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Abstract

The notion of convexity in graphs is based on the one in topology:
a set of vertices S is convex if an interval is entirely contained in S
when its endpoints belong to S. The order of the largest proper
convex subset of a graph G is called the convexity number of the
graph and is denoted con(G). A graph containing a convex subset
of one order need not contain convex subsets of all smaller orders. If
G has convex subsets of order m for all 1 < m < con(G), then G is
called polyconvex. In response to a question of Chartand and Zhang
[3], we show that, given any pair of integers n and k with 2 < k < =,
there is a connected triangle-free polyconvex graph G of order n with
convexity number k.

Introduction

Convexity in graphs is analogous to topological convexity. Buckley and
Harary [1], Harary and Nieminen [4], and Chartrand and Zhang [2] [3]
study convexity. This paper resolves a problem of Chartrand and Zhang
[3}-

To define convexity in graphs, we think of the vertex set V(G) of the
graph G as a metric space. Define the distance between two vertices as
the length of any shortest path between them. We only consider connected
graphs, so this distance is finite. Given two vertices © and v of G, define
the interval between u and v as

I(u,v) = {u,v} U {all vertices on shortest paths from u to v}.

As expected, we then call a subset S of V(G) convez in G if I(u,v) is
contained in S for any two vertices u and v in S. We let the converity
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Figure 1: A graph of order 8 and convexity number 7 that has no convex
subsets of orders 4, 5, or 6.

number con(G) of G be the order of the largest proper convex subset in
V(G). We consider only proper subsets since V(G) is always convex in
itself.

One of the virtues of the topological definition of convexity is that one
may easily find convex subsets of any convex set. Graphs do not share this
property. As Figure 1 indicates, it is easy to construct a graph G of order
n with no convex subsets of order m for 3 < m < con(G).

If a graph G does have convex subsets of all orders m < con(G), then
G is polyconvez. Chartrand and Zhang [3] explain how to construct poly-
convex graphs of order n and convexity number k for any integers n and
k such that 2 < k < n. Their construction yields graphs that are almost
complete, which motivates them to ask whether one can find polyconvex
graphs of any given order and convexity number that are sparse in the sense
that they contain no triangles. In this paper, we show that this is indeed
always possible.

Theorem Given integers n and k with 2 < k < n, there exists a connected
graph G of order n and convezity number k which is polyconvez and triangle-

free.

We give the proof in the next section.

Proof of the Theorem

The proof is organized as follows. First we treat the case when k = 2, and
then we can assume that k > 3. There are several cases depending on the
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Figure 2: The construction of Case 2 for n = 14,k = 10.

relative values of n and k. There are also some exceptional cases that we
treat with specific examples. In every case, we give an explicit construction
of a graph and describe its proper convex subsets. We leave to the reader
the verification that there are no larger convex subsets than the ones that
we describe.

We use paths P,, cycles Cy, and complete bipartite graphs K, , as
building blocks for our constructions. Note that they are all polyconvex.
The path P, with n vertices has convexity number n — 1; the cycle C,, with
n vertices has convexity number [2]; and K, , has convexity number 2.

CASE 1: k=2.

Let G be K3 ,—2. Then any two adjacent vertices form a largest proper
convex set. O

Now we may assume that k > 3.
CasE 2: 3k—1>n2>k+1,k2>3.

When k& = 3, then n must equal 4. When & = 4, then n must equal 5.
In these two cases, let G be the path Py or the path Ps.

Now let k£ > 5. Let G and G be two copies of K . Let G3 be a path
of length 2k—n—3; note that 2k—n—3 is at least 0 since 2k—3 > 3k—3 > n.
Identify one end vertex of G3 with a vertex in the bipartite class of order
2 of G, and identify the other end with the corresponding vertex in Gs.
In case Gg is a path of length 0, then we have identified a vertex from G,
with a vertex from G,. See Figure 2 for an example of this construction.
Notice that if n = & + 1, we get the path with n vertices.

We form convex subsets of orders 1 through 2k — n — 2 by taking a
subpath of appropriate length from G3. We form convex subsets of orders
2k —n — 1 and 2k — n by taking all the vertices of G3 and adding at most
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Figure 3: The construction of Case 3 for n =12,k = 8.

one vertex from each of the partite classes of order n — k of G and G2.
We form convex subsets of orders n — k + 2 through k — 1 by taking all the
vertices of G, together with an appropriate number of adjacent vertices of
Gs. We form a convex subset of order k by taking all the vertices of G
and G3 and one more vertex from the partite class of order n — k of Ga.
Since (n — k+2) — (2k —n) < 1, we have found convex subsets of all orders
between 1 and k. O

CASE 3: 2k—1>n > 3k, k> 3.

Let G; be a copy of K2 2kr—n. We use the condition 2k — 1 > n to
guarantee that the second partite class of G has at least one vertex. Let
G5 be a path of length 2n — 2k — 1. Identify the end vertices of G2 with the
vertices in the partite class of order 2 of G;. Figure 3 shows an example
of this construction. Notice that when = is equal to 2k — 1, we obtain the
cycle on n vertices.

Vertices belonging to subpaths of G, form convex sets of order 1 through
n — k + 1. We obtain convex subsets of orders 2 + 2k — n through k by
taking all the vertices of G; and adding suitable numbers of neighboring
vertices of Gz. Since (24 2k —n) — (n — k + 1) < 1, we have found convex
subsets of all orders between 1 and k. O

CASE 4: n > 2k, k> 3.

Let m = |2=2E+4| Note that m is at least two since n > 2k. Start
with a copy of K m Or Km m41, depending on whether n — 2k + 4 is even
or odd. Replace one edge of this graph with k — 2 paths of length 3. Let
G, be the subgraph consisting of the union of these paths.
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Let v be one of the vertices of G; of degree k — 2. Let S be the set of
vertices consisting of v, all the neighbors of v in G1, and one more neighbor
of v. Then S is a convex subset of order k. Convex subsets of all smaller
orders occur as subsets of S containing v.

When k = 3 and n = 7, then this construction does not work. Here we
take the graph K33 and replace one edge with a path of length 2. Then
the three vertices on this path of length 2 form a largest convex subset. O
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