ON THE NON-EXISTENCE OF

$(g, g\lambda - 1; \lambda)$ -DIFFERENCE MATRICES

Arne Winterhof

Abstract. A $(g, k; \lambda)$ -difference matrix over the group (G, \circ) of order g is a k by $g\lambda$ matrix $D = (d_{ij})$ with entries from G such that for each $1 \leq i < j \leq k$ the multiset $\{d_{il} \circ d_{jl}^{-1} | 1 \leq l \leq g\lambda\}$ contains every element of G exactly λ times. Some known results on the non-existence of generalized Hadamard matrices, i.e. $(g, g\lambda; \lambda)$ -difference matrices, are extended to $(g, g\lambda - 1; \lambda)$ -difference matrices.

1 Introduction

Let (G, \circ) be a group of order g. A $(g, k; \lambda)$ -difference matrix is a k by $g\lambda$ matrix $D = (d_{ij})$ with entries from G such that for each $1 \le i < j \le k$ the multiset

$$\{d_{il} \circ d_{il}^{-1} | 1 \le l \le g\lambda\}$$

contains every element of G exactly λ times.

See de Launey [8] and Colbourn/de Launey [2] for surveys on difference matrices and [10] for a new construction method.

Since a (g, l, λ) -difference matrix with l < k can be constructed from a (g, k, λ) -difference matrix by erasing rows, most previous research on difference matrices has concentrated on constructions with large k. So it is natural to ask how large k can be.

Jungnickel [6] proved that a $(g, k; \lambda)$ -difference matrix satisfies $k \leq g\lambda$.

For $k = g\lambda$ several non-existence results are known. (A $(g, g\lambda; \lambda)$ -difference matrix is called a generalized Hadamard matrix.) De Launey [7] established the following non-existence result for $(g, g\lambda; \lambda)$ -difference matrices over abelian groups.

RESULT 1 Suppose there exists a $(g, \lambda g; \lambda)$ -difference matrix with λg odd. Let p > 2 be a prime dividing g and suppose m is an integer dividing the p-free, and squarefree part of λ . Then the order of m modulo p is odd.

Brock [1] proved a kindred result.

RESULT 2 If a $(g, \lambda g; \lambda)$ -difference matrix over G with λg odd exists, then

$$c^2 = (\lambda g)a^2 + (-1)^{(s-1)/2}sb^2$$

has a non-trivial solution $a,b,c \in \mathbf{Q}$ for every s the order of a non-trivial homomorphic image of G.

For $k < g\lambda$ the only non-existence result for $(g, k; \lambda)$ -difference matrices known by the author was proved by Drake [3].

RESULT 3 $A(g,3;\lambda)$ -difference matrix does not exist if $g \equiv 2 \mod 4$ and λ is odd.

In this note we extend de Launey's result on $(g, g\lambda; \lambda)$ -difference matrices to $(g, g\lambda - 1; \lambda)$ -difference matrices. Moreover, using the authors method introduced in [9] we prove a result with the flavour of Brock's result for groups of prime order $p \equiv 3 \mod 4$. Both extensions are based on Lemma 1 below. It seems that this lemma can not be extended to $(g, k; \lambda)$ -difference matrices with $k < g\lambda - 2$.

Finally we compare de Launey's result with Brock's result for groups of prime order.

2 Extension of de Launey's Result

THEOREM 1 Suppose there exists a $(g, \lambda g - 1; \lambda)$ -difference matrix over the abelian group G with λg odd. Let p > 2 be a prime dividing g and suppose m is an integer dividing the p-free and squarefree part of λ . Then the order of m modulo p is odd.

We prove the theorem after some preliminary lemmas.

Let denote by C_p the cyclic group of order p.

LEMMA 1 If there exists a $(p, \mu p-1; \mu)$ -difference matrix D over C_p then there exists a μp by μp matrix $D' = (d'_{ij})$ over $\mathbf{Z}(C_p)/(\sum_{\omega \in C_p} \omega)$ satisfying

$$DetD'DetD'^* = (\mu p)^{\mu p},$$

where $D'^* = (\overline{d'_{ij}})^T$ and $\overline{d'_{ij}} = \sum_{\omega \in C_p} a_\omega \omega^{-1}$ if $d'_{ij} = \sum_{\omega \in C_p} a_\omega \omega$, $a_\omega \in \mathbf{Z}$.

PROOF. Put $n = \mu p$ and suppose there exists a $(p, n - 1; \mu)$ -difference matrix D.

We permute the columns of D such that the row $A_n = (n \ 0 \dots 0)$ and the rows of the permuted matrix are linearly independent over

$$R:=\mathbf{Z}(C_p)/(\sum_{\omega\in C_n}\omega)$$

and multiply the rows with elements of C_p such that the first column is $(1...1)^T$.

