PARTIAL DIALLEL CROSS BLOCK DESIGNS *

Kuey Chung Choi®, Sudhir Gupta® and Young Nam Son®
“Department of Computer Science and Statistics, Chosun University, Kwangju,
Republic of Korea, ®Division of Statistics, Northern Illinois University, DeKalb,

IL 60115, U.S.A., °The Research Institute of Statistics, Chosun University,
Kwangju, Republic of Korea

ABSTRACT. Partially balanced diallel cross block designs with
m associate classes are defined and two general methods of
construction are presented. Two-associate class designs based upon
group divisible, triangular, and extended group divisible association
schemes obtained using the general methods are also given. Tables of
designs for no more than 24 parental lines are provided.

1 Introduction

Diallel crosses are commonly used to study the genetic properties of inbred
lines in plant and animal breeding experiments. Suppose there are p inbred lines
and let a cross between lines i and j be denoted by (3, j) withi < j = 1,2,...,p.
Let n. denote the total number of distinct crosses in the experiment. Our interest
lies in comparing the lines with respect to their general combining ability (gca)
parameters. The complete diallel cross (CDC) involves all possible crosses among
p parental lines with n. = p(p — 1)/2, as discussed in detail by Griffing [8] who
referred to it as type IV mating design. Gupta and Kageyama [10] gave a method
of constructing balanced block designs for CDCs using the nested balanced
incomplete block (BIB) designs of Preece [19]. Subsequently, Dey and Midha
[6], Das, Dey and Dean [4], Das and Ghosh [2], Prasad, Gupta and Srivastava
[18], and Choi and Gupta [1], among others, gave further methods of constructing
balanced diallel cross block designs.

Complete diallel crosses involve equal numbers of occurrences of each of the
p(p — 1)/2 distinct crosses. If r, denotes the number of times that each cross
appears in a complete diallel, then the experiment requires rep(p — 1)/2 crosses.
When p is large, sometimes it becomes impractical to carry out a balanced or even
a partially balanced complete diallel cross. In such situations, only a subset of all
possible p(p — 1)/2 crosses is used in the experiment, which is called a partial
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diallel cross (PDC). Das, Dean and Gupta [3] and Mukerejee [15] gave some
PDC block designs. Ghosh and Divecha [7] obtained partially balanced PDC
and CDC block designs by forming all pairs of crosses between the treatment
labels within each block of a conventional incomplete block design. The purpose
of this paper is to define partially balanced partial diallel cross block (PBDCB)
designs in a unified way and to give some new general methods of constructing
them. The PBDCB block designs are defined in Section 2. Two general methods
of construction and some classes of designs based on group divisible, triangular
and extended group divisible association schemes are given in Section 3. Finally,
tables of designs for p < 24 are provided in Section 4.

2 Preliminaries

Consider a block design Dy for a diallel cross experiment involvingn, = pr /2
distinct crosses laid out in b blocks of k crosses each, each cross replicated ¢
times, with each line contributing to r crosses. Let r;; be the number of
replications of cross (3,7), ¢ < j =1,2,...,p,, where

r. if the cross (7, ) occurs in Dy

Tij =
0 otherwise

Then, the total number of crosses n in Dy, is given by

P
n= Xp: Zr,-,- =7.n. = bk.

i=1 j=1
(i<3)

Following Gupta and Kageyama [10], the model for the data is assumed to be
Y=pl,+A1g+A2B+¢ 2.1

where Y is the n x 1 vector of responses, p is the overall mean, 1, is the ¢ x 1
vector of 1’s, and g = (91,92, ---,9p)" and 8 = (Bi, P2, ..., Bs)’ are the vectors
of p gea effects and b block effects respectively; the rectangular matrices A, JAD
are the corresponding design matrices, and € is the n x 1 vector of independent
random errors with zero expectations and constant variance o2. The information
matrix C for estimating all pairwise comparisons among the gca parameters is
then given by

1
C=G- EN;,N; 22)
where G = (gi;) is a symmetric matrix with g; = 7, gij = 7y for
i<j=12,...,p, and Ny is the p x b line versus block incidence matrix of

52



the design. The matrix N, is the usual incidence matrix; in the present context,
it is obtained by ignoring the crosses, and thus by considering 2k lines as the
contents of a block. Note that Ny1, = rl,, Ni1, = 2k1,.

