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ABSTRACT. A (p,q) graph G is edge-magic if there exists a bijec-
tive function f : V(G) U E(G) — {1,2,...,p+ q} such that f(u) +
f(v) + f(uwv) = k is a constant, called the valence of £, for any edge
uv of G. Moreover, G is said to be super edge-magic if f(V(G)) =
{1,2,...,p}. Every super edge-magic (p, q) graph is cordial, and it is
harmonious and sequential whenever it is a tree or ¢ > p. In this pa-
per, it is shown to be edge-antimagic as well. The super edge-magic
properties of several classes of connected and disconnected graphs
are studied. Furthermore, we prove that there can be arbitrarily
large gaps among the possible valences for certain super edge-magic
graphs. We also establish that the disjoint union of multiple copies
of a super edge-magic linear forest is super edge-magic if the number
of copies is odd.

1. INTRODUCTION

Lately, new life has been injected into the subject of edge-magic label-
ings of graphs through a paper by Ringel and Lladé [10]; the study of
which originated in 1970 in two papers by Kotzig and Rosa [7, 8]. This has
led naturally to the definition of a particular type of edge-magic labelings,
called super edge-magic labelings, introduced by Enomoto, Lladé, Naka-
migawa and Ringel {2]. These arc interesting since relationships between
super edge-magic labelings and previously well studied labelings have been
found by the authors (3], e.g., every super edge-magic (p, ¢)graph is cor-
dial and whenever it is a tree or ¢ > p it is harmonious and sequential as
well. Thus, the construction of classes of super edge-magic graphs enlarges
the collection of graphs that are, for instance, known to be harmonious.
Also, since there are few graphs that were previously shown to be (super)
edge-magic (such as caterpillars and cycles), we have decided to initially
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increase our knowledge of the problem by investigating graphs that are
somehow related to these. Another motivation is to develop the theoretical
tools necessary to deal with questions that pertain to (super) edge-magic
labelings of graphs. Indeed, the obvious proof technique to show that a par-
ticular class of graphs is (super) edge-magic is to provide a labeling of it;
however, proving that a graph that satisfies the elementary necessary con-
ditions is not (super) edge-magic can be far harder. This accumulation of
knowledge is, of course, done with the hope that we may eventually assault
the central question of the topic, that is, are all trees (super) edge-magic?

In this paper, we present several classes of (super) edge-magic graphs
(connected and disconnected); noting that, in the past, it has been difficult
to obtain classes of disconnected graphs that are cordial or sequential.

In order to formalize this presentation, we introduce some necessary
definitions and refer the reader to Chartrand and Lesniak (1] or Hartsfield
and Ringel [6] for all other terms and notation not provided in this paper.

For a (p, q) graph G, a bijective function

f:V(G)UE(G) = {1,2,... ,p+q}

is an edge-magic labeling of G if f(u)+ f(v)+ f(uv) = k is a constant, which
is independent on the choice of any edge uv of G. If such a labeling exists,
then k is called the wvalence of the labeling and G is said to be an edge-
magic graph. Furthermore, fis a super edge-magic labeling if f(V(G)) =
{1,2,...,p}. Thus, a super edge-magic graph is a graph that admits a
super edge-magic labeling.

We will find the following basic results useful; see [3].

Lemma 1.1. A (p,q) graph G is super edge-magic if and only if there ezists
a bijective function f : V(G) — {1,2,...,p} such that the set

S = {f(u) + f(v) : wv € E(G)}

consists of q consecutive integers. In such a case, f extends to a super
edge-magic labeling of G with valence k = p+ g+ s, where s = min(S) and

S ={f(u)+f(v):w € E(G)}
={k-(p+1),k—(+2),...,k—(p+4q)}.

In light of this result, it suffices to exhibit the vertex labeling of a super
edge-magic graph. However, we will also provide the valences to increase
the clarity of our results.

The next result is particularly useful in showing that a regular graph is
not super edge-magic; see {3].

Lemma 1.2. Let G be an r-regular super edge-magic (p,q) graph, where
r > 1, then q is odd and the valence is (4p +q + 3)/2.
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In the following lemma, Enomoto, Lladé, Nakamigawa and Ringel [2]
provide an upper bound for the size of super edge-magic graphs.

