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Abstract: Bailey, Cheng and Kipnis [3] developed a method for construct-
ing trend free run orders of factorial experiments called the generalized fold-
over method (GFM). In this paper, we use the GFM of constructing run

orders of factorial experiments to give a systematic method of constructing

magic squares of higher order.
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1. INTRODUCTION. An m xm magic square of order k can be thought
of as an m X m matrix X = (z;;) whose entries z;; consist of the integers

1,2,---,m? such that for i # ¢,

m m

Zx€j=zxf'j for¢=1,---,k

=1 j=1

and for j # j',

m m
foj=2xfj. foré=1,---,k.
i=1 i=1

The construction of magic squares has largely been used as a source
of mathematical recreation, e.g., see Andrews [2]. However, more recently,
magic squares have proven useful for the construction of trend free factorial
experimental designs, e.g., see Phillips [8] and Jacroux [7]. A number of
methods of constructing magic squares of order one are known, e.g., see
Andrews ([1], [2]) and Harmuth ([5], [6]). However, very little seems to be
knowﬁ about constructing magic rectangles of higher order. In this note,
we use the generalized foldover method (GFM) of constructing run orders
of fractional factorial experiments as given in Bailey, Cheng and Kipnis [3]
to give some systematic methods of constructing m x m magic squares of
orders two and three where m is a prime power.

2. THE GFM. In this section, we describe the GFM method for con-
structing run orders of factorial experiments. Let m = p® where p is an
odd prime and let n = 2s. Now consider the set of all n x 1 vectors

z'=(z,,-+,2,) whose entries are z; € {0, 1,---,p~ 1}. The set of all such
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vectors V form a vector space over the field of integers Z = {0,1,---,p—1}
under the following operations:

Forze V,yeV,

o +y = (21,32, %0) + W1, Un) =2 = (21,-,20) (20)

where z; = z; + ¥; (mod p);

Forie Zandze V,
! =€(z1,  ,xn) =Y =1, ,yn)  where y; = lx; (mod p).

One can order the vectors in V into a sequence using an appropriate set of
generators {Z1, *,Zn} in the following way;

Given a sequence of generators 1, -+ ,Zn, the first vector in the se-
quence is 0 followed by 1, 224, - -+, (p — 1)®1. Suppose a sequence U; of
P’ vectors have been generated. Then U; is followed by U; + j41,U; +
2zj41, -, Uj+(p—1)xj41 where Uj +txj4q is the sum of txj 1 with the
vectors in U; in this same order as in U;. Once a sequence of generators
is chosen, the vectors in V can be sequenced systematically as described
above. This method of sequencing the vectors in V is the GFM of con-
struction as described in Bailey, Cheng and Kipnis [3].

For purposes of this paper, we will also be interested in partitioned ver-
sions of vectors x’=(x}, x5)€ V where &1 and x, are s x 1 subvectors

of x. We note that in any sequence containing all of the vectors in V, if
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z'=(x},x5)€ V, then both of the subvectors z; and z2 will occur as sub-
vectors of other vectors in the sequence p® times. Hence, after sequencing
all the vectors in V, if we assign a position integer to each vector x€ V,
it follows that the set of all possible subvectors x, partitions the integers
1,---,p?® into subsets corresponding to the positions in the sequence of vec-
tors from V in which they occur. Similarly, the set of all possible subvectors
@2 provides a partition of the position integers 1,2,---,p??. Now, for any
sequence of the vectors in V, we can associate an m X m matrix whose
entries are the integers 1,---,p?*. In particular, for each possible subvector
&1 we associate a row 7 of the square matrix and for each possible sub-
vector X2 we associate a column j and assign the position number where
z'=(x},x5,) occurs in the sequence to the (i, j) element of the matrix. The
problem of constructing an m X mn magic rectangle matrix becomes one
of finding an appropriate sequence of the vectors in V which yields the
magic rectangle of the desired order. With this in mind, we now state a
result concerning the .GFM method of sequencing vectors in V which is an
application of Theorem 4.1 of Bailey, Cheng and Kipnis [3].

