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Abstract

In this work I" denotes a finite, simple and connected graph. The &-
excess ex(H), of a set H C V(T') is defined as the cardinality of the set of
vertices that are at distance greater than k of H, and the k-excess ex(h)
of all h-subsets of vertex is defined as

ex(h) = {ex(H)}.

max
HCV(D)H|=h
The k-excess ey of the graph is obtained from e, (h) when k = 1. Here we
obtain upper bounds for e (k) and ey in terms of the Laplacian eigenvalues
of I'.
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1 Introduction

Recently, several results bounding metric parameters of a graph using the eigen-
values of either the adjacency matrix or the Laplacian matrix of the graph have
been published. In this context, parameters such as mean distance, diameter,
radius, isoperimetric number, magnifying constant and excess have been exten-
sively studied. See, for instance, the papers by Alon [1], Biggs (2], Chung, Faber
and Manteuffel (3], Delorme and Tillich [6], Fiol, Garriga and the second author
of this paper (7, 8, 9, 10], Fiol and Garriga [11, 12, 13], Mohar (15, 16), van Dam
and Hammer (5] and the authors (17, 18, 19]. Here we investigate the relation
between the excess and the Laplacian spectrum of a graph.

Let T' = (V, E) be a simple and connected graph, of order |V(T)| = n.
The distance between two vertices v;,v; € V(I') is denoted by O(vi,vj). The
Laplacian matriz of T is the matrix L = O— A, where A is the adjacency matrix
of I' and O = diag(6;,d2,...,0,,) is the diagonal matrix with vertex degrees
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d; on the diagonal. Alternatively, the Laplacian matrix can be defined as L =
CCT, where C is the incidence matrix of an orientation of I'. A comprehensive
survey of the properties and applications of the Laplacian matrix can be found
in Mohar [15]. For instance, L has eigenvalues pp = 0 < 1y < --- < s, and the
(simple) eigenvalue yo = 0 has eigenvector j = (1,1,...,1), regardless of the
graph being regular or not.

As usual, we identify the Laplacian matrix L with an endomorphism of
the “vertex-space” of I, 12(V)) which, for any given indexing of the vertices, is
isomorphic to IR®. Thus, for any vertex v; € V(I'), ¢; will denote the corre-
sponding unit vector of the canonical base of R". A polynomial in the vector
space of real polynomials with degree at most k, P € IRg[z], will operate on R"
by the rule Pw := P(L)w, where w € R".

We define, for any k = 0,1,...,D(T), the k-ezcess of a vertex u € V(I'),
denoted by e (u), as the number of vertices which are at distance greater than
k from u. That is,

ex(u) =|{veV:8(u,v) >k}

Then, trivially, eg(u) = 7 — 1, ep(r)(#) = ecu)(u) = 0 and e;(u) = 0 if and
only if e(u) < k, where ¢(u) denote the eccentricity of u. The name “excess”
is borrowed from Biggs [2], in which he gives a lower bound, in terms of the
adjacency eigenvalues of a graph, for the excess e.(u) of any vertex u in a 4-
regular graph with odd girth. The excess of a vertex was studied by Fiol and
Garriga [12] using the adjacency eigenvalues of a graph, and the authors [17]
using the Laplacian eigenvalues.
The k-ezcess of T', denoted by eg, is defined as
e = mﬁ(r){ek(vi)}
and the k-ezcess of a subset H C V(I'), which we denote by ex(H), is defined
as
ex(H) =|{ve V() :8(v,H) > k}|.

Moreover, the k-ezcess of all h-subsets of V(I') denoted by er(h) is defined as
ex(h) = {ex(H)}.

HCV(I‘) |HI=h

The parameter e, (H) (H C V(I')) was studied by the authors in [17] using
the so-called H-Laplacian spectra of a subset H C V(T'). In Section 3 we obtain
upper bounds for the k-excess ey (h) of all h-subsets of V(I') and, in particular,
for the k-excess e of I in terms of the Laplacian eigenvalues of I'.

We begin recalling some known results. Fiol, Garriga and the second author
of this paper [8], by using the k-alternating polynomial P associated to the mesh
of the adjacency eigenvalues of T, showed that the number ox(h) of vertices
which are at distance > & from a given subset H C V(') of cardinality |[H| =
is bounded above by

QI = )
ORI e LR ! ®
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where ) is the largest adjacency eigenvalue of I' and v is the (positive) eigen-
vector associated to A with minimum component 1. Note that ex_; (k) = ok (h)

therefore IR - B
Vi 14 -

h) < . 2

ex(h) < lh(Pf()\o) Y uuu2J @

Van Dam [4] showed that if I is a graph whose diameter coincides with

the number of non null Laplacian eigenvalues, D(I') = b, and if ¥,V C V(I)
are sets of vertices of equal cardinality |Vi| = |V2| = t, such that 8(W;, V2) = b,

then
n
<|— —E 3
t< [c+1J where ¢ H |#J (3)

j=11i#0,j

He also showed that the number o5(v) of vertices at distance b from an arbitrary
vertex v are bounded above by

o) < | Fo 2k @

On the other hand, Haemers [14] showed that if X and Y are disjoint sets of
vertices of I', such that there is no edge between X and Y, then

1X|Y] po =)
@1 XDE-17D < (m-wl) (%)

Our main tool throughout this paper are the k-alternating polynomials and
the Laplacian polynomials, so we begin recalling some of its main properties.