Lemma 1.3. If a (p,q) graph is super edge-magic, then ¢ < 2p — 3.

This lemma together with the First Theorem of Graph Theory implies
that the minimum degree is at most 3 for every super edge-magic graph.

Now, observe that given an edge-magic labeling f of a (p, g) graph, it is
always possible to find a complementary edge-magic labeling f such that
f(z) =p+q+1- f(z) for every z € V(G)UE(G); see [7]. Notice that this
operation does not preserve super edge-magic labelings unless G & K.

The following two lemmas provide a simple but often powerful method
to find new edge-magic graphs from known edge-magic graphs.

Lemma 1.4. Let G be an edge-magic graph, f an edge-magic labeling of
G, and u,v € V(G) such that f(u)+ f(v) = k, where k is the valence of f,
then G + wv is edge-magic.

Proof. Notice that if f(u) + f(v) = k, then uwv ¢ E(G); for otherwise
f(uv) = 0. Therefore, we immediately obtain an edge-magic labeling g of
G +uv by letting g(z) = f(z) +1 for every z € (V(G) U E(G)) — {uv} and
gluww)=1.1

Lemma 1.4 cannot be applied if f is a super edge-magic labeling of a
connected graph G. To see why, let G be a super edge-magic graph with a
super edge-magic labeling f. By Lemma 1.1, the valence of f is

k=p+q+min ({f(u) + f(v) : uwv € BE(G)}).

Thus, k > p+qg+1+2 > 2p+2since G is connected so that ¢ > p~ 1.
Now,

max ({f(v) + f(v) :ww € E(G)}) <p+(p-1)=2p—1
since f is a super edge-magic labeling. Therefore,
fu)+ f(v) <2p—-1<2p+2<k.

Whereas Lemma 1.4 concerns the addition of an edge, our next lemma
involves the deletion of an edge.

Lemma 1.5. If G is an edge-magic graph and f is an edge-magic labeling
of G for which there exists e € E(G) such that f(e) = 1, then G — e is
edge-magic.

Proof. We immediately obtain an edge-magic labeling g of G — e by letting
9(z) = f(x) — 1 for every z € (V(G) U E(G)) — {e}. &
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2. RESuLTS ON PATH-RELATED GRAPHS

Paths were shown to be super edge-magic by Ringel and Lladé [10].
Thus, in this section, it is natural to explore some infinite classes of graphs
obtained from paths.

The following result is of interest because it shows how taking the k-th
power of a super edge-magic graph may or may not imply that the resulting
graph is super edge-magic. Observe that the graphs PZ = P, = K, and
P? = K3 are clearly super edge-magic.

Theorem 2.1. For every integer n > 4, the graph G = P¥ is super edge-
magic if and only ifk =1 or 2.

Proof. The order of P3 is n and its size is 3n — 6 whenever n > 4; so, by
Lemma 1.3, P¥ is not super edge-magic for k > 3.
For the converse, let G be the graph defined as follows:

V(G) = {v;i:i=1,2,...,n}

and

E(G) = {'Ui'vi+l 1i=1,2,...,n— 1}U{’U,"U,’+2 1 =1,2,... ,n—2}.

Then consider the vertex labeling f : V(G) — {1,2,...,n}suc h that
f(v;) = i. Consequently, f(vi)+f(viq1) = 2i+1foreachi with1 < i <n-1
and f(v;) + f(vig2) = 2i + 2 for every i with 1 <i <n— 2. Thus,

{f(w) + f(v):wv € E(G)} = {3,4,...,2n - 1}

is a set of 2n — 3 consecutive integers.
Therefore, it follows that f is a super edge-magic labeling of G with
valence 3n by Lemma 1.1, obtaining the desired result. il

The following result is due to Kotzig and Rosa [7].

Theorem 2.2. The graph nPs is super edge-magic if n is odd. Conversely,
if nPs is edge-magic, then n is odd.

The next corollary provides a necessary condition for a given labeling of
the vertices and edges of a graph to be edge-magic.

