained in a
triangle of G, each vertex of {a, b} cannot be adjacent to both z and z.
If each vertex of {a, b} is adjacent to the same vertex of {z, z}, say =,
then S — {z} is a cutset of cardinality k — 1, contradicting our assumption
that G is k-connected. Thus a is adjacent to exactly one of {z, 2}, say
z, and b is adjacent to z and not to z. Moreover, for each vertex u in
S — {z, z}, u is adjacent to both of {a, b}. In order to establish that
both az and bz are nice edges of G, it suffices to show that neither az nor
bz is contained in a triangle of G. Suppose one of ax and bz, say az, is
contained in a triangle of G, say K(a, z, w), then obviously w ¢ {5, z},
so that w € S — {z, z}. Since k > 4, there is a vertex u in § — {z, z, w}.
However, K(a, z, w)U K(a, b, u) is a bowtie of G, a contradiction. This
completes the proof of the lemma. O

Lemma 4 Let Se and S; be two distinct k-cuts of G such that A, is
a fragment of G — Se and B, = G — S, — V(A.), and such that Ay is a
fragment of G — Sy and

By =G-S;—V(Ag).

IfAcNA; =0, A.NB; = 0 and |A.NSy| 2 k=1, then either |A;] < §
or |By| < §.

Proof Since |S;| =k and |A.NSy| > k— 1, we have |(S; N Be)U(Se N
Sp)| = |Sy — Ae| < 1. By symmetry, we may assume that |S. N 4| < &,
so that [(Sy N Be) U (SeNSHU(S.NAf)| < §+1<k.

This implies that Ay N B, = @ because G is k-connected. We conclude
that |A;| = |S. N Af| < £, which completes the proof. O

Lemma 5 Let S be a k-cut of G and A be a component of G- S. If
|A| > 3, then |A| > k —1.

Proof Let abc be a path of order 3 in A, Set B= A — {a, b, c}.

Case 1 There is a vertex z in S such that z € Ng(a) N NG (b).

There is no vertex y in SU A — {z, a, b, c} such that y € Ne(b)N Ng(¢),
since otherwise K(a, b, )UK(b, ¢, y) is a bowtie of G, contradicting the
assumption that G contains no bowtie. Thus |E(S, {, ¢})| < k+1. We
see that |[Np(b) U Np(c)| > degg(b) + degg(c) — |E(S, {b, ¢})| —4. Hence

242



[Np(b) UNg(c)| > k-5 and so |A| > k — 2. Observe that equality holds
only when there are two edges cx and ac in G. Since k& > 4, there must be a
vertex w in Ng(a)— {z, b, c}. f w € Ng(b), then K(b, ¢, z)UK(a, b, w)
is a bowtie of G. If w € Ng(c), then K(a, b, z) U K(a, ¢, w) is a bowtie
of G. Thus we obtain w & Ng(b) U Ng(c) and therefore the number of
vertices of A increases by one, implying |A| > & — 1.

Case 2 There is no vertex z in S such that z € Ng(a) N Ng(d).

There are now two subcases to distinguish.

Case 2a There is no K in A.

Since there is no vertex z in S such that z € Ng(a) N Ng(b), we have
|E(S, {a, b})| < k. we also see that |[Np(a)UNg(d)| > deg(a)+degg(b)—
|E(S, {a, b})| — 4, since there is at most one triangle having an edge ab in
G. Hence |[Np(a)U Ng(b)| > k—4 and so [A| > k- 1.

Case 2b There is a K in A.

We may assume that there are two triangles K(a, b, d) and K(b, ¢, d)
in A, where d is a vertex in B. Since there is no vertex z in S such that
z € Ng(a) N Ng(b), we obtain |E(S,{e, b})] < k. If there is a vertex
u in Ng(a) U Np(b) — {d}, then K(b, ¢, d)U K(a, b, u) is a bowtie of
G. Thus we assume that Ng(a) U Np(b) — {d} = 0. Hence we see that
|NB(a)UNp(b)| > degg(a)+degg(b)—|E(S, {a, b})| -5 and so |4]| > k2.
Observe that equality holds only when there is the edge ac in G. Since
k > 4, there must be a vertex w in Ng(c) — {a, b, d}. If w € Ng(a),
then K(a, ¢, w) U K(a, b, d) is a bowtie of G. If w € Ng(b), then
K(b, ¢, w)UK(a, b, d) is a bowtie of G. Thus we obtain w ¢ Ng(a)UNg(b)
and hence the number of vertices of A increases by one, implying |A| > k—1.
This completes the proof of the lemma. O

Lemma 6  Let = be a vertex of G such that every edge incident to z is
contained in a iriangle of G and let zz be a peripheral edge of z. Let S
be a k-cut of G such that S contains the edge xz. If A is a component of
G-S, then |A] > k-1.