Let denote by $B_1, \ldots, B_{n-1} \in \mathbb{R}^n$ the rows of the resulting matrix which are mutually orthogonal, i.e. $B_i B_j^* = \sum_{l=1}^n b_{il} \overline{b}_{jl} = 0$ if $i \neq j$. Obviously,

$$B_n := A_n - \sum_{i=1}^{n-1} B_i$$

is orthogonal to B_i for i = 1, ..., n-1, and

$$B_n B_n^* = n.$$

For
$$D' = \begin{pmatrix} B_1 \\ \vdots \\ B_n \end{pmatrix}$$
 we have

$$D'D'^* = nI_n.$$

where I_n denotes the n by n identity matrix over R, and thus the assertion.

LEMMA 2 Let p > 2 and q be primes such that for some $s \ q^s \equiv -1 \mod p$. If $d \in \mathbf{Z}(C_p)/(\sum_{\omega \in C_p} \omega)$ satisfies $d\overline{d} \equiv 0 \mod q$ then $d \equiv 0 \mod q$.

PROOF. Let ω be a generator of C_p and $d = d_1\omega + d_2\omega^2 + \ldots + d_{p-1}\omega^{p-1}$ with $d_1, \ldots, d_{p-1} \in \mathbb{Z}$, then

$$d^{q^s} \equiv d_1^{q^s} \omega^{q^s} + d_2^{q^s} \omega^{2q^s} + \ldots + d_{p-1}^{q^s} \omega^{(p-1)q^s}$$

$$\equiv d_1\omega^{-1} + d_2\omega^{-2} + \ldots + d_{p-1}\omega^{1-p} \equiv \overline{d} \bmod q.$$

Hence, $d^{q^s+1} \equiv 0 \mod q$ and thus $d \equiv d^{q^{2s}} \equiv 0 \mod q$.

PROOF OF THEOREM 1. Suppose there exists a $(g, \lambda g - 1; \lambda)$ -difference matrix over G. Since G is abelian there exists an epimorphism $\phi: G \to C_p$ and thus a $(p, \lambda g - 1; \lambda g/p)$ -difference matrix over C_p . By Lemma 1 there exists a $d \in \mathbf{Z}(C_p)/(\sum_{\omega \in C_p} \omega)$ satisfying $d\overline{d} = (\lambda g)^{\lambda g}$. Let $m = p_1 \cdots p_t$ be the prime decomposition of m and e_i the order of p_i modulo p. Then $m^{e_1 \cdots e_t} \equiv 1 \mod p$.

If e_i is even, for some i, then $p_i^{e_i/2} \equiv -1 \mod p$. By Lemma 2 there exists d_1 with $d = p_i d_1$ and $d_1 \overline{d_1} = \frac{(\lambda g)^{\lambda g}}{p_i^2}$. Repeated application of Lemma 2 yields $d_r \overline{d}_r = \frac{(\lambda g)^{\lambda g}}{p_i^{2r}}$, where $p_i \bigwedge^{(\lambda g)^{\lambda g}} \overline{p_i^{2r}}$ for some positive integer r. Since λg is odd it follows $p_i \not \mid m$ which is a contradiction.

3 Extension of Brock's Result

THEOREM 2 Let $p \equiv 3 \mod 4$ be a prime, λ be odd and M be the p-free and squarefree part of λ . If there exists a $(p, \lambda p - 1, \lambda)$ -difference matrix then $c^2 = Ma^2 - pb^2$ has a non-trivial solution $a, b, c \in \mathbb{Z}$.

PROOF. If there exists a $(p, p\lambda - 1, \lambda)$ -difference matrix, then there exists a $d \in \mathbf{Q}(C_p)/(\sum_{\omega \in C_p} \omega)$ satisfying $d\overline{d} = (\lambda p)^{\lambda p}$ by Lemma 1.

For primes p the fields $\mathbf{Q}(C_p)/(\sum_{\omega \in C_p} \omega)$ and the pth cyclotomic field $\mathbf{Q}(\zeta_p)$ are isomorphic and we may consider d as an element of $\mathbf{Q}(\zeta_p)$, where $\zeta_p = e^{2\pi\sqrt{-1}/p}$. Since $N_{\mathbf{Q}(\zeta_p)}(d) = N_{\mathbf{Q}(\zeta_p)}(\overline{d})$ we have

$$N_{\mathbf{Q}(\zeta_n)}(d)^2 = N_{\mathbf{Q}(\zeta_n)}((\lambda p)^{\lambda p}) = (\lambda p)^{\lambda p(p-1)},$$

where $N_{\mathbf{Q}(\zeta_p)}(.)$ denotes the absolute norm of $\mathbf{Q}(\zeta_p)$ into \mathbf{Q} . Hence, there exists an $y \in \mathbf{Q}(\zeta_p)$ such that $N_{\mathbf{Q}(\zeta_p)}(y) = (\lambda p)^{\lambda p(p-1)/2}$. Since $p \equiv 3 \mod 4$ we have

$$\mathbf{Q} \leq \mathbf{Q}(\sqrt{-p}) \leq \mathbf{Q}(\zeta_p)$$

(see e.g. [4,Chapter 27d]). By the transitivity of the norm there exists an $z \in \mathbb{Q}(\sqrt{-p})$ such that

$$N_{\mathbf{Q}(\sqrt{-p})}(z) = (\lambda p)^{\lambda p(p-1)/2} = p^{l\lambda p(p-1)/2} b^2 M = N_{\mathbf{Q}(\sqrt{-p})}(w) M, \ w \in \mathbf{Q}(\sqrt{-p})$$

since $\lambda p(p-1)/2$ is odd, $N_{\mathbf{Q}(\sqrt{-p})}(b) = b^2$ for $b \in \mathbf{Q}$ and $N_{\mathbf{Q}(\sqrt{-p})}(\sqrt{-p}) = p$. For $x = zw^{-1}$ we have $N_{\mathbf{Q}(\sqrt{-p})}(x) = M$.

