ON THE NON-EXISTENCE OF
(g,9A — 1; A)-DIFFERENCE MATRICES
Arne Winterhof

Abstract. A (g, k; \)-difference matrix over the group (G, o) of order g is a k by
gA matrix D = (di;) with entries from G such that for each 1 < i < § < k the
multiset {d;; o dj','ll <1 < gA} contains every element of G exactly A times.
Some known results on the non-existence of generalized Hadamard matrices, i.e.
(g, gA; M)-difference matrices, are extended to (g,gA — 1; A)-difference matrices.

1 Introduction

Let (G, o) be a group of order g. A (g, k; A)-difference matriz is a k by g\
matrix D = (d;;) with entries from G such that for each 1 <7 < j < k the
multiset

{duody'|1 <1< gA})

contains every element of G exactly A times.

See de Launey [8] and Colbourn/de Launey [2] for surveys on difference
matrices and [10] for a new construction method.

Since a (g,!, A)-difference matrix with | < & can be constructed from a
(g, k, A)-difference matrix by erasing rows, most previous research on dif-
ference matrices has concentrated on constructions with large k. So it is
natural to ask how large k can be.

Jungnickel [6] proved that a (g, k; A)-difference matrix satisfies k < gA.
For k = g several non-existence results are known. (A (g, gA; A)-difference
matrix is called a generalized Hadamard matrix.) De Launey (7] estab-
lished the following non-existence result for (g, gA; A)-difference matrices
over abelian groups.

RESULT 1 Suppose there ezists a (g, Ag; A)-difference matriz with Ag
odd. Let p > 2 be a prime dividing g and suppose m is an integer di-
viding the p-free, and squarefree part of \. Then the order of m modulo p
is odd.

Brock [1] proved a kindred result.

RESULT 2 If a (g, Ag; A)-difference matriz over G with A\g odd ezists,
then
¢ = (Ag)a® + (—1)e- /252

has a non-trivial solution a,b,c € Q for every s the order of a non-trivial
homomorphic image of G.
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For k < g\ the only non-existence result for (g, k; A)-difference matrices
known by the author was proved by Drake (3].

RESULT 3 A (g, 3; \)-difference matriz does not ezist if g = 2 mod 4 and
A is odd.

In this note we extend de Launey’s result on (g, gA; A)-difference matrices
to (g, g — 1; \)-difference matrices. Moreover, using the authors method
introduced in [9] we prove a result with the flavour of Brock’s result for
groups of prime order p = 3 mod 4. Both extensions are based on Lemma 1
below. It seems that this lemma can not be extended to (g, k; A)-difference
matrices with k < gA — 2.

Finally we compare de Launey’s result with Brock’s result for groups of
prime order.

2 Extension of de Launey’s Result

THEOREM 1 Suppose there exists a (g, A\g — 1; A)-difference matriz over
the abelian group G with Ag odd. Let p > 2 be a prime dividing g and
suppose m is an integer dividing the p-free and squarefree part of A. Then
the order of m modulo p is odd.

We prove the theorem after some preliminary lemmas.
Let denote by C, the cyclic group of order p.

LEMMA 1 If there ezists a (p, pp—1; p)-difference matriz D over C, then
there exists a up by pup matriz D' = (d};) over Z(Cyp)/ (Zuec,, w) satisfying

DetD' DetD'"* = (up)*?,
where D'"* = (di;)T and@; =Yuec, tw ™! if di; = ¥ ec, 0w, 0w € Z.

PROOF. Put n = pup and suppose there exists a (p,n — 1; u)-difference
matrix D.

We permute the columns of D such that the row A, = (n 0...0) and the
rows of the permuted matrix are linearly independent over

R:=Z(Cp)/( ) w)
wel,

and multiply the rows with elements of Cp such that the first column is
a...n7T.

Let denote by By,...,B,—1 € R" the rows of_ the resulting matrix which
are mutually orthogonal, i.e. B; B} = Y_j_, bubjy = 0if i # j.

Obviously,

n—1
Bn:=A,-Y B

i=1
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is orthogonal to B; fori =1,...,n—1, and
B.B; =n.

B,
For D' = : we have
Bn

D'D™ =nl,,

where I,, denotes the n by n identity matrix over R, and thus the asser-
tion. O

LEMMA 2 Letp > 2 and g be primes such that for some s ¢° = —1 mod
p. Ifde Z(CP)/(ZweC,, w) satisfies dd = 0 mod q then d = 0 mod q.