Proof By Lemma 2, there is a vertex y in Ng(z) such that Ng(z) C

Ng(y). Set Ng(z) ={u1 =y, ua =2, ..., un} (m >k > 4), where zy
is a central edge of = and zu; is a peripheral edge for m > i > 2. Letting
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B =G-8 — A, we observe that Na(z) # 0 and Np(z) # 0, since S is a
k-cut of a k-connected graph G. This implies that y € S, so that S contains
the triangle K (z, y, z). We may assume that u3 € Na(z) and us € Np (z).
Since G is k-connected, the degree of each vertex of G is at least k. Hence
if |A] = 1, then K(z, z, us)U K (2, y, ua) is a bowtie of G. If Al = 2,
say A = {a, us}, then a is adjacent to at least one vertex of z and y, since
degg(a) > k. If there is the edge az, then K(a, z, u3)U K(z, y, z) is
a bowtie of G. If there is the edge ay, then K(a, y, us) U K(z, y, 2) is
a bowtie of G. Thus assume that |4| > 3. It follows from Lemma 5 that
|A| > k — 1, establishing the lemma. O

Lemma 7 Let z be a good vertez of G and let zz be a nice edge incident
to z. Let S be a k-cut of G such that S contains the edge zz. If A is a
component of G — S, then |A| > k- 1.

Proof By Lemma 2, there is a vertex y in Ng(z) — {z} such that
Ng(z) — {z} C Ng(y). Set Ng(z) ={w1 =y, ua =2, ..., Um} where
m > k > 4. Letting B = G — S — A, we observe that Na(z) # 0 and
Np(z) # 0, since S is a k-cuts of a k-connected graph G. This implies that
y € S, so that S contains three vertices z, y and z. We may assume that
ug € Na(z). If |A] > 3, then it follows from Lemma 5 that |[A| > k- 1.
Therefore assume that |A| < 2. Since S contains the edge e = 2z which is
not contained in a triangle of G, it follows from Lemma 3 that |A| = 2, say
A = {us, b}, satisfying the following:

(i) The vertex u3 is adjacent to and not to z and b is adjacent to z and
not to x.
(ii) For each vertex u in S — {z, z}, u is adjacent to both of {us, b}.
However, K(us, b, us) U K(u3, 2, y) is a bowtie of G, a contradiction.
This completes the proof of the lemma.

O

3 Proof of Theorem 1

Now armed with Lemmas 2-7, we are in the position to give a proof of
Theorem 1. We start with the following simple case.

Case 1 There exists a vertex z in G such that every edge incident to
z is contained in a triangle of G.

As in Lemma 4, let zy be a central edge of « and so Ng(z) C Ng(y).
Set Ng(z) = {y, u2, ..., um}. For each peripheral edge e of z, let S, be
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a k-cut of G containing the edge e and let A, be a component of G — S..
Choose e, S. and A, in such a way that among all such edges, k-cuts and
components, A, is a component minimal with respect to inclusion. Set
B, = G- S, — A.. We may assume that e = zu;. Na(z) # 0, say us,
since S is a k-cut of a k-connected graph G. Setting zuz = f, let Sy be a
k-cut of G containing the edge f and let A; be a fragment of G — S;. Set
By = G~ Sy — Aj. Note that by Lemma 6, |A.|, |B.|, |Ay|, |Bs| > k—-1.
We claim that

(i) Aen Ay =0 or B.NBy =0 and
(i) AenNBy =0 or B.NA; =0.

If AcNA; #0and B.N By # 0, then |(S.NA;)U(S.NSy)U(Sy NA)| =
|(Se N By) U (Se N Sy)U(Sy N Be)| = k, since |(Se NAy) U (S.NSp)uU
(S N A+ [(S. N By) U (S. N S;) U(Sy N B.)| = IS.] ¥+ I/ = 2 and
since G is k-connected. Notice that (Se N Ay) U (S. NSy)U(Sy NA,) is
a k-cut containing the edge f. It is easily seen that [4.| > |4, N Ay|,
contradicting the assumption that A, is minimal. So we have A. N A =0
or B. N By = 0. Reasoning in a similar way we obtain A, N By = @ or
B.NAj; = 0 as claimed. In the following argument we will use only (i) and
(ii), and will not use the assumption that A, is a (minimal) component.
Therefore, by symmetry we can assume that A, N A; =0, A.NB; =0
and so A. = A, NS;. By Lemma 6, |[A. N Sy| = |A.] > k — 1. Thus
by Lemma 4, we have either |A;] < & or |By| < %, which contradicts the
fact that |Ay| > k—1and |By| > k—1. This completes the proof of Case 1.

Now assume that for each vertex z of G there is at least one edge e
incident to x such that e is not contained in a triangle of G.

Case 2 There exists a good vertex z in G.

