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Abstract

In this paper, we characterize the potentially Cy graphic
sequence for k = 3,4,5. These characterizations imply several
theorems due to P. Erdés, M. S. Jacobson and J. Lehel [1], R.
J. Gould, M. S. Jacobson and J. Lehel[2] and C. H. Lai [5]and
(6], respectively.

1 Introduction

An n-term nonincreasing nonnegative integer sequence = = (dy, dy, - - -

d,) is said to be graphic if it is the degree sequence of a simple graph
G of order n and such graph G is referred to as a realization of .
We also denote o(7) the sum of all the terms of 7. Let H be a graph.
A graphic sequence 7 is said to be potentially H-graphic if it has a
realization G containing H as its subgraph.

In [1], Erdds, Jacobson and Lehel considered the following prob-
lem about potentially Ky-graphic sequences.: determine the smallest
positive even number o (k, n) such that every n-term graphic sequence
7 = (dq,dg, - - ,dn) without zero terms and with degree sum o(r) =
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dy+da+- - -+d,, at least ok, n) is potentially Kj-graphic. They gave a
lower bound of o(k, n) by the example mp = ((n—1)F-1, (k—1)"—*+1),
i.e., o(k,n) 2> (k—1)(2n — k) + 2, and they further conjectured that
the lower bound is the exact value of o(k,n). They also proved the
conjecture is true for k = 2 and n > 6, i.e,, 0(2,n) = 2n for n > 6.
The conjecture is confirmed in (2], [7], [8] and [9).

for any k > 4 and for n sufficiently large. In [2], Gould, Jacobson
and Lehel generalized the above probelm: for a given simple graph H,
determine the smallest positive even number o(H,n) such that every
n-term graphic sequence m = (d;,dy, - - - ,dn) Without zero terms and
with degree sum o(n) = dy+da+- - -+d,, at least o(H, n) is potentially
H-graphic. They determined the values o(pK>2,n),0(Cy,n) where
pKj, is the matching consisted of p edges and Cj is the cycle of
length 4.

In [5] and [6], C. H. Lai determined the values: o(Cj,n) for k > 5.

Motivated by the above problems, we consider the problem: char-
acterize the potentially Ci-graphic graphic sequences without zero
terms. In this paper, we characterize the potential Ci-graphic se-
quences for k = 3,4,5. By these charaterizations, the values o(K3,7n)
and o(Cg,n) for k = 4,5 are straitfoward. ‘

2 Lemmas

In order to prove our main results, we need the following results.

Let 7w = (d1,ds, - - ,d,) be a nonincreasing positive integer sequence.
Denote

7!" = (dl - 1)d2_ 1}"')ddn _1,ddn+l,"')dn.—l)
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' is said to be the residual sequence obtained by laying off d, from

.
From here on, denote 7’ the residual sequence obtained by laying off
d, from 7 and all the graphic sequences have no zero terms.

Lemma 2.1 ( D. J. Kleitman and D. L. Wang [4] and Hakimi[3])
« is graphic if and only if 7’ is graphic.

The following corollary is obvious.

Corollary 2.1 Let H be a simple graph. If #’ is potentially H-
graphic, then 7 is potentially H-graphic.

We will use Corollary 2.1 repeatedly in the proofs of our main results.

3 Potentially Cs-graphic Sequences

The main results of this section is the following theorem.

Theorem 3.1 Let m = (d3,d2,---,da) be a graphic sequence with
n > 3. Then 7 is potentially Cs-graphic if and only if d3 > 2 except
for 2 cases: 7 = (24) and 7 = (25).

Before we prove theorem 3.1, we first apply the theorem to give
a simple proof of the following theorem due to P. Erdés et.al.

Theorem 3.2 ( P. Erdés, M. S. Jacobson and J. Lehel [1])
o(K3,n) = 2n for n > 6.