Now consider two lines in each of the n crosses as the block contents of a
design D, with block size k = 2, and let N, denote the p x n incidence matrix of
the block design thus obtained. Then G = N_N.. Thus, the information matrix
C of equation (2.2) can be written as

C =2~ C.) 2.3)

where, taking lines as p treatments, C}, and C, are the usual information matrices
for designs with constant block size 2k and 2 respectively.

Following Das and Ghosh [2], we now present the definition of a balanced
CDC block design.
Definition 2.1. A diallel cross design D, will be called a balanced CDC block
design with parameters {p, n., b, 7., k, A} if kC takes the form

EN.N! - NyN} =a (Ip - %J,,)

for some positive constant a, where I, is the identity matrix of order p and
Jp = 1pl,.

Now we define partially balanced diallel cross block designs. The definition

requires the concept of an m-class association scheme, for which a reference may
be made to Raghavarao [20].
Definition 2.2. A PDC block design D, will be called an m-associate class
partially balanced PDC block (PBDCB) design with parameters {p,n¢,b, 7., k,
Qj,,...,0an} if the following holds for a given pair of lines 8 and  that are
ith associates,

kAe(p,z) = Mo(sm) = @i
where Ay(g,4) and A(g ) are the numbers of concurrences of the lines 3 and -y in
designs Dy and D, respectively, and a; is a constant independent of the pair of
ith associates chosen, i = 1,2,...,m. For CDCs, D, will be called a partially
balanced CDC block (PBCDCB) design.

Note that for finding the number of within-block concurrences of two lines,
the lines are taken as the contents of a block. Also, since each of the n, distinct
crosses is replicated r. times, A.(g ) equals 7. if the cross (83, <) appears in the
design and it is zero otherwise.

For an m-associate class PBDCB design, we can write down the following
spectral decomposition

m
kN:N; - NNy =" 6;L;

i=1
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where the matrices L; are idempotent, with respective nonzero eigen values 6;,
i = 1,2, ..., m. These idempotent matrices depend only on the association
scheme. The eigen values 8; can be obtained using the approach of John [14,
Section 9.5], and the idempotent matrices L; can be obtained as described by
Gupta and Singh [11]. The Moore-Penrose generalized inverse of the matrix C of
equation (2.2) is then given by

3 Two general methods of construction

Two widely applicable methods of constructing PBDCB designs are presented
in this section. The methods are given first in Theorems 3.1 and 3.2. PBDCB
designs obtained using the two methods based on specific association schemes are
then presented in Theorems 3.3—3.7.

Let D; be an m-associate class PBIB design with parameters v = D,
b=by,r=r1,k=2,A,As,-..,Am such that \; = 0fori(#s) =1,2,...,m,
and A\, = 1, where s € {1,2,...,m}. For any association scheme, these designs

can be obtained by taking all possible distinct pairs of lines that are sth associates.
Although D is based upon an m-associate class scheme, it has only two distinct
values of the X parameters. In this sense D, is equivalent to a two-associate class
PBIB design with a suitably defined association scheme. Though D, need not be
connected, NN/ is assumed to be of full-rank so that all pairwise comparisons
among gca parameters are estimable. We then have the following result.
Theorem 3.1. The existence of an m-associate class PBIB design D; with
parameters p, by, 71,k = 2, = 1A = 0, i(# s) = 1,2,...,m, and the
existence of a BIB design D, with parameters v = by, ba, 72, k2, A implies the
existence of an m-associate class PBDCB design with parameters {p,n. = b1,
b=bo,rc=ro,k=ko,o5 =Aby —7%), ;s = —1IX i(#s)=1,2,...,m}.
Proof. The n, = b; distinct crosses of the PBDCB design are obtained by forming
a cross between the two lines in each of the b; blocks of D;. Let these crosses
be serially numbered 1 through n.. A PBDCB design Dj of the theorem is then
obtained by replacing the ith treatment of D5 by the ith cross, i = 1,2, ..., n..
To prove the theorem we need to show that