2 The Tools

In [7] Fiol, Garriga and the second author of this paper defined and studied
some properties of the k-alternating polynomials. Those polynomials can be
defined as follows: let M = {; < --- < pp} be a mesh of b real numbers. For
any k =0,1,...,b — 1 let Qx be the k-alternating polynomial associated to M.
That is, the polynomial of IR [z} with norm HQklloo = maxlsgsb{le(p,-)l} <1,
such that
Qx(p) = sup {P(p) : P € Refz], |IPloo < 1}

where p is any real number smaller than g,. In [7] it was shown that, for any
k=0,1,..,b-1,

e There is an unique @Q; which, moreover, is independent of the value of
B(< pa);

o Q) has degree k;
* Qo(p) =1<Q(p) <+ < Qo-1(n)
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In particular, for g = 0, we have

ot m I‘l
@1(0) = P (6)
and
Qb-1(0) = ; t;],:0‘[’ F‘—_—M (M

Moreover, it was shown that Q. takes k + 1 alternating values £1 at the mesh
points.

In this work, we also use the h-Laplacian polynomial (see [20]) defined as
follows: Let o = 0 < p3 < --- < pp be the Laplacian eigenvalues of ' = (V, E).
For each k = 0, ..., b, the mapping || ||s: Re[z] = R defined by

"P"h {"P(L)u"} where, u = Z €4

HCV(I‘) |H| h vy

is a norm of IRk[z]). We consider the closed unit ball
B,={Pe¢ Ri[z] : [|Plla < 1}.

On this compact set, the linear continuous function P — P(0) attains its max-
imum at a point q,(c , which we call h-Laplacian polynomial. Notice that, such

a point must be on the border of Bg; that is, ||q(h)||;. 1. If h = 1 these
polynomials will be called Laplacian polynomials and denoted by gi.

In general, Laplacian polynomials are difficult to calculate. Some particular
cases of these polynomials are calculated in [20]. We emphasize the following
cases.

o J-regular graphs:

Q) =- 6++112+\/6+1; (8)

e non-regular graphs with minimum degree p and maximum degree A:

2z 1+p+A
Vai+p+ AP -4pA /A +p+A)2- 4pA

a(z) = - (9)

e walk-regular graphs: Let Spec(L) = {0,u]",...,st5 *} be the Laplacla.n
spectrum of a walk-regular graph and let q,.(:c) =apt+mz+-+az"
be the Laplacian polynomial of degree r. Then the polynomial g, can be
computed by solving the following optimization problem (see {17, 20])

maximize ao

b
subject to a2 + Zm:(ao +onp+ -+ aepf) =n.
=1
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We recall that a graph is walk-regular if for every k the number of walks of
length k with both endpoints at v does not depend on v. In other words,
any power A*, of the adjacency matrix, has all its diagonal entries equal
to Tr(A*)/n (see 6)). This class of walk-regular graphs contains the class
of vertex-transitive graphs and the class of distance-regular graphs.

3 Main Results

The main results of this paper are deduced from the following basic theorem.

Theorem 1 LetT be a graph of order n. Let Q. be the k-alternating polynomial
associated to the mesh of the Laplacian eigenvalues of ', and let q,(-h) be a h-
Laplacian polynomial of degree r, then,

n (n - (qﬁ"’(O))z)

w2 (6P 0) Q30) = 1) +n

€k4r (h) <

Proof: Let v,vs,...,v, be a labeling of the vertex set V(') of I'. Let H,S C
V(T') be such that |H| = h, let |S| = s, and let

u=Ze.~ and f=Ze,~

weH v ES

be vectors associated to H and S where e; is the ¢th unit vector of IR". Using
the following decompositions of the vectors u and f

h. 8, .
u=—jtz; f=-jtz, (where zu,z €j%)
we obtain

h . h? 2
®u= g0+ > lePull? = = (V@) +llgPzl? <1,

then

1 2
6 zull € =/ = 2 (4(0))

2 2

2 _ 3 2 s
= — = |lz¢ll = -
MAI? = S +llzfl? = llzgll = s = =

If for two vertices v;,v; € V(') we have 8(vi,v;) > k then (L¥);; = 0. Hence,

Moreover,

B(H,S) > k+1 = 0= (Quau, /) = Qu(0)aM(0) + (Qeafz0, 29

= QU046 (0) + (6P 70, Quz).
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Then, by the Cauchy-Schwarz inequality
h
—Qu(0g"(0) < llg™zalll Qe

< g™ zullllQelcollzs I

1 2
= ;\/n —h? (q,(-h)(())) vs(n —8).
So, solving for eg4.(R) = s the result follows. [ |

In particular, for r = 0 in Theorem 1, we obtain the Laplacian analogous
of (2). That is,

Corollary 2 Let Q, be the k-alternating polynomial associated to the mesh of
the Laplacian eigenvalues of a graph ' of order n. Then

n(n - h)
e(h) < [h(Qi(O) =y +nJ '

In the case k = 0 we have Qo(z) = 1. Thus, the above corollary leads to
the following bound: ep(h) < n — h. Obviously, this bound coincides with the
exact value of the excess.