Proof : In [1], Erdés et.al. gave the lower bound by the extremal
example D = ((n — 1)F1,(k = 1)" %) ie, o(Kk,n) > (k-
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1)(2n — k) + 2. Therefore o(K3,n) > 2n. We only need to show
that o(K3,n) < 2n. It is enough to show that any graphic sequence
m = (dy,ds,- -+ ,dn) with () > 2n is potentially K3-graphic. Since
o(m) > 2n, we must have that d3 > 2. By Theorem 3.1, 7 is poten-
tially Cs-graphic. a

In order to prove theorem 3.1, we need the follwoing lemma.

Lemma 3.1 Let r = (dy,ds, --,d,) be a graphic sequence with
dn 2> 2 and n > 6. Then 7 is potentially Cs-graphic.
Proof: Since o(w) > 2n, every realization of m must contain a cy-
cle. Let G be a realization of m with minimal girth g(G). Then
3 < g(G) < n. We only needs to show that g(G) = 3.

By way of contradiction, we assume that g(G) > 4.

we consider the following 3 cases.

Case 1: g(G) > 6.

Let v1v2v3 - - - vy(g) be a cycle of length g(G). Then vyv4, v1vs, vovy,
vovs € E(G). Therefore, G' = G — v1v3 — v4v5 + v1V5 + Vov4 is still
a realization of 7 and vovsvs is a 3-cycle in G'. It contradicts the
minimality of g(G).

Case 2: g(G) = 5. Then G has a cycle C = v1v9v3v495 of length

Subcase 1: C is not a connected component of G.

By the assumption, there exits a vertex v # v;,1=1,2,---,5 so
that u is adjacent to some vertex in C.

Without loss of generality, we may assume that u is adjacent to
v1. Since g(G) = 5, wv; € E(G), i = 2,3,4,5 and viv4 € E(G)
otherwise there is a cycle of length 3 or 4 in G. Therefore G' =
G — uv; — v3v4 + V1v4 + uv3 is also a realzation of 7 and G’ contains
a cycle of length 3, vjvsv4v;. A contradiction.
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Subcase 2: C is a connected component of G

By the assumption, for each v;, ¢ =1,2,3,4,5 is not adjacent to
any vertices outside of C.

Since n > 6 and d,, > 2. There exists an edge uv out of the cycle
C. Therefore G' = G — v1v3 — V34 — UV + v1v4 + vou + v3v is also a
realization of m with g(G’) = 3 since vyvqvsv; is a 3-cycle in G'. A
contradiciton.

Case 3: g(G) = 4. Let C = v1v9v3v4v; be a 4-cycle in G.

Similar to Case 2, we consider the following two subcases.

Subcase 1: C is not a connected component of G

By the assumption, there exists a vertex  not in C such that u is
adjacent to some v;. Without loss of generality, we assume that « is
adjacent to v;. Since g(G) = 4, we must have that v;vs, qu2 € E(G).
Therefore G' = G — v3vy — uv; + v1v3 + uvs is also a realization
of = and the girth of G’ is 3 since vjv3v4v; is a 3-cycle in G'. A
contradiction.

Subcase 2: C is a connected component of G.

Since n > 6 and d,, > 2, there is an edge uwv € E(G) — C. Since
C is a connected component, uv;,vv; € E(G). Since g(G) = 4 and
C is a 4-cycle, viv3 & E(G). Therefore G’ = G — v1v3 — vou3 — uv +
v1V3 + vou + vov is also a realization of . Since vyvgvav; is a 3-cycle
in G/, the girth of G’ is 3. A contradition.

Combining Case 1, 2 and 3, g(G) = 3. 0O

Proof of Theorem 3.1: The necessary condition is obvious. There-

fore we only need to prove the sufficient condition. Let 7 = (dy,dy,---,dy)
be a graphic sequence satisfying the conditions of the theorem. It
suffices to show that 7 has a realization containing Cj as its sub-
graph. We consider the following cases:
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Case 1: n = 3. It is obvious.