kAc,y) = Mg,y = @i

where the symbols are as in Definition 2.2. We first find Ay(g, ) for the PBDCB
design of the theorem, when J3,~ are sth associates. As A; = 1, the lines 3,
occur together in exactly one block of D;. Let this particular block be denoted
by gg~- Further, for ry > 2, let gg(gy) denote the set of 11 — 1 blocks of D,
in which B(7) occurs with a treatment other than (8). Consider the 2r; — 1
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blocks gg, gs, and g,, and let g;, go be any two of these blocks. The method
of construction of Dy causes gy, g» to appear together in A blocks of the PBDCB
design Dy. Since gg. is replicated 7 times in Dy, the contribution to Ap(3,y) from
9p+ itself is given by ro. If r; > 2 then the contributions to Ap(s,v) may also
arise from the other pairs (g1, g2) € (93+, 98, 9)- For determining all such other
contributions to Ay(g ), it is helpful to consider the following 4 cases separately
for each of the other pairs (g1, g2) € (9p+, 98, 9+):
(i) both of g,, g2 belong to gg or to g ;

(ii) g1 belongs to gg and g2 belongs to g, ;
(iif) g, belongs to gg and g» = gg., ;

(iv) g1 belongs to g, and g» = gg-.

For (i), the pair g;, go does not contribute to Ab(8,7)» as the 7 — 1 blocks of gg (g9+)
do not contain -y(8). For (ii), as each such pair g, g, appears together in ) blocks
of Dy, it contributes X to Ab(B+)- Since there are (r; — 1)2 such pairs of g;, g
possible, the total contribution to Ay(8,~) under (ii) is given by A(r; — 1)2. Under
case (ii), in addition to the contribution to Ay(g,) from gg., itself which has been
considered already, each such pair contributes A to Ay(g ). As there are 7, — 1
such pairs, the total additional contribution to Ay(g .,y under (iii) is then given
by A(r; — 1). Similarly, the contribution to Ap(3,) under (iv) is also given by
A(ry —1). Thus,

’\b(ﬁ,-y) = 7o+ A — 1)2 +2A(r — 1) 34
= A(r? — 1) + ra, if(B,7) are sth associates.

Next, we find Ay (g ,) when 3,  are not sth associates, i.e. any two treatments
for which A\; = 0, i(# s) = 1,2,...,m. Then, along similar lines it can be
verified that the total concurrence Ay(g,,) in Dy for any two such treatments is
given by

Ab(B,y) = T2, if (B,7) are ith associates, i(# s) = 1,2,...,m. (3.5)

Finally, for determining the concurrences A(g,,), note that each of the n,
distinct crosses is replicated r, times giving a total of n = Ton. crosses of Dy.
Thus,

Acy) = T2 if (B,7) are sth associates

. (3.6)
0 if (B,7) are ith associates,i(# s) = 1,2,...,m }
Also, since D, is a BIB design, we have

A(by — 1) =ro(ks ~ 1). 3.7
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Hence, using (3.4), (3.5), (3.6) and (3.7) we have

Kdegm — Mgy = ka2 = Al —1)—m
= 7‘2(]62 - 1) /\(1‘% - 1)
by —73)  if (8,7) are sth associates

= —ri\  otherwise.

Hence the theorem.

As mentioned previously, since D; has only two distinct values of the
parameters );, it is equivalent to a two-associate class PBIB design. The
me-associate class PBDCB designs of Theorem 3.1 also have two distinct
values of the corresponding parameters, that is the o parameters. Therefore, these
PBDCB designs are also equivalent to two-associate class PBDCB designs with
appropriately defined association scheme.