Corollary 2.3. Let G be a graph, and assume that H is o 1-regular sub-
graph of G of even size. Then a labeling of G, where the vertices and edges
of H are labeled with consecutive integers, is never an edge-magic labeling.

Proof. Assume, to the contrary, that there exists an edge-magic labeling of
G and a 1-regular subgraph H of G of even size whose vertices and edges
are labeled with consecutive integers. Now, let s be the smallest integer
assigned to any vertex or edge of H. Subtract s — 1 from each of the labels
of H. Then this produces an edge-magic labeling of nP;, where n is cven,
contradicting the previous theorem. R



The next theorem partially extends Theorem 2.2 in terms of linear forests
(forests whose components are paths).

Theorem 2.4. Let FF = U£=1 P,,, where n; is a positive integer for all
values of i, be a super edge-magic linear forest. Then mF is super edge-
magic if m is odd.

Proof. For m = 1, the result is trivial, so we assume that m > 3.
Let

4
V(F)=J{v;:1<5<ni)
i=1

and
!

E(F) = |J {vijvij+1: 1 S5 < mi -1},
i=1
and suppose then that f : V(F) — {1,2, e ,'25:1 ni} is a vertex labeling
that extends to a super edge-magic labeling of F with valence k.
Now, let mF be the linear forest with

m I
vimF) = J|J{vt;:1<5 <}

t=11i=1
and

m |
EmFy=JJ{vt vl s :1<5<ni—1}.
t=11i=1

Then consider the vertex labeling g : V(mF) — {1,2,... ,m Zéﬂni}
such that

mf(v;;) —m+t, ifjisevenand 1 <t < m;
g(vi;) =< mf(vi;)+ 52+, ifjisoddand1<t< 2L
mf(vi;) + 1522 +¢, ifjisodd and ZEL <t < m.

Finally, notice that g extends to a super edge-magic labeling of mF with
valence mk + 3(1 —m)/2. I

The converse of the previous theorem is not true. For example, the linear
forest 2Py is super edge-magic (label consecutively the vertices of one path
1, 7, 2 and 5, and the ones of the other 3, 8, 4 and 6 to obtain a super
edge-magic labeling of 2P,;wit h valence 21).

The previous theorem makes it worthwhile to investigate classes of super
edge-magic linear forests.

It is interesting, in light of Kotzig and Rosa’s result for nP;, to point
out that the next result holds for all positive integers n.
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Theorem 2.5. The linear forest F = Py UnP, is super edge-magic for
every positive integer n.

Proof. Let F be the linear forest with

and

V(F) = {z,y,2} U{usvi : 1 <i<n}

E(F) = {zy,yz} U{uv; : 1 <i<n}.

‘We now consider three possible cases.

Case 1:

Case 2:

Case 3:

Suppose that n = 1, and let f : V(F) — {1,2,...,5} be the
vertex labeling of F such that f(z) = 2, f(y) = 3, f(2) = 4,
f(u1) =1 and f(v1) = 5. Then f extends to a super edge-magic
labeling of F' with valence 13.

Suppose that n = 2m + 1, where m is a positive integer, and let
F:V (F) > {1,2,...,2n + 3} be the vertex labeling of F' defined

as follows:
4

3m +3, ifw=uz;
2m + 3, ifw=1y;
m+3, if w=z;
flw)=< 1, ifw=u;and1<i<m+2;
i+3m+3, fw=v;and1<i<m+2;
i+1, fw=uy;andm+3<i<2m+1;
| i+m+1, fw=vandm+3<i<2m+1L

Then f extends to a super edge-magic labeling of F' whose valence
is (9n +17)/2.

Suppose that n = 2m, where m is a positive integer, and let f :
V(F) — {1,2,...,2n + 3} be the vertex labeling of F' obtained

as follows:

2m + 2, ifw=ux;
m+1, fw=uy,
2m + 3, ifw=z
flw)y=1< 1, fw=u;and1<i<m;
i+3m+3, fw=v,and1<i<m;
i+1, fw=u;andm+1<i<2m;
| i+m+3, fw=v;andm+1<1i<2m.

Then f extends to a super edge-magic labeling of F whose valence
is (9n + 16)/2.