Case 2: n = 4. Since 7 # (2%) and d3 > 2, we must have that

di = 3. Then 7 must be one of the following sequences:
(3,2,2,1),(3%,2%),(3%).

It is easy to see that all of them are potentially Cs-graphic

Case 3. n = 5. If d; = 2, since 7 # (2°) and d3 > 2, we must have
7 = (23,12). It is obvious to see that it is potentially C3-graphic. If
dy = 3, then 7 is one of the follwing:

(34,2), (3%,2%), (3%,2,1), (8%2,1%), (3,2%,1).

It is easy to see that all of the above sequences are potentially Cs-
graphic. If d; = 4, let G be a realization of 7 with vertices set
{v1,v2,v3,v4,v5} where d(v;) = d;, i =1,2,---,5. Since d(v;) = 4,
v; is adjacent to every other vertices. Since d(v3) > 2, v3 is adjacent
to an vertex other than v;, say v;. Then v v3v; forms a Cs.

Case 4: n > 6.
We are going to use induction to prove the sufficient condition.

First we prove the sufficient condition for n = 6. Assume that
dz > 2.

If dg > 2, by Lemma 3.1, 7 is potentially C3-graphic. Now we
assume that dg = 1. Let n' = (di,d5,d5,d},d;) be the residual
sequence obtained by layingoff ds. If d; > 4, then dj > min{d; —
1,d2,d3} > 2 and dy > 3. By Case 3, 7’ is potentially Cs-graphic.
Therefore, 7 is potentially Cs-graphic by Corollary 2.1. Thus we may
assume that 2 < dy < 3. Ifd; = 2, thend; = dy = d3 = 2. Since o(7)
is even, we must have that ds = 1 and d4 = 2. Therefore 7 = (24,12).
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It is easy to see that = is potentially C3-graphic. Now assume that
dy = 3. If dy = 3, then d| = dp = 3 and d§ > min{d; — 1,da,d3} >
2. Thus by case 3, n’ is potentially Cs-graphic. Therefore 7 is
potentially Cs-graphic by Corollary 2.1. Thus we may further assume
that 7 = (3,2,2,d4,ds,1). Since o(r) is even, dg + ds must be even.
Therefore 7 = (3,2%,1) or w = (3,2%,13). It is easy to see that they
both have realizations containing C3. Therefore, w is potentially
Cs-graphic for n = 6.

Now we suppose that the sufficient condition is true for n—1 > 6.
We are going to prove that it is also true for n. It suffices to prove that
the graphic sequence 7 = (dy,ds, - -,d,) with d3 > 2 is potentially
Cs-graphic by the definition.

If d, > 2, by Lemma 3.1, 7 is potentially C3-graphic. Therefore
we may assume that d, = 1. Let 7’ = (d; — 1,ds,d3, - ,dn-1) =
(didb, - - ,dl,_;) be the resudial sequence obtained by layingoff d,, =
lwhered; >dy >--->d,_;. Ifd3<1,thend; =dy=d3=2
and dy =ds = --- = d,, = 1. It follows that 7 = (23,173). Since
o(n) is even, n — 3 must be even. It follows that 7 has a realization
consisting of a C3 and (n—3)/2 disjoint edges. If dj > 2, by induction
hypothesis, 7’ is potentially Cs-graphic. Therefore 7 is potentially
Cs-graphic by Corollary 2.1.

This completes the proof. O

4 Potentially C,-graphic Sequences

The main result of this section is the following:
Theorem 4.1 Let m = (d;,ds, - -,dn) be a graphic sequence. Then

m is potentially Cy-graphic if and only if the following conditions
hold:
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(1) ds22.
(2) di =n -1 implies dy > 3
(3) If n = 5,6, then 7 # (27).
Proof: First we assume that 7 is potentially C4-graphic. Then (1)
and (3) are obvious. Assume that d; =n— 1. Let G be a realization
of m which contains a Cj as its subgraph and let v; € V(G) with de-
gree d(v;) = d;. Then G — v; contains a path with length at least 2.
Thus G — v, has a vertex with degree at least 2. Since d(v;) =n~1,
we must have ds > 3.