We now present a method of construction using a-resolvable PBIB designs.
Theorem 3.2. The existence of an a-resolvable m-associate class PBIB design
D; with parameters p,by,71,k = 2,A\; = Oorl,¢ = 1,2,...,m implies
the existence of an m-associate class PBDCB design with parameters
{pync=bi,b=rja,rc=1k= ap/2, a; = kdi—ary,i=1,2,..., m}.
Proof. In this case also, the crosses of the PBDCB design are obtained by formm e
a cross between the two lines in each of the b; blocks of D;. Then, the k = ap/2
crosses belonging to the jth a-replication set of Dy constitute the jth block of the
PBDCB design,j = 1,2, -+, r1/c. It can be verified that o; = kA; — ar in
the PBDCB design thus obtained, 7 = 1, 2, ..., m. Hence the theorem.
Example 3.1. Let D, be a resolvable group divisible (GD) design having
parameters p = 6, by = 12, . = 4, k=2 A =0, 2 =1, with the
following replication sets:

1st replication set : (1,3),(2,5), (4,6)
2nd replication set : (1,4),(2,6),(3,5)
3rd replication set : (1,5),(2,4),(3,6)
4th replication set : (1,6), (2,3),(4,5)

Then by taking each replication set as one block, Theorem 3.2 yields a PBDCB
desngn with parametersp = 6, n, = 12, b =4, 7. =1, k=3, on = —4,
= -1
We now present some GD, triangular, and extended group divisible (EGD)
PBDCB designs.

3.1 GD designs

For GD designs, p = mn lines are assigned to m groups of size n each, where
m,n are positive integers. Then, a GD design D, with parameters p = mn,

56



by =mn(n—1)/2,r, =n-1,k = 2, \; = 1, A2 = 0 can always be constructed.
Thus, we have the following from Theorem 3.1.
Theorem 3.3.  The existence of a BIB design D, with parameters
v = mn(n — 1)/2,by,72,ks, A, where n > 2, implies the existence of a
GD PBDCB design with parameters {p,n, = mn(n — 1)/2,b = by, 1. = 73,
k=ky,ar =An—-1){n(m—-2)+2}/2,a = —(n — 1)2A}.
Example 3.2. For m = 2,n = 3, take D; as the GD design with parameters

=b =6,r1 =k =2\ =1,A =0, and D, as the BIB design with
parameters v = 6,0y = 10,7 = 5,k2 = 3,A = 2. Theorem 3.3 then yields a
GD PBDCB design with parameters {p = 6,n, = 6,b = 10,7. = 5,k = 3,
a) = 4,(!2 = —8}

There exists a series of BIB design with parameters v = 6(t + 1),
b = 2(t+1)(6t +5),r = 6t+ 5,k = 3,A = 2, where ¢ is an integer
[5, p. 120]. Taking a design belonging to this series as Dy with m = ¢ + 1
and n = 4 in Theorem 3.3, we have the following.
Corollary 3.1 There exists a GD PBDCB design with parameters
{p=4t+1),n. =6+1),b=20t+1)6t+5),r. =6t+5k=3,
a; =6(2t - 1),a; = —18}.

Similarly, using D; as the GD design with parameters p = mn,
b = n’m(m - 1)/2,ry = n(m — 1),k = 2,A\; = 0,\2 = 1 in Theorem
3.1, we have the following.
Theorem 3.4. The existence of a BIB design D, with parameters
v = mn*(m — 1)/2,bs,72, ks, A implies the existence of a GD PBDCB
design with parameters {p,n. = mn%(m — 1)/2,b = by, 7. = 19,k = ko,
a1 = —An?(m - 1)(m - 2)/2,a; = —An%(m - 1)},

3.2 Triangular designs

Triangular designs have p = n(n — 1)/2 lines, where n is an integer greater
than 2. Then for n > 3, taking all distinct pairs of lines that are first associates
yields a triangular design D), with parameters v = p = n(n - 1)/2,
by = n(n - 1)(n - 2)/2,r, = 2(n —2),k = 2,A\; = 1,A; = 0. Using this
triangular design in Theorem 3.1, we have the following.