PROOF. Let w be a generator of Cp and d = dyw + daw? + ... + dp—jwP™!
with dy,...,d,—1 € Z, then

" =df W +df W+ dl WP

=diw +daw ™2 +...+ d,,_lwl"” =dmod q.

Hence, d?"+! = 0 mod ¢ and thus d = d7° = 0 mod g. o

PROOF OF THEOREM 1. Suppose there exists a (g, A\g — 1; A)-difference
matrix over G. Since G is abelian there exists an epimorphism ¢ : G = C,,
and thus a (p, Ag — 1; A\g/p)-difference matrix over C,. By Lemma 1 there
exists a d € Z(C)p )/(EwEC w) satisfying dd = (Ag)*9. Let m = p, -

be the prime decomposmlon of m and e; the order of p; modulo p. Then
meé e =1 mod p.

If e; is even, for some 4, then p;"’ = —1 mod p. By Lemma. 2 there exists
d, with d = p;d, and did; = 5—%— Repeated application of Lemma 2

yields d.d, = g—%—, where p; ,{'g’\j"’L for some positive integer r. Since \g
is odd it follows p, Jm which is a contradlctlon ]

e;f2 _

3 Extension of Brock’s Result

THEOREM 2 Let p = 3 mod 4 be a prime, A be odd and M be the p-free
and squarefree part of A. If there exists a (p, \p — 1, A)-difference matriz
then ¢ = Ma? — pb® has a non-trivial solution a,b,c € Z.

267



PROOF. If there exists a (p, pA — 1, A)-difference matrix, then there exists
ad€ Q(Cp)/ (L ec, w) satisfying dd = (Ap)*? by Lemma 1.

For primes p the fields Q(C,)/ (ZwEC,, w) and the pth cyclotomic field
Q(¢p) are isomorphic and we may consider d as an element of Q((p), where
&= e>™V=1/7_ Since Nq,)(d) = NQ(C,.)(E) we have

Na(c,)(d)* = Noe,) (Ap)*?) = (p) P,

where Nq,)(-) denotes the absolute norm of Q((,) into Q. Hence, there

exists an y € Q((,) such that Nq(c,)(y) = (Ap)*PP~1)/2,
Since p = 3 mod 4 we have

Q < Q(V-p) £ Q&)

(see e.g. [4,Chapter 27d]). By the transitivity of the norm there exists an
z € Q(y/—p) such that

NQ(\/—_—;,-)(z) = (,\p)xp(p—l)/z = e-1)/2p2 pr — NQ(\/:,;)(w)M, w € Q(V=p)

since Ap(p — 1)/2 is odd, Nq(/=5)(b) = b* for b € Q and Nq(,/=5)(vV~p) =
p. For z = zw™"! we have Nq( /= (z) = M.

If z = u+vy/=p,u,v € Q, then (u,v) is a solution of u?=M-pv? Letn
be the least common nominator of « and v, then a =n, b=vn and ¢ = un
is an integer solution of ¢ = Ma® — pb®. 0

4 Comparison of the Results

1. By Legendre’s theorem (see e.g. [5, Proposition 17.3.1]) ¢ = Ma? +
(=1)(P=1/2ph? M a p-free and squarefree integer, has a non-trivial solution
if and only if there exist z,,zs € Z satisfying

22 = (-1)P"Y2pmod M

and
z3 = M mod p.

It can be seen easily that the second congruence can be omitted.
Let z3 = (-1)®»~1/2pmod M and M = g, --- ¢, be the prime decompo-
sition of M. Then z? = (-=1)®»~1/2p mod g; and thus (%) =1

for i = 1,...,7, where (-) denotes Legendre’s symbol. We have (M) =

(3) |

(9'_') = (!;IL”_I_’/?_P) (('—lw) =1 and M is a quadratic
residue modulo p.

p q qr
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2. If the order of any prime divisor g; of M is odd, then

(250 -(8)-()""- ()=

Hence, (—1)®~Y/2p is a quadratic residue modulo any prime divisor of M
and thus a quadratic residue modulo M. Thus, for groups of prime order
de Launey’s result covers Brock’s result. Moreover, Theorem 1 covers The-
orem 2.

3. If p = 3mod 4 and —p is a quadratic residue modulo M then M is
a quadratic residue modulo p by 1. Hence, M®~1/2 = 1 mod p and the
order of M (and thus the order of any divisor m of M) modulo p is odd.
So we have seen that for groups of prime order p = 3 mod 4 de Launey’s
and Brock’s result are equivalent. (For groups of prime order p = 3 mod 4
Theorem 1 and Theorem 2 are also equivalent.)
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