Now we are going to prove the sufficient condition.

We consider the following Cases:

Case 1. n=4.

If d; = 2, then m = (24). It is potentially Cy-graphic. Now as-
sume that d; = 3. Then dy = 3. Therefore 7 = (32,22) or 7 = (34).
Obviously, both of them are potentially Cy-graphic..

Case 2. n=5.

If d5 > 3, then 7’ satisfies the assumption. Thus 7’ is potentially
Cy-graphic. Therefore, 7 is potentially Cy-graphic by Corollary 2.1.
Now we assume that ds < 2. If d5 = 2, consider 7', If dy > 3, then 7’
satisfies the assumption. Thus 7’ is potentially Cy-graphic. If dy = 2,
then m = (d;,2%). Since o(n) is even, we have that d; =2, or, 4. It
is impossible. If d5s = 1, then d; > 3 since d4 > 2. Therefore 7’ sat-
isfies the assumption. Thus = is potentially Cy-graphic by Corollary
2.1.

Case 3. n = 6.

If ds > 4, then 7' is potentially Cy-graphic. If dg = 3, then
7w = (dy — 1,d2 — 1,d3 — 1,d4, ds) satisfies the assumption. Thus =’
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is potentally Cy-graphic. Therefore 7 is potentially Cy-graphic by
Corollary 2.1. If dg = 2, then 7' = (dy — 1,ds — 1,d3,d4, ds) satisfies
that dj > 2 by condition (3). If 7’ = (2%), then 7 = (32,2¢%). It is
easy to see that 7 is potentially Cy-graphic. If d} =4 and dj < 2,
then dj = 2. Therefore 7' = (4,2*,15-%-1) where k > 3. Since
o(n') is even, k = 4. Thus n' = (4,2%). Therefore, 7 = (5,3,24).
It is easy to see that = is potentially Cy-graphic. If dg = 1, then
7 = (di — 1,dp,d3,dy,ds). If dy = 1, then 7 = (2¢,12). Obvi-
ously, 7 is potentially C4-graphic. Now we assume that dj > 2.
If #' # (2%),0r,(4,2%), then 7’ is potentially Cy-graphic. There-
fore 7 is potentially Cy-graphic by Corollary 2.1. If #/ = (25), then
7 = (3,2%,1). Clearly « is potentially Cy-graphic. If 7' = (4,24),
then 7 = (5,24, 1), it is impossible by (2).

Cased: n> 1.

We are going to use induction to prvoe this case.
First we show the case for n = 7. If d7 > 3, by Case 3, we are done.
We assume that d7 < 2. If d7 = 2, then dj > 2. If d7 = 1, then
d, > 2 otherwise m = (24,13). Therefore, d} > 2ifd7 < 2. Ifd} =5
and db = 2, then 7' = (5,2%,1). Therefore dy = 6 and dy = 2. It
contradicts the assumption. Thus if 7 # (2%), then 7' is potentially
Cy-graphic. Therefore 7 is potentially Cy-graphic by Corollary 2.1.
If #’ = (25), then 7 = (32,2%) or m = (3,2%,1). Clearly they are
potentially Cy-graphic. It follows that the sufficient is true forn =7