If $x = u + v\sqrt{-p}$, $u, v \in \mathbb{Q}$, then (u, v) is a solution of $u^2 = M - pv^2$. Let n be the least common nominator of u and v, then a = n, b = vn and c = un is an integer solution of $c^2 = Ma^2 - pb^2$.

4 Comparison of the Results

1. By Legendre's theorem (see e.g. [5, Proposition 17.3.1]) $c^2 = Ma^2 + (-1)^{(p-1)/2}pb^2$, M a p-free and squarefree integer, has a non-trivial solution if and only if there exist $x_1, x_2 \in \mathbf{Z}$ satisfying

$$x_1^2 \equiv (-1)^{(p-1)/2} p \bmod M$$

and

$$x_2^2 \equiv M \bmod p.$$

It can be seen easily that the second congruence can be omitted. Let $x_1^2 \equiv (-1)^{(p-1)/2} p \mod M$ and $M = q_1 \cdots q_r$ be the prime decomposition of M. Then $x_1^2 \equiv (-1)^{(p-1)/2} p \mod q_i$ and thus $\left(\frac{(-1)^{(p-1)/2} p}{q_i}\right) = 1$ for $i = 1, \ldots, r$, where (-) denotes Legendre's symbol. We have $\left(\frac{M}{p}\right) = \left(\frac{q_1}{p}\right) \cdots \left(\frac{q_r}{p}\right) = \left(\frac{(-1)^{(p-1)/2} p}{q_1}\right) \cdots \left(\frac{(-1)^{(p-1)/2} p}{q_r}\right) = 1$ and M is a quadratic residue modulo p.

2. If the order of any prime divisor q_i of M is odd, then

$$\left(\frac{(-1)^{(p-1)/2}p}{q_i}\right) = \left(\frac{q_i}{p}\right) = \left(\frac{q_i}{p}\right)^{\operatorname{ord}_p q_i} = \left(\frac{1}{p}\right) = 1.$$

Hence, $(-1)^{(p-1)/2}p$ is a quadratic residue modulo any prime divisor of M and thus a quadratic residue modulo M. Thus, for groups of prime order de Launey's result covers Brock's result. Moreover, Theorem 1 covers Theorem 2.

3. If $p \equiv 3 \mod 4$ and -p is a quadratic residue modulo M then M is a quadratic residue modulo p by 1. Hence, $M^{(p-1)/2} \equiv 1 \mod p$ and the order of M (and thus the order of any divisor m of M) modulo p is odd. So we have seen that for groups of prime order $p \equiv 3 \mod 4$ de Launey's and Brock's result are equivalent. (For groups of prime order $p \equiv 3 \mod 4$ Theorem 1 and Theorem 2 are also equivalent.)

References

- [1] B. W. Brock, Hermitian congruence and the existence and completion of generalized Hadamard matrices, J. Combin. Theory A 49 (1988), 233-261.
- [2] C. J. Colbourn and W. de Launey, Difference matrices, in C. J. Colbourn (ed.) et al., The CRC handbook of combinatorial designs. CRC Press, Boca Raton, 1996, 287-297.
- [3] D. A. Drake, Partial λ-geometries and generalized Hadamard matrices over groups, Canad. J. Math. 31 (1979), 617-627.
- [4] H. Hasse, "Zahlentheorie", Akademie-Verlag, Berlin, 1949.
- [5] K. Ireland and M. Rosen, "A classical introduction to modern number theory", Springer, New York, 1982.
- [6] D. Jungnickel, On difference matrices, transversal designs, resolvable transversal designs, and large sets of mutually orthogonal F-squares, Math. Z. 167 (1979), 49-60.
- [7] W. de Launey, On the non-existence of generalised weighing matrices, Ars Combin. 17A (1984), 117-132.
- [8] W. de Launey, A survey of generalised Hadamard matrices and difference matrices $D(k, \lambda, G)$ with large k, Utilitas Mathematica 30 (1986), 5-29.
- [9] A. Winterhof, On the non-existence of generalized Hadamard matrices, J. Statistical Planning Inference 84 (2000), 337-342.
- [10] A. Winterhof, Some estimates for character sums and applications, Designs, Codes and Crypt., to appear.

Institute of Discrete Mathematics Austrian Academy of Sciences Sonnenfelsgasse 19/2 A-1010 Vienna, Austria