Theorem 3.5. The existence of a BIB design D, with parameters
v = n(n — 1)(n — 2)/2, by, 12, k2, A, where n > 3, implies the existence
of a triangular PBDCB design with parameters {p,n, = n(n — 1)(n — 2)/2,
b=1bs,rc =712,k =ky,01 = A(n — 2)(n? — In + 16)/2, s = —4(n — 2)27}.

Similarly for n > 4, there also exists a triangular design D, with parameters
v=p=n(n-1)/2,b = n(n-1)(n - 2)(n - 3)/8,71 = (n - 2)(n — 3)/2,
k = 2,A; = 0,A2 = 1 obtained by interchanging the roles of the first and the
second associates. Thus, we have the following.

Theorem 3.6. The existence of a BIB design D, with parameters
v = n(n - 1)(n - 2)(n — 3)/8, ba, 2, ka2, A, where n > 4, implies the
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existence of a triangular PBDCB  design  with  parameters
{p,ne = n(n = 1)(n —2)(n - 3)/8 b = by, e = 13, k = ky,
a1 = AMn — 2)(n — 3)(9n — n? — 12)/8, a2 = —A(n — 2)}(n — 3)%/4}.

3.3 Extended group divisible (EGD) designs

Hinkelmann and Kempthorne [13] defined the EGD association scheme as a
generalization of the GD association scheme. In an EGD design,

s
p=[[m
=1

where the parameters m;, 1 = 1,2,..., f, and f are positive integers. Further,
the lines are labeled using f-digit numbers aas...ay, where a; = 0,1,...,
mi—1, i=1,2,..., f. Letz = (z1,%2,...,25), zi =0o0r1, i =1,2,..., f.
Then, two treatments in the EGD scheme are z-associates where z; = 1 if the
ith factor occurs at the same level in both the treatments and z; = 0 otherwise.
Let A(z) denote the number of times two treatments which are z-associates occur
together within blocks of the design. Note that A(z) depends only on z and is
independent of the specific pair of the z-associates chosen. The EGD scheme was
earlier considered by Nair and Rao [16]} and Shah [21], and has been referred to as
the binary number association scheme by Paik and Federer [17]. A detailed study
of the EGD scheme is due to Hinkelmann [12]. Clearly, a total of 2/ — 1 distinct
values of \(z) are possible in an EGD design. An EGD design in which only one
of these values is non-zero is a first-order design, see Gupta [9]. It is easy to verify
that for an EGD design, the number of z-associates of any treatment is given by

f
n(z) = H(mi — 1),
i=1

Let D; be a first-order EGD design with parameters

f
p= Hmi,bl = pn(z)/2,m1 = n(z),k =2.
i=1
A first-order EGD design D; can be constructed for each of the distinct values of
zo = (10, Z20,- - -, Zf0), Tio = 0or 1, giving a total of 2f — 1 such first-order
designs. For each of these 2f — 1 designs, we have the following.
Theorem 3.7. The existence of a BIB design D, with parameters v = pn(zo)/2,
ba, T2, k2, A implies the existence of an EGD PBDCB design with parameters
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f
{p = Hmi) ne = P”l(xo)/2, b = b2y Te = T2, k = kz:
i=1

a(zo) = An(zo)[p — 2n(x0)]/2,a(z) = —{n(zo)}?) forz # =z}, where
g = (zlo,xzo,. ..,:rfo), Tio = 00]’1, 1= 1,2,.. .,f.

Since the designs of Theorem 3.7 have only two distinct values of the o pa-
rameters, these designs are equivalent to two-associate class PBDCB designs.