Now we assume that the sufficient condition is true forn—1 > 7.
We are going to prove that it is true for n. Let # = (di,---,d,)
be a graphic sequence with n terms and satisfying the condtions (1)
and (2). We only need to show that = is potentially Cy-graphic. If
d, = 3, then 7’ satisfies the assumption. By induction hypothesis, =’
is potentially Cy-graphic. Therefore 7 is potentially Cy-graphic by
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Corollary 2.1. If d, = 2, then n’ = (d1~1,d2—1,d3, - -,dn—1). Then
dy > 2. Ifd) =n—2, theneitherdi =n—-lord; =dy =n-2=dj.
In the later case, 7’ satisfies the assumption. By the induction hy-
pothesis, 7’ is potentially Cy-graphic. Therefore 7 is potentially Cy-
graphic by Corollary 2.1. If d; = n — 1, then either 7’ satistisfies
the assumption or 7 = (n — 1,3,2"~2). It is easy to see that = is
potentially Cy-graphic. Now we assume that d, = 1. If dj; = 1, then
7w = (24,14). Then n is even. It is easy to see 7 is potentially
Cy-graphic. Now assume that dj > 2. If ] =n—2 and dj = 2, then
dy =n—1and dy = 2 < 3. It contradicts the assumption. Therefore
«' is potentially Cjy-graphic. Hence 7 is potentially Cy-graphic by
Corollary 2.1. 0

By Theorem 4.1 , we give a simple proof of the following theorem
due to R.J.Gould et.al:
Theorem 4.2 ( R. J. Gould, M. S. Jacobson, J.Lehel[2])
For n > 4,
3n—1, if nisodd,
0(04) n) =
3n—2, if niseven.
Proof: In [2], by taking the extremal examples 7 = ((2k)?, 2%*) when
n=2k+1 and 7 = ((2k + 1)},2%*,1) when n = 2k, R. J. Gould et.
al. presented a lower bound for o(Cy,n), i.e.,
3n—1, if nisodd,
o(Cy,n) 2
3n—-2, if nis even.
Now we are going to show that
3n—-1, if nis odd,
g (04, n) S

3n—2, if niseven.
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Let 7 be a graphic sequence with o(7) > 3n — 2. It suffices to show
that 7 is potentially Cy-graphic. If dy = 1, then o(7) = dy +do+d3+
(n—3) and dy +dz+d3 < 6+ (n—3) =n+3. Therefore o(r) < 2n <
3n — 2. Thus dg4 > 2. Clearly, if » = 5,6, 7 # (2"). Assume that
di=n-11Ifdy <2,theno(r) <n—-1+2(n-1)=3n-3 < 3n—-2.
Therefore 7 satisfies the conditions (1)-(3) in Theorem 4.1, thus = is
potentially Cy4-graphic. (m]

5 Potentially Cs-graphic sequences

The main result of this section is the following:

Theorem 5.1 Graphic sequence m = (dy,dy,---,d,) is potentially
Cs-graphic if and only if 7 satisfies the following conditions:

(1) ds > 2 and 7 # (2") for n = 6,7.

(2) For i =1,2, dy =n — i implies d4—; > 3.

B Ifr= (dl,d2,2k, ln-k-2), thendy +do <n+k-—2.

Proof: We assume that = is potentially Cs-graphic. It is obvious
that (1) holds. Assume 7 = (dy, dz,2¥,1"%-2) with d; +ds > n+ k.
Since « is graphic, d; + dy <2k +n —k — 242 =n + k. Therefore
dy +dz2 = n+ k. Hence m has a unique realization. It is easy to
see that the realization is of girth 4. Hence (3) holds. Let G be a
realization of m which contains a cycle C5 and let v; € V(G) with
degree d(v;) = d;. Then G — v; contains a path with length at least
3. Thus G — v contains at least two vertices with degree at least 2.
Therefore d; =n — 4,4 = 1,2 implies dy_; > 3. Thus (2) holds. Now
we are going to prove the sufficient condition. It is enough to show
the following three lemmas.

Lemma 5.1 Graphic Sequence 7 = (d,dy,---,ds) is potentially
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Cs-graphic if 7 satisfies the following conditions:

(1) ds 2 2

(2) If d; = 4, then d3 > 3.