Therefore, we conclude that F is super edge-magic. il

Another infinite class of linear forests is shown to be super edge-magic
in the following theorem.
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Theorem 2.6. The linear forest F = P,UP, is super edge-magic for every
integer n 2> 3.

Proof. Let F = P, U P, be the linear forest with

and

V(F) = {u,u2}U{v; : 1 <i<n}

E(F) = {U11I,2}U{1)i1),;+1 :1<i<n- 1},

and then consider a vertex labeling f:V (F) — {1,2,...,n+2}.
‘We now proceed by cases.

Case 1:

Case 2:

Case 3:

Assume that n = 0 (mod 4), and let f(u1) =1; f(ue) = dn+3;
and
2+ 2, if j = 1;
5y 4, ifj=3
N_ ) 2, fj=4iand1<i< g
FE) =19 ay gty if j=4i+1and1<i< 254
2i +3, if j=4i+2and 0<i< 274
M 2043, ifj=4i+3and1<i< 2,

Then f extends to a super edge-magic labeling of F' with valence
(5n + 12)/2. ,
Assume that n = 1 (mod 4), and let f(u1) = 1; fluz) = n+2;
and

24048 5f 4 is odd;
flv;) = 3-7""?;&, if j is even and 2 < j < 251,

d=nts if jisevenand 23 <j<n-1.

Then f extends to a super edge-magic labeling of F with valence
(57 + 11)/2.

Assume that n =2 (mod 4), and let f(u;) = 1; f(uz) = in+2;
and

(n+2, ifj=1;

n, if7=3;

n+1, if 7 =n;
fluj)=¢ 3— 2i+2, ifj=4iand1<i< 272

n—2i, ifj=4i+1and1<i< 253

32— 2 -1, ifj=4i+2and 0<i< g8,

( n-2i+1, ifj=4i+3and1<i< b

4

Then f extends to a super edge-magic labeling of F' with valence
(5n + 10)/2.
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Case 4: Assume that n = 3 (mod 4), and let f(u;) = 1; f(u2) =n+2;

and
us, if jis odd and 1 < j < 2515
flo;) = #—'2'—"'2, ifjisoddand-";,'—sSan;
J nt3 - if jis even and 2 < j < 253
j_+2_f’ ifjisevenand%’sjgn—l.

Then f extends to a super edge-magic labeling of F' with valence
(5n +11)/2.

Therefore, we conclude that F is super edge-magic. i

3. RESULTS ON STAR-RELATED GRAPHS

In [2], it was shown that the complete bipartite graph Kmn is super
edge-magic if and only if m = 1 or » = 1. The next theorem partially
extends their result by determining all edge-magic and super edge-magic
labelings of the star Ky .

Theorem 3.1. Bvery star K, , is super edge-magic. Moreover, there are
ezactly 3 -2 ™ distinct edge-magic labelings of K1, of which only two are
super edge-magic labelings up to isomorphisms.

Proof. First, notice that the order of Ky n isn+1 and its size is n. Next,
define the star G = K, as follows: V(G) = {u}U{v;:1<i<n} and
E(G) = {ei=wuv;:1<i<n}. Assume that there exists an edge-magic
labeling f of G, and let k be its valence. Then

(Z (f(vi) + f(ei))> +nf (u) = nk.
i=1

Thus, n divides 3" (f(vs) + f(e1))-
i=1

Now,

1+--4(2n+1)

(Z (flw:) + f(ei») + f(u)

i=1
= 20?2 +3n+1,

SO
S (f(u) + fles)) = 20" +3n + (1 - f(u).
t=1

Hence, n divides f(u) — 1, but 1 < f(x) < 2n + 1, which implies that f(u)
is1l,n+1or2n+ 1. Since

nk =2n®+3n+1+ (n—1)g(u),
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it follows that k& = 2n + 4, 3n + 3 or 4n + 2, which correspond to f(u) =1,
n+ 1, 2n + 1, respectively.