As a particular case of the above corollary, when k = 1, h = |X| and
ei(h) = |Y|, we obtain again the inequality (5) established by Haemers [14]
using the eigenvalue interlacing.

In the case h = 1 Corollary 2 leads to the following bound for the excess

fI'
of < l nin-1) J (10)
*2|O) +n-1

When k = b — 1 in the above corollary we have that all eigenvalues are
explicitly involved in the bound of the number oy (k) of vertices which are at
distance b from any subset H C V(T') of cardinality A

nn = h) IR | g
ob(h) < lmj where c¢= ;igj 5 — e (11)

Taking k = b—1in (10) or A = 1 in (11) we deduce the inequality (4)
given by van Dam [4] by using the eigenvalue interlacing.

Considering ex(h) = h in Corollary 2, we generalize the bound (3) given
by van Dam [4]. That is, we show that the cardinality h = |H)| = |H3| of two
subsets H,, H, C V(T') such that 8(H,, Hz) > k satisfies
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The bound (12) is tight for different values of k, as we can see in the follo-
wing families of graphs:

1. First, we shall need the following binary graph operations. Let I'; and
I’ be vertex disjoint graphs. Denote by I'; UT'; their union, and let I'; * 5 be
their join (obtained from I’y UT'; by joining every vertex of I’y with every vertex
of I';). The Laplacian characteristic polynomial ¢(T', u) of the resulting graph
can be expressed in terms of the Laplacian characteristic polynomial of I'; and
I's as follows:

¢(Fl U r2r /“) = ¢(F1?/-‘)¢(I‘2’ “):

$(T1 # Tz, ) = (z‘f m;‘(‘p _";3) (T, 1 = n2)$(T2, 1 — 1),
where |V (T;)] = ny, for i = 1,2. Consider the class of graphs of the form
' = (' UT;) % 'y, such that n; < 2n;. By the above formulas we have that
#s(I) = 2n1 + ng and u; (I') = no. Thus, by (6) and (12) we have that the car-
dinality h = |H;| = |Ha| of two subsets Hy, H, C V(T) such that 8(H,, Ha) > 1
satisfies h < n;.

2. A graph T is r-antipodal if the relation “u ~ v if and only if 8(u,v) = D(T)”
is an equivalence relation and each equivalence class has exactly r vertices. For
r-antipodal distance regular graphs we have Qs—1(0) = 2n/r — 1 (see [9]), then
for two subsets Hy, H; C V(T') of cardinality h such that (H;, H2) = b we have
h<r/f2.

3. For the class of Laplacian k-boundary graphs of diameter k& + 1 we have
Qx(0) = n — 1 (see [20]), so that (12) gives h < 1, that is, in any such graph
every diametral vertex has a unique opposite vertex.

For h =1 in Theorem 1 we obtain a bound for the excess of I’

Corollary 3 Let Q;. be the k-alternating polynomial associated to the mesh of
the Laplacian eigenvalues of a graph ' of order n, and let g, be a Laplacian
polynomial of degree r, then,

e,,+,5| n (n - (2(0))?) J

(¢-(0)*(Q3(0) - 1) +n

As a particular case of this corollary, the following results are obtained:
When k =1 we have

n (n - (@0)°) (1 - w)
ert1 < 3 : (13)
4o = 1) (@ (O))7 + (s — )
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When r = 1 and I is a non-regular graph whose minimum degree and maximum
degree are respectively p and A, by (9) we have

ek+l_l n((1+p+A)%(n—1) —4npA) J (9

1+p+A)2(Q0) +n —1) —dnpA

When r = 1 and T is a d-regular graph, by (8) we have

nn-6-1)
S GOt (19)

For k = 0 in Theorem 1 we obtain a bound for the excess of all h-subsets
of V(I):

Corollary 4 Let q$") be a h-Laplacian polynomial of degree r. Then

2
erlh) < [ -4 (#0)’]
As a particular case of this corollary, when A = 1, we have

e < |n— (@) (16)

To discuss the tightness of this bound, we consider as example the Petersen
graph whose spectrum is Spec(L) = {0,25,5%}, from which we get go(z) = 1,
q(z) = -z/2 + 2 and g2(z) = V10/10(z — 2)(z — 5). Therefore (16) gives
ep <9, e; <6 and e; < 0. These bounds coincides with the exact values of the
excess.

Several applications of these results to bound the mean distance of a graph,
bandwidth and vertex separator sets can be found in [18, 19].

Some of the obtained results are generalizations of well-known results and
some others are tight bounds. All eigenvalues are involved in the bounds. Thus,
the drawback of these results is that the bounds are not explicit.
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