Proof: If ds > 3, then by Theorem 4.1, 7’ is potentially C4-graphic.
Since ds > 3, 7 is potentially Cs-graphic. Now assume that ds = 2.
If d; = 2, then m = (25). Obviously it is potentially Cs-graphic. If
dy = 3, then ™ = (32,2%) or 7 = (3%,2). It is easy to see that they
are potentially Cs-graphic. Now assume that d; = 4, then d3 > 3
by (2). Since d5 = 2, we have d3 = 3. Therefore 7 is (42,33,2) or
(4,32,22). Tt is easy to see that they are potentially Cs-graphic. O

Lemma 5.2 For n = 6,7, # = (dy,dp,---,d,) is potentially Cs-

graphic if 7 satisfies the following conditions:

(1) ds > 2 and = # (2™).

(2) For i = 1,2, dy =n — i implies d4—; > 3.

(3) ® = (dy,d2,2%,1""%2) implies d1 +d2 <n+ k—2.

Proof: We first prvoe the case for n = 6. Notice that if dg > 3,

then 7' satisfies the conditions (1) and (2) in Lemma 5.1. Hence by

Lemma 5.1, 7’ is potentially Cs-graphic. Therefore m is potentially

Cs-graphic by Corollary 2.1. Thus we may assume that dg <= 2.
We consider the following two cases:

Case 1: dg = 1. Then d; > 3 otherwise o(7) is odd. If d3 > 3, then

by Lemma 5.1, = is potentially Cs-graphic. Now we assume that

d3 = 2. Then7 = (d1,d2,23,1). Then by conditions (3) and (2),

di<n—2=4anddi+de<n+k-2=6+3-2=7. Since

dy >3,5<d; +dy <7 Since o(r) is even, d; +dp = 5, or 7. Thus

7 =(3,2%1) or (4,3,23,1). It is easy to see that they are potentially

Cs-graphic.

Case 2: dg = 2. Then by (1), di 2 3. If d5s > 3 or d3 > 4, then by

Lemma 5.1, 7' is potentially Cs-graphic. Therefore 7 is potentially
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Cs-graphic by Corollary 2.1. Thus we may assume that ds = 2 and
ds < 3. If d3 = 2, then 7 = (d1,d2,2%). Hence by (2) and (3), we
havethat di +dp <n+k-2=6+4—-2 =28 and d; < 4. Thus
7 = (42,24) or (32,2%). It is easy to see both of them are potentially
Cs-graphic. If d3 = 3, then we may further assume that dy = 3
otherwise by Lemma 5.1, 7’ is potentially Cs-graphic. Then 7 is one
of the following sequences:

(5,3%,22), (4,3%,2%), (4,3%,2), (3%, 2%).

It is easy to see that they are potentially Cs-graphic.

Now we prove the case for n = 7.

Similarly, we may assume that d7 < 2. If d3 > 4 or ds > 3, then

by the case for n = 6, 7’ is potentially Cs-graphic. Therefore we may
further assume that dg < 3 and ds = 2. We consider the following
two cases;
Case 1. d7 = 1. Then we may assume that dy = 2 otherwise =’ is
potentially Cs-graphic. If d3 = 3, then we may assume that d; =
dy = d3 = 3 otherewise 7’ is potentially Cs-graphic. Therefore 7 =
(33,23,1) and it is potentially Cs-graphic. If d3 = 2, then by (2) and
(38),dy<5andd;+d2<n+k—-2<T7+4—-2=09. Then 7 is one
of the following sequences:

(5,4,24,1),(4,3,24,1),(3,2%,1),(5,3,2%,12),

(42,23,1%), (4,2%,1%), (3%,23,12), (25,12).

It is easy to see that they are all potentially Cs-graphic.