It suffices now to exhibit labelings with each of the three possible va-
lences, and then describe how to obtain all of the other labelings from
them. Let f;, f2, and f3 be edge-magic labelings of G defined as follows:

fi(u) =1, Hw)=1+1, fi(uy)=2n+2-1,
fo(u)=n+1, fo(w) =1, fouvy) =2n +2 -4,
fa(u)=2n+1, fa(vi)=1,and fa(uv;)=2n+1-1,
where 1 < i < n. Then the valences of f1,f 2,an d f5 are 2n+4, 3n+3, and
4n + 2, respectively. Notice that all other edge-magic labelings of G can be
obtained by permuting the labels of uv; and v; for any i with 1 < i < n,
and that of these 3 -2 ™ possible permutations, only f; and f; are super
edge-magic labelings of G. 11

The following corollary is an immediate consequence of the proof of the
preceding thecorem. It is interesting since Godbold and Slater [5] have
conjectured that for sufficiently large cycles, there are no gaps between the
possible valences.

Corollary 3.2. Forevery integer n > 2, there exists a super edge-magic
graph G such that |ky — ka| > n — 1, where k) and ko are two possible
distinct valences of G.

The next corollary describes how new super edge-magic graphs can be
found from known super edge-magic graphs.

Corollary 3.3. For every positive integer n, the graph Ko + K, is super
edge-magic.

Proof. Let G = K, be defined as in the proof of the previous theorem,
and consider the following edge-magic labeling g of G: g(u) = n+1, g(v;) =
2(n + 1) — 7 and g(uww;) = i for 1 < ¢ < n. Now, notice that the valence &
is 3n+3 and g(v;) + g(v;) =4n+3—ifor2<i< n.

Then define the graph H = K, + K, as follows: V(H) = V(G) and
E(H) = E(G)U {v,v; : 2 < i < n}; and consider the following edge-magic
labeling of H with valence 6n: f(v) = g(v) + n — 1 for any vertex v of H,
fluv)) = gluvi) +n—1for1 <i<nand flui;)) =i—-1for2<i<n.

Finally, observe that f is a super edge-magic labeling of this graph since
f(v) > f(e) for any vertex v and edge e of H. |

Notice that the above corollary establishes the sharpness of Lemma 1.3.
We remark that from the preceding proof, we can obtain a sequence
of super edge-magic graphs as follows. Take the labeling f employed for
Kz + Kuin  the proof and then remove the edge labeled 1 from it and
decreasc all labels by 1. Continue in this fashion until arriving to K ,.
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Every such labeling of each graph is edge-magic by Lemma 1.5 and its
complementary labeling is super edge-magic.

The above corollary also allows us to characterize all the super edge-
magic complete m-partite graphs.

Theorem 3.4. The only super edge-magic complete m-partite graphs are
K15 and Ky 1, wheren > 1.

Proof. Recall that Enomoto, Lladé, Nakamigawa and Ringel [2] have al-
ready shown that the star K », n > 1, is the only super edge-magic com-
plete bipartite graph. Furthermore, the complete 3-partite graph Ki,1,» =
Ko + K, is super edge-magic by Corollary 3.3.

In order to see that K, and K, are the unique complete bipartite
and 3-partite graphs, respectively, notice first that m < 4; for otherwise
the minimum degree would be greater than 3, which is impossible. Thus, it
remains to be shown that K 1, is the unique super edge-magic complete
3-partite graph and that there are no complete 4-partite graphs with this
property.

For the uniqueness of K 1, let G = Ky, nya, be a complete 3-partite
graph with n; > na > ng > 1. Then, assume, to the contrary, that ngy > 2
and G is super edge-magic. Now, the order of G is n; +nz +n3 and its size
is n1ng + nina + nang; so, by Lemma 1.3,

ning + ning + nong < 2ny + 2ng + 2n3 — 3,

which, in turn, implies that ninz < 2ng — 3 since ng > 2 and n3 2 2.
Hence, ngns < 2n2 — 3, so 2 — ng > 0 from which we conclude that n3 = 1.
Therefore, if we apply Lemma 1.3 again, we get that n; < 1, producing a
contradiction.

To show that there are no super edge-magic complete 4-partite graphs,
observe that K| 1,1, is not super edge-magic by Lemma 1.3 and all remain-
ing graphs have minimum degrees greater than 3, completing the proof. il

The next two results show that some classes of galazies (forests whose
components are stars) are super edge-magic.