Theorem 2.1. Let V be as described above where 1 = p® and p is an odd
prime. Further, suppose a sequence is generated using the GFM and the
generators ;= (&}, Tip), ¢ = 1,--+,2s where the x;; are s x 1 subvectors.
Then the m x m square containing the integers 1,2, - - -, p*? associated with

the sequence as described above is a magic square of order k provided the
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following conditions hold:

(i) =1, +++, T2, is a linearly independent set of vectors in V.

(ii) For any s x 1 vector y’'=(y1,,¥s) where y; € {0,1,---,p — 1},
y'xi1 # 0 (mod p) for at least k + 1 generators out of 21, -+, T2,

(i) For any s x 1 vector y'=(y1,---,y,) where y; € {0,1,---,p —
1}, ¥’z # 0 (mod p) for at least k + 1 generators out of 1, -« -, Ta,.

From the previous theorem we see that the problem of constructing
magic rectangles of various orders using the GFM of construction now be-
comes one of finding appropriate sets of generators for the GFM. In the
following corollary we provide a set of generators for constructing m x m
magic rectangles of order two where 1 = p? and p > 3 is any odd prime.
Corollary 2.2. Suppose m = p? where p is an odd prime and let z=
(1,0,1,0), £5,=(0,1,0,1), 5=(1,1,2,2) and x4,=(1,2,2,1). Then the m x
m rectangle generated from the GFM using 21, x2, 23 and 4 as the gen-
erators is a magic rectangle of order two.
Proof. In order to establish this corollary, the conditions of Theorem
2.1 must be verified. It is easily seen that the generators x,,x2,x3 and
x4 are linearly independent in V, hence condition (i) of Theorem 2.1 is
satisfied. To verify condition (ii) of Theorem 2.1, consider the subvectors
z3, = (1,0), x5, = (0,1),z5, = (1,1) and z}, = (1,2) of =1, 22,23 and
x4 and let y' = (y1,92) be any vector where y,,y2 € {0,1,---,p—1}. If

either y; = 0 or y» = 0, then we have that y’z;17# 0 (inod p) for at least
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three vectors out of 11,21, 31 and x431. On the other hand, if y; # 0
and ¥, # 0, then y is nonorthogonal to 11 and 32 and can be orthogonal
to at most one of £3; and T 4; since x3; and 4 are linearly independent.
Thus any vector y' = (y1,¥2) is nonorthogonal to at least three vectors
out of 11,21, 31 and 241. Condition (iii) of Theorem 2.1 is similarly
verified, thus we have the desired result.

Example 2.3. Consider the construction of a 9 x 9 magic rectangle of
order two. Then m = 32 and the generators 1, 22, 23 and =4 of Corollary

2.2 produces using the GFM the following sequence of vectors:

1-(0,0,0,0) 10-(1,1,2,2) 19-(2,2,1,1)
2-(1,0,1, 0) 11-(2,1,0,2) 20 - (0, 2,2, 1)
3-(2,0,2,0) 12-(0,1,1,2) 21-(1,2,0,1)
4-(0,1,0,1) 13-(1,2,2,0) 22-(2,0,1,2)
5-(1,1,1,1) 14 -(2,2,0,0) 23- (0,0, 2, 2)
6-(21,2,1) 15 - (0,2, 1, 0) 24-(1,0,0,2)
7-(0,2,0,2) 16 - (1,0, 2, 1) 25-(2,1,1,0)
8-(1,21,2) 17-(2,0,0, 1) 26 - (0, 1, 2, 0)
9-(2,22 2 18- (0,0, 1,1) 27-(1,1,0,0)
28-(1,2,2,1) 37-(2,0,1,0) 46 - (0, 1, 0, 2)
29 - (2,2,0,1) 38 - (0, 0, 2, 0) 47-(1,1,1,2)
30-(0,2,1,1) 39-(1,0,0,0) 48-(2,1,2,2)
31-(1,0,2,2) 40-(2,1,1,1) 49 - (0, 2, 0, 0)
32-(2,0,0,2) 41-(0, 1,2, 1) 50 - (1,2, 1, 0)
33-(0,0, 1, 2) 42-(1,1,0,1) 51 -(2,2,2,0)
34-(1,1,2,0) 43-(2,2,1,2) 52 - (0, 0,0, 1)
35-(2, 1,0, 0) 44-(0,2,2, 2) 53-(1,0,1, 1)
36 - (0, 1, 1, 0) 45-(1,2,0,2) 54 -(2,0,2 1)
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55-(2,1,1,2) 64 - (0,2,0, 1) 73 -(1, 0, 2, 0)
56 - (0, 1, 2, 2) 65-(1,2,1,1) 74 - (2, 0,0, 0)
57-(1,1,0,2) 66 - (2,2, 2, 1) 75 - (0, 0, 1, 0)
58-(2,2,1,0) 67 - (0, 0, 0, 2) 76 - (1, 1,2, 1)
59 - (0, 2, 2, 0) 68 -(1,0,1,2) 77-(21,0,1)
60 - (1, 2, 0, 0) 69 - (2,0, 2, 2) 78-(0,1,1,1)
61-(2,0,1,1) 70 - (0, 1, 0, 0) 79-(1,2,2,2)
62- (0,0, 2, 1) 71-(1,1,1,0) 80-(2,20,2)
63-(1,0,0, 1) 72-(2,1,2,0) 81-(0,21,2)

The 9 x 9 magic rectangle of order two associated with this sequence is

given in the following array:

00|01]02]|10]|11}12]2021]22
001 [52|67|75|18)33|38)62]23
0170|2146 |36|7812]26} 41|56
02149647 |[15{30|81]59]20|(45
10/39(63|24|2 [53]|68]|73]16]31
1127 (42|57 (71 |5 | 473476 |10
12160 (2145(50(65|8 | 13|28 |79
2017411932 |37|61]22]3 |54|69
21(35(77|11|25(40|55(72|6 |48
2211412980 (58 |19(43|51|66 |9

We note that the sum of integers in any row or column of the above
array is 369 whereas the sum of squares of the integers in any row or column
of the above array is 20049.

We now give two additional corollaries.

Corollary 2.4. Suppose m = p® where p > 7,p # 11, is a prime and let

Then the m x mn rectangle formed from the GFM using 1,22, 3, 24, L5
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and g as the generators is a magic rectangle of order three.

Proof. To establish this corollary, we must again verify that the con-
ditions of Theorem 2.1 are satisfied. To begin, it is easy to verify that
T1,T2,Z3, T4, s and xg are a linearly independent set in V, thus condi-
tion (i) of Theorem 2.1 is satisfied. To verify condition (ii) of Theorem 2.1,
consider the subvectors 3, = (1,0,0),z3, = (0,1,0), x5, = (0,0,1),x,, =
(1,1,1),x%, = (1,2,3), and x§, = (1,4,2) of 1, z2, 3, 4, T5 and T and
let ¥’ = (y1,¥2,y3) be any vector where y1,¥2,y3 € {0,1,2,---,p—1}. If
only one of the components in y is nonzero, then y is clearly nonorthogonal
to at least four vectors out of 11,221, 231,41, Ts1 and xg1. If all com-
ponents of y are nonzero, then y is nonorthogonal to 11, 221 and g1 and
y can be orthogonal to at most two of the vectors out of 41, 51 and g,
because these three vectors form a linearly independent set modulo p for
any p > 7. Finally, if y has two components which are nonzero, say y, and
¥,, then y is nonorthogonal to &1 and 21 and is also nonorthogonal to at
least two subvectors out of €41, €51 and xg; because any pair of 2x 1 vectors
obtained by taking the first two components of 41, 51 or Tg; are again lin-
early independent (since p > 7). A similar argument holds if any other pair
of components of y are nonzero and condition (ii) of Theorem 2.1 is satis-
fied. To verify condition (iii) of Theorem 2.1, consider the subvectors z}, =
(1,0,0),z5, = (0,1,0), 25, = (0,0,1), %, = (2,2,2),z}, = (2,1,3), and