Case 2: d7 = 2. Then d; > 3. If d3 = 3, then similarly to Case 1, we
may assume that dy = dg = 3. Therefore 7 is one of the following se-
quences: (34,2%), (5,3%,2%),(6,3%,2%),(4,32,2%) and it is easy to see
that they are potentially Cs-graphic. If d3 = 2, then by (2) and (3),
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dy<5anddyj+ds <n+k—2=7+5-2=10. Then 7 is one of the
following sequences: (52,2°%), (5,3,2°),(42,25),(4,2%),(3%,2%) and it
is easy to see that they are potentially Cs-graphic. m]

Lemma 5.3 For n > 8, = (d1,da, - +,dp) is potentially Cs-graphic
if  satisfies the following conditions:

(1)ds > 2;

(2) For i =1,2, dy =n — i implies d4_; > 3.

(3) ™ = (d1,d, 2%, 1™ *-2) implies d; +d2 < n+ k - 2.

Proof: We are going to prove this lemma by induction on n.

We first prove it for n = 8. We may assume that dg < 2 oth-
erewise by Lemma 5.2, 7’ is potentially Cs-graphic. Similar to the
proof of Lemma 5.2, we may further assmue that d3 < 3 and d5 = 2.
We consider the following two cases:

Case 1. dg = 1. If d3 = 3, then we may assume that d; =
dy = d3 = 3 and dy = 2 otherwise n’ is potentially Cs-graphic
by Lemma 5.2. Therefore # = (33,24,1) or (3%,22,1%) and it is
easy to see that they are potentially Cs-graphic. Now we assume
that d3 = 2. Then m = (d;,ds,2¥,187%2). Then by (2) and (3),
dy<6andd)+dy <n+k—2 Ifd =2 thenw = (26,12). It
is easy to see that it is potentially Cs-graphic. Thus we may fur-
ther assume that d; > 3. Then 7' = (d; — 1,dp,2%,17"17%-2) and
d—-1+dp<n+k—2-1=n—-14+k-2 If 7 = (27), then
7 = (3,25,1). It is easy to see that it is potentially Cs-graphic. Now
we assume that 7/ # (27). Since d; < 6, 7’ satisfies the condition (2)
in Lemma 5.2. If 7' # (27), then it satisfies the conditions (1), (2)
and (3) in Lemma 5.2. By Lemma 5.2, 7’ is potentially Cs-graphic.
Therefore 7 is potentially Ci-graphic by Corollary 2.1.

Case 2. dg = 2. If d3 = 2, then m = (d1,d2,25). By (2) and (3),
d <6anddi+do <n+k—-2=8+6-2=12. If dy = 2,
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then 7 = (4,27) or (28). It is easy to see that they are poten-
tially Cs-graphic. Thus we may further assume that d; > 3. Then
7’ = (d1 — 1,ds — 1,25). If 7’ = (27), then 7 = (32,26). It is easy
to see that it is potentially Cs-graphic. Therefore we may assume
that «' # (27). Thus 7’ satisfies the condition (1) in Lemma 5.2.
Since dy < 6, 7' satisfies the condition (2) in Lemma 5.2. Since
di+dy=d1—-14+dy-1<12-2=10=7+5-2. Thus
satisfies the condition (3) in Lemma 5.2. Therefore by Lemma 5.2,
7' is potentially Cs-graphic. Therefore 7 is potentially Cp-graphic
by Corollary 2.1. If d3 = 3, then we may assume that d; = 3 oth-
erwise 7’ is potentially Cs-graphic. Thus = is one of the following

sequences:
(3%,2%),(5,3%,2%), (7,3%,24), (6,3%,2°%), (4, 32, 25).

It is easy to see that they are all potentially Cs-graphic.