Let e = z2z be the nice edge incident to z, i.e., the edge not contained
in a triangle of G. Let S, be a k-cut containing the edge e and let A, be
a component of G — S,. Choose e, S, and A, in such a way that among
all such edges, k-cuts and components, A, is a component minimal with
respect to inclusion. Set B, = G — S, — A.. Two@cases are distinguished,
depending on whether or not A, contains a vertex w incident to a nice edge.

Case 2a A, contains a vertex w incident to a nice edge.
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Let f be a nice edge incident to w. (Note that w is not necessarily
a good vertex.) We use the same notation as in Case 1. By Lemma 7,
|Ael, |Bel, |Agl, |Bs| > k — 1. Thus by the same argument as in Case 1,
we can derive a contradiction.

Case 2b A, contains no vertex incident to a nice edge.

Notice that |Be] > k — 1 and that S, is a k-cut containing an edge e
such that e is not contained in a triangle of G. Therefore, for each edge e
not contained in a triangle of G, let S, be a k-cut of G containing the edge
e and let A, be a component of G — S,. Choose ¢, S. and A, in such a way
that among all such edges, k-cuts and components,

(i) Ae contains no vertex incident to a nice edge and |B,| > k — 1, where
Be = G-Sc '_Ae and
(ii) subject to (i), A is a component minimal with respect to inclusion.

(We give a proof along the same lines as that given in Case 1. In order
to see this, we use the same notation.) Let w be a vertex in A, and f be
an edge incident to w which is not contained in a triangle of G. Let Sy
be a k-cut of G containing the edge f. Ay is a fragment of G — Sy and
set By = G — Sy — Ay. Using the minimal property of A., by the same
argument as in Case 1, we obtain

(i) Aen Ay =0or B.NBy =0 and

(ii) A.N By =0or B, ﬂA} =10.

First suppose that BN Ay = @ and B. N By = 0. Then B. C B.N S;
and so |B.NS;| = |Be| > k—1. By Lemma 4, either [4;]| < Lor|Bs| <&,
say |Ay| < % By Lemma 3 and Lemma 5, |Ay| = 2 and w is incident to
a nice edge of G, since f is contained in S; and since w is an end-vertex
of f such that f is not contained in a triangle of G. This contradicts the
assumption that w is not incident to a nice edge of G.

Next suppose that either A.NA; =0 and B.NAy=0or A.NB; =0
and B, N By = 0. By symmetry we may assume that A. N Ay = @ and
B.NA; = 0. Hence Ay C AyNS.. If |Af| < 2, then it follows from Lemma
3 that by the same argument as above we see that w is incident to a nice
edge of G. Thus assume that |Af| > 3. By Lemma 5, we have |A;| > k—1.
By Lemma 4, either |A.| < £ or |B.| < %. Since |Be| > k — 1, we have
|Ael < -’% By Lemmas 3 and 5, we know that |Ay| = 2 and w is incident
to a nice edge of G, a contradiction.

Finally suppose that A.NAy = 0 and A.NB; = @. Hence A, C A.NS..
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If |Ae| < 2, then it follows from Lemma 3 that by the same argument as
above we see that w is incident to a nice edge of G. Thus assume that
|[Ae| > 3 By Lemma 5, we have |A.| > k — 1. By Lemma 4, either
|As) < £ or By < & . By symmetry we may assume that [4;| < £. By
Lemma 3 and Lemma 5, we see that |A;| = 2 and w is incident to a nice
edge of G, a contradiction.

Case 3 There exists no good vertex in G, i.e., there exists no nice edge

in G.

Recall that for each vertex z of G there is at least one edge e incident
to z such that e does not contained in a triangle of G. For each edge e
not contained in a triangle of G, let S. be a k-cut of G containing the edge
e and let A, be a component of G — S.. Choose ¢, S, and A, in such a
way that among all such edges, k-cuts and components, A, is a component
minimal with respect to inclusion. Set B, = G— S, — A,. Let f be an edge
not contained in a triangle of G such that f is incident to a vertex of A,.
Let Sy be a k-cut of G containing the edge f and let A; be a fragment of
G —S;. Set By = G— Sy — Aj. By the same argument as in Case 1, we
see that

(i) AenAy =0or B.N By =0 and
(i) Aen By =Dor B.NA;=0.

As in Case 1, by symmetry we can assume that A, N A; =0, A.NB; =@
and so 4, = Ae NSy. If |A| < 2, then it follows from Lemma 3 that there
is a nice edge of G. Thus assume that |A.| > 3. By Lemma 5, we have
[Ael > k — 1. By Lemma 4, either |Af| < % or |By| < £. By symmetry we
may assume that |A;| < £. Again it follows from Lemma 3 and Lemma 5
that |As| = 2 and there is a nice edge of G, which completes the proof of
Theorem 1. O
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