4 Table of designs

We now give GD, triangular, and EGD PBDCB designs for p < 24 obtained using
Theorems 3.2—3.7. The designs are presented in Tables 1—4. As noted earlier,
since the parameters o; of a PBDCB design have two distinct values, the designs
are equivalent to two-associate class PBDCB designs. For a two-associate class
PBDCB design we have

6102, iflines ¢ and j are sth associates

6,02, otherwise ’

var(g; — §;) = {
where s is as in Theorem 3.1, and 6,, 8 are constants. Further,

ey, iflines? and j are sth associates
es, otherwise

el ~ ;) = { ,
where eff(g; — §;) denotes the efficiency of the design for estimating the
elementary contrast g; — g; relative to an appropriate randomized complete block
design. The efficiencies e, and e, were computed using equation (16) of Singh
and Hinkelmann [22]. These two efficiencies of PBDCB designs are also
presented in the tables.

The parameters of the BIB designs D, used in constructing the PBDCB
designs of Tables 1-3 are given by v = n,, b, r = 7., k, A with
A = re(k —1)/(n. — 1). In Tables 1 and 2, the column labeled as D,(m,n)
gives the values of m and n for GD designs D; used in Theorems 3.3 and 3.4. For
P £ 24, the EGD designs obtained using Theorem 3.7 were found to be
equivalent to GD designs. Thus EGD PBDCB designs are not listed separately
as these designs are included in Table 1. GD designs D, used in constructing the
designs of Table 4 also have A, = 1 and \;(i # s) = 0, i = 1,2, and the values
of m,n, and s are given in the column labeled as Dy (m, n, s).
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Table 1. GD PBDCB designs obtained using Theorem 3.3

P Ne b Te k a1 (83} €1 €9 D1 (m, n)
6 6 15 5 2 2 -4 0.375 0.500 2,3
6 6 10 5 3 4 -8 0500 0.667 2,3
6 6 6 5 5 8 -16 0.600 0.800 2,3
6 6 15 10 4 12 -24 0563 0.750 2,3
8§ 12 44 11 3 6 -18 0566 0.679 2,4
g 12 22 11 6 15 -45 0.707 0.849 2,4
9 9 12 4 3 5 -4 0429 0571 33
9 9 36 8 2 5 -4 0321 0429 33
9 9 18 8 4 15 -12 0482 0.643 33
9 9 12 8 6 25 -20 0536 0714 33
9 9 9 8 8 35 -28 0563 0.750 33
29 9 18 10 5 25 -20 0514 0.686 33

10 20 38 19 10 36 -144 0799 0914 2,5

12 12 44 11 3 16 -8 0400 0.533 4,3

12 12 33 11 4 24 -12 0450 0.600 43

12 12 22 11 6 40 -20 0500 0.667 43

12 18 102 17 3 18 -18 0.518 0.621 34

12 18 34 17 9 72 -72 0690 0.828 34

12 30 58 29 15 70 -350 0.850 0.944 2,6

14 42 8 41 21 120 -720 0.881 0.961 2,7

15 15 3 7 3 11 -4 0385 0513 53

15 15 15 7 7 33 -12 0495 0.659 5.3

15 15 15 8 8 44 -16 0505 0.673 53

15 15 35 14 6 55 -20 0481 0.641 53

15 30 58 29 15 196 -224 0780 0.891 35

16 24 184 23 3 30 -18 0497 0.596 44

16 24 46 23 12 165 -99 0683 0.820 44

i6 56 56 11 11 14 98 0850 0915 2,8

16 56 70 15 12 21 -147 0.857 0.923 2,8

18 45 99 11 5 20 -25 0.69 0.773 3,6

18 45 55 11 9 40 -50 0773 0.859 3,6

18 45 45 12 12 60 -75 0.797 0.885 3,6

20 40 40 13 13 96 -64 0750 0.857 45

20 30 290 29 3 42 -18 0485 0.582 54
21 21 30 10 7 51 -12 0474 0.632 7,3
21 21 42 12 6 51 -12 0461 0614 7.3
21 21 35 15 9 102 -24 0491 0.655 7,3
24 36 420 35 3 5S4 -18 0478 0574 6.4
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Table 2. GD PBDCB designs obtained using Theorem 3.4