Theorem 3.5. The galazy G = K nUK 1041, 7 2 1, is super edge-magic.
Proof. Define the galaxy G as follows:
V(G)={u,v}U{z;i:1<i<n}U{y;:1<i<n+1}
and
E(G)={uz;:1<i<n}U{vy;:1<i<n+1},

and then consider the vertex labeling f : V(G) — {1,2,...,2n + 3} such
that f(u) =1, f(v) =3, f(z:) =2+3 (1 <i<n),and f(y) = 2
1<i<n-1).
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In order to show that f extends to a super edge-magic labeling of G, it

suffices to verify the following by Lemma 1.1:
() F(V(G)={1,2,...,2n+3};
(b) S ={f(z)+ f(y): 2y € E(G)} is a set of 2n+ 1 consecutive integers.

For (a), observe that f(u) =1 and f(z,) = 2n + 3. Also, if i < n, then
f(zi) < f(zn) =2n+3;and ifi <n+1then f(y) < f(Yns1) =2n+2 <
2n + 3 = f(z.). Hence, the maximum possible integer that can be used
for a vertex label is 2n + 3. Now, f(z:) # f (z;) if and only if ¢ # j; and
f(y:) # f(y;) if and only if ¢ # j. Further, notice that f(z;) is odd for
every ¢ with 1 < ¢ < n and f(y;) is even for every i with 1 <37 < n+ 1.
Thus, the set of vertex labels is {1,2,...,2n + 3}.

For (b), observe first that the minimum element in Sis 3+ f(y1) = 5
and the maximum element is 3 + f (yn41) = 2n+ 5. Now, f (u) + f (z;) #
f(w) + f (x;) if and only if i  j; and f (u) + f (x;) is even. In addition,
@)+ (4:) # £ (v) + f (y;) if and only if i # j; and f (v) + f (3) is odd.
Therefore, all elements of S are distinct and |S| is the size of G.

Finally, notice that the valence of the labeling f is 4n+9, which completes
the proof. 1

The following theorem is a partial generalization of Theorem 3.1.

Theorem 3.6. For positive integers m and n, where m is odd, the galazy
G 2 mK, , is super edge-magic.

Proof. Let G be the galaxy with
V(G ={ui:1<i<m}U{zi;:1<i<m, 1<j<n}
and
E(G) ={uz;;:1<i<m, 1<j<n}.

Then consider the vertex labeling f : V(G) — {1,2,... ,m(n + 1)} such
that

i, fw=u; forl1<i<m;
_ ) i Smil if w=uxz;) for 1 <i< 2fL;
flw) = i+-’%, ifw=zi,1for%1$i$m;
fzip)+m(G-1), fw=z;for1<i<mand2<j<n
hence, f extends to a super edge-magic labeling of G with valence 2mn +
2m+ 3. 1

4., RESULTS ON 2-REGULAR GRAPHS

In this section, we consider 2-regular graphs. These are of interest to
us since, in their seminal paper, Kotzig and Rosa 7] pondered on whether
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one may find necessary and sufficient conditions to determine if 2-regular
graphs are edge-magic.

Consider the following result by Kotzig and Rosa (7).
Theorem 4.1. Every n-cycle C,, is edge-magic.

Also, recall the analogous result for super edge-magic graphs by Eno-
moto, Llad6, Nakamigawa and Ringel [2].

Theorem 4.2. The n-cycle C,, is super edge-magic if and only if n is odd.
The following is a natural generalization of Theorems 4.1 and 4.2.

Theorem 4.3. The 2-regular graph G = mC,, is super edge-magic if and
only ifm > 1 and n > 3 are odd.

Proof. The case where m = 1 has already been handled by Kotzig and Rosa
[7], so we assume that m > 3. Let G be the 2-regular graph with

V(G)={v;;:1<i<m,1<j<n}

and

E(G) = {'Ui,j'Ui,j+l 11<i<m1<j3<n~- l}U{'vi,nv,-'l 01 Szﬁm}

Then consider a vertex labeling f :V (G) — {1,2,... ,mn} such that

1, ifl<i<mandj=1;
m([%-|+'%2)+2‘—+—m, if 1 <i< ™21 and jis even;
flo) =4 m([3]+52) + B5=m, if BE <i<m and j is even;
m(&2+1)+1-2,  if1<i<™=landj#1isodd;
m (5 +2)+1-2, if 2l <i<mandj#1isodd.