Tg, = (2,4,1) of 1,2, T3, 4, x5 and zg and let ¥y’ = (y,,y,,y,) be as
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defined above. If y has one component nonzero, then clearly y is orthogo-
nal to at least four vectors out of 12, 22,32, 42, Ts2 and xg2 whereas
if ¢ has all three of its components nonzero, then y is non-orthogonal to
T12, 22 and x32 and can be at most orthogonal to two vectors out of
T42, 52 and xg2 since these three vectors form a linearly independent set
for all values of p > 7, p # 11. Finally, if y has two components nonzero, say
y, and y,, then y is nonorthogonal to ®22 and x32 and also nonorthogonal
to at least two sul;vectors out of 42, T2 and xg2 because any pair of 2 x 1
subvectors obtained by taking the last two components from z42, 252, or
g2 are again linearly independent for any value of p > 7,p # 11. A similar
argument holds if any other pair of components in y are nonzero. Thus
condition (iil) is satisfied and we obtain the desired result from Theorem
2.1.

Corollary 2.5. Suppose m = p* where p > 13 is a prime and let

z1=(1,0,0,0,1,0,0,0); =,=(0,1,0,0,0,1,0,0);
#4,=(0,0,1,0,0,0,1,0); ,=(0,0,0,1,0,0,0,1);
el=(1,1,1,1,2,2,2,2); «,=(1,23,4,2,1,3,4);
x0=(1,4,2,3,2,4,1,3); z4=(1,3,4,2,2,3,4,1).

Then the m xm rectangle formed from the GFM using x1, 2, 3, T4, 5, Ta, L7,
and xg as the generators is a magic rectangle of degree four.

Proof. Similar to the proof of Corollary 2.4.

Comment. We note that when using the GFM to generate a p® x p® magic

rectangle, the maximal order of any such rectangle is s. This follows from

297



the fact that if

€1 =(211:T12)y 22=(T515%23)s * T2, =(224,15 %20,2)
are the generators of the sequence, one can always find a vector y which is
orthogonal to 11,221, ++,Ts—1,1. Hence it will be nonorthogonal to at
most s 4 1 of the vectors &11,+++,%2,,1 and the conclusion follows from
Theorem 2.1. Thus the magic rectangles given in Corollaries 2.2, 2.4 and
2.5 are of maximal order at least with regards to the GFM method of
construction.

With regard to constructing m x m magic rectangles using the GFM,
there appears to be a number of open questions:

1. Is there a systematic method for finding generators for the GFM
which will always yield an m x m magic rectangle of degree s where m = p*
and p > 2 is an odd prime?

2. If mn = p® where p is an odd prime, is s the maximal order of an
m X m magic rectangle?

These and other questions are currently under research.

298



References

. W.S. Andrews, Magic Squares and Cubes, New York, Dover (1960).

. W.S. Andrews, The Construction of Magic Squares and Rectangles
by the Method of “Complementory Differences.” Magic Squares and

Cubes, New York, Dover, 257-266, (1966).

. R.A. Bailey, C.S. Cheng and Patricia Kipnis, Construction of Trend

Resistant Factorial Designs, Statistica Sinica, (1992).

. W.H.R. Ball, Mathematical Recreations and Essays, 1st ed. rev.

H.S.M. Coxeter, London, MacMillan (1939).

. T. Harmuth, Ueber magische Quadrate und dhnliche Zahlenfiguren,

Arch. Math. Phys., 66, 297-313 (1881).

. T. Harmuth, Ueber magische Rechtecke mit ungeraden seitzenzahlen,

Arch. Math. Phys., 66, 413-447 (1881).

. M. Jacroux, On the Construction of Trend Resistant Mixed Level

Factorial Run Orders, Ann. Statist., 22, 904-916 (1994).

. J.P.N. Phillips, The use of Magic Squares for Balancing and Assessing
Order Effects in Some Analysis of Variance Designss, Appl. Statist,

13, 67-73 (1964).

. J.P.N. Phillips, A Simple Method of Constructing Certain Magic

Rectangles of even order, Math. Guazette, 379, 9-12 (1968).

299