ne b r. k a Qs e e Di(m,n)

p
6 12 4 11 3 -8 -32 0.214 0.606 3.2
6 12 33 11 4 -12 -48 0.307 0.682 3.2
6 12 22 11 6 -20 -80 0437 0.758 32
8 24 46 23 12 -132 -396 0.630 0.893 4,2
9 27 39 13 9 -36 -144 0437 0.791 33
9 27 27 13 13 -54 -216 0533 0.822 33
10 40 40 13 13 -96 -256 0.624 0913 52
12 48 94 47 24 -368 -1472 0.611 0.861 34
12 54 106 53 27 -702 -2106 0.716 0925 4,3

Table 3. Triangular PBDCB designs obtained using Theorems 3.5 and 3.6

p N b re k o as e es
Theorem 3.5
10 30 58 29 15 -84 -504 0.846 1.000
15 60 118 59 30 145 -2900 0.883 0.993
Theorem 3.6
10 15 35 7 3 6 -9 0536 0357
10 15 15 7 7 18 27 0.689 0.459
10 15 15 8 8 24 -36 0.703 0.469
10 15 35 14 o6 30 -45 0.670 0.446
15 45 99 11 5 9 -36 0.771 0.617
15 45 55 11 9 18 -72  0.857 0.685
15 45 45 12 12 27 -108 0.883 0.707
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Table 4. GD PBDCB designs obtained using Theorem 3.2

p no b re k o a e e a Di(m,n,s)
6 12 4 1 3 -4 -1 1.000 03833 1 32,2
6 12 2 1 6 -8 -2 1000 03833 2 3,2,2
8 12 3 1 4 2 -6 0778 0933 1 24,1
8 24 6 1 4 -6 -2 1000 0933 1 4,22
9 27 3 1 9 -12 -3 1.000 0.857 2 3,3,2

10 40 8 1 5 -8 -3 1000 0964 1 52,2

10 40 4 1 10 -16 -6 1.000 0964 2 52,2

12 18 3 1 6 3 -3 0733 0880 1 34,1

12 30 5 1 6 1 -5 0.880 0978 1 2,6,1

12 48 8 1 6 -8 -2 1000 088 1 3,42

12 54 9 1 6 -9 -3 1000 0943 1 4,372

12 60 10 1 6 -10 -4 1000 0978 1 6,2,2

14 84 6 1 14 -24 -10 1000 0985 2 72,2

15 75 5 1 15 -20 -5 1.000 0.897 2 3,52

16 56 7 1 8 1 -7 0918 0989 1 2,8,1

16 112 14 1 16 -28 -12 1.000 0989 2 8,2,2

18 45 5 1 9 4 -5 0850 0944 1 3,6,1

18 108 6 1 18 -24 -6 1.000 0911 2 3,6,2

18 162 8 1 18 -32 -14 1.000 0992 2 92,2

18 135 15 1 9 -15 -3 1000 0981 1 6,3,2

20 30 3 1 10 7 -3 0704 0844 1 54,1

20 150 15 I 10 -15 -5 1.000 0960 1 452

20 180 18 1 10 -18 -8 1.000 0993 1 10,2,2

20 160 8 1 20 -16 -6 1.000 0974 2 54,2

22 220 10 1 22 -40 -18 1.000 0995 2 11,2,2
24 36 3 1 12 9 -3 0697 0836 1 6,4,1
24 60 5 1 12 7 -5 0836 0929 1 4,6,1
24 84 7 1 12 5 -7 0.896 0965 1 3,8,1

24 192 8 1 24 -32 -8 1000 0929 2 3,8,2

24 216 18 1 12 -18 -6 1.000 0965 1 4,6,2

24 252 21 1 12 -21 -9 1.000 0990 1 8,3,2
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