Therefore, f extends to a super edge-magic labeling of G with valence

$5n+2!m+3

5 .
The converse follows immediately from Lemma 1.2. I

The 2-regular graph 2C, is edge-magic (label the vertices of one 4-cycle
clockwise 1, 14, 9 and 13, and the ones of the other 4, 6, 12 and 5, and let
the valence be 25). Therefore, the previous theorem cannot be strengthened
by considering edge-magic graphs instead of super edge-magic graphs. The
problem of determining whether mC, is edge-magic or not when either m
or n is even is open.
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5. RESULTS ON EDGE-ANTIMAGIC GRAPHS

Ringel [9] has also provided the definition for edge-antimagic graphs.

For a (p, ) graph G, a bijective function f:V (G) — {1,2,... ,p} is an
edge-antimagic labeling of G if

Hf(w) + f(v) : uwv € E(G)}| =q.

If such a labeling exists, then G is called an edge-antimagic graph.

In this section, we present some relationships between super edge-magic
graphs and edge-antimagic graphs.

The following is an immediate consequence of Lemma 1.1.
Theorem 5.1. Every super edge-magic graph is edge-antimagic.

‘We then note that Lemma 1.3 follows from Theorem 5.1 and a comment
by Ringel [9] to the effect that the inequality ¢ < 2p — 3 holds for edge-

antimagic (p, ¢) graphs.
Ringel [9] also mentioned that if a graph G of order p is edge-antimagic
with an edge-antimagic labeling f, then

{f(v)+ f(v) :wv € B(G)} € {3,4,...,2p—1}.
This remark implies the following partial converse of Theorem 5.1.

Theorem 5.2. If G is an edge-antimagic (p,q) graph with q = 2p—3, then
G is super edge-magic.

Proof. Let G be an edge-antimagic (p, g) graph such that ¢ = 2p — 3 with
an edge-antimagic labeling f. Then

{f(v) + f(v) :wv € E(G)} = {3,4,... ,2p — 1},
so the result follows from Lemma 1.2. |
Ringel [9] presented the following theorem as well.

Theorem 5.3. If G is a mazimal outerplanar graph of order p with ezactly
two vertices a, b of degree 2 and whose distance dy(a,b) on the Hamilton

cycle H in G is
(5 or [3] -2

Since all maximal outerplanar (p,q) graphs satisfy ¢ = 2p — 3, we have
the following result from Theorems 5.2 and 5.3.

then G is edge-antimagic.

Corollary 5.4. If G is a mazimal outerplanar graph of order p with ezactly
two vertices a, b of degree 2 and whose distance dy(a,b) on the Hamilton

cycle H in G is
(5] o 5]
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then G is super edge-magic.

The previous corollary implies that the upper bound in Lemma 1.3 is
also sharp for maximal outerplanar graphs.

6. CONCLUSIONS

Using the survey of graph labelings by Gallian [4] together with relation-
ships between super edge-magic labelings and other more familiar labeling
problems found by the authors 3], we conclude that the work presented
in this paper has enlarged the classes of graphs known to be cordial, edge-
antimagic, edge-magic, harmonious and sequential. For instance, the forests
PyumPy, P,UP,, Ky nUK) 541, and (2m + 1)K, ,, are now proven to be
cordial, edge-antimagic and edge-magic. Additionally, the graphs P2 and
(2m + 1)Can4+1 are now shown to be cordial, harmonious, edge-antimagic,
edge-magic and sequential.

Through this work, the authors hope to have convinced the reader that
the study of the super edge-magic labelings of graphs may lead to suc-
cessful approaches to other labeling problems. Indeed, since super edge-
magicness is a more restrictive concept, there are more necessary conditions
that may be applied when considering cordial, harmonious, edge-magic,
edge-antimagic and sequential labelings.
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