Now we assume that the lemma is true for n — 1 > 8. We are
going to show it is true for n. Let 7 = (d;,dp,---,d,) be a graphic
sequence satisfying the conditions (1)-(3). We only need to show that
it is potentially Cs-graphic. If d,, > 3, then by induction hypothesis
7' is potentially Cs-graphic and therefore 7 is potentially Cs-graphic
by Corollary 2.1. Thus we may assume that d, < 2. Similarly, we
may further assume that dg +3 = 2 and d3 < 3. We consider the
following two cases:

Case 1. d, = 1. Then dg = 2. If d; = 2, then 7 = (2%,17F),
Since k > 5 and n > 9, « is potentially Cs-graphic. Thus we further
assume that d; > 3. If d3 = 3, then we may assume that d; =
dy = d3 = 3. Then n' = (32,2F+1,1"~%~4) satisfies (1),(2) and (3)
and therefore 7’ is potentially Cs-graphic and hence 7 is potentially
Cs-graphic. If d3 = 2, then m = (d1,dp,2¥,1"*~2). Therefore 7' =
(d1—1,ds,2%,1"*=2), By (3), d1+dz <n+k—2. Thusd; —1+dp <
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n — 1+ k — 2. Obviously, ' satisfies (1)-(3). So ' is potentially Cs-
graphic and hence 7 is potentially Cs-graphic.
Case 2. d, = 2. Then ds = 2. Therfore = = (d;,ds,ds,dy,2""%). If
ds = 2, then 7 = (d1,d2,2"2). By (2) and (3),dy +dy < n+n—
2-2=2(n-2)anddy <n-2.Ifdy>40ordy <n-3andds >3,
then =’ satisfies (1)-(3) and therefore by induction hyperthesis it
is potentially Cs-graphic and hence 7 is potentially Cs-graphic. If
7 = (n—2,3,2""2), it is easy to see it is potentially Cs-graphic. Now
assume that dp = 2. If d; = 2, then 7 is potentially Cs-graphic since
n>9. Ifd; > 3, then by (3)and (2),d1 —1+2<n—-3+2-2=
n—-3<n-14n-3-2=2n-5andd;-1<n-3-1=(n-1)-3.
It follows that 7’ is potentially Cs-graphic and hence 7 is potentially
Cs-graphic. Now assume that d3 = 3. If dy = 3, then we may
assume that d; = 3 otherwise 7’ is potentially Cs graphic. Thus
7 = (3%,2"%). It is potentially Cs-graphic since n > 9. Now we
assume that dy = 2. Then 7 = (d1,d2,3,2"3%). Similarly we may
assume that dy = 3. If d; = n — 1, then 7 is potentially Cs-graphic.
Ifdy <n-2,thend; =d1—1< (n—-1)-2anddj+dy, =d;—1+3 <
n—2—-1+3=n<n—-1+n-3-2=2n-6. Thus 7’ is potentially
Cs-graphic and therefore 7 is potentially Cs-graphic.

Therefore 7 is potentially Cs-graphic. . m]

Now we are going to use theorem 5.1 to give a simple proof of a
theorem due to C.H. Lai:

Theorem 5.3 ( C. H. Lai [5]) 0(Cs,n) = 4n — 4 for n > 5.

Proof: Take 7 = ((n —1)2,2("=2)), Then 7 has unique realization
and the realization doesn’t contain a cycle of length 5. Therefore
0(Cs,n) = o(m) +2 = 4n — 4. Now we will show that o(Cs,n) <
4n — 4. Let 7 be a graphic sequence with n terms and with o(7) >
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4n — 4. It suffices to show that = is potentially Cs-graphic. If
ds =1,thend; +dy +d3+ds <4x3+n—4=n+ 8. Therefore
o(r) <n+8+(n—4) =2n+4 < 4n—4sincen > 5. A contradiction.
Thusds > 2. If d3 =2, thendn—4 < o(r) < dyj+do+d3z*(n—2) <
2(n — 1) + 2(n — 2) = 4n — 6. The contradiction shows that d3 > 3.
Therefore 7 satisfies the conditions in theorem 5.1. By Theorem 5.1,
7 is potentially Cy-graphic. Thus ¢(Cs,n) =4n—4forn>5. O
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