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ABSTRACT. Given a coloring f of Euclidean space R™ and some
group of its transformations, its subsets A and B are said to be
colored similarly, if there exists ¢ € G, such that B = g(A) and
f(a) = f(g(a)), for all @ € A. From our earlier result [12] it fol-
lows that there are 2-colorings of R™, in which no two different line
segments are colored similarly with respect to isometries. The main
purpose of this paper is to investigate other types of such pattern
avoiding colorings. In particular, we consider topological as well as
measure theoretic aspects of the above scene. Our motivation for
studying this topic is twofold. One is that it extends square-free
colorings of R, introduced in [2] as a continuous version of the fa-
mous non-repetitive sequences of Thue. The other is its relationship
to some exciting problems and results of Euclidean Ramsey Theory,
especially those concerning avoiding distances.

1. Introduction

In this paper we study colorings of Euclidean spaces avoiding some
specified regularities. Perhaps the most famous problem of this type con-
cerns unit distances. A k-coloring f : R* — {0,1,...,k — 1} avoids unit
distances if f(z) # f(y) for any two points z, y distance one apart. The
problem is to determine the minimal number of colors needed for such a
coloring. Sometimes this number is called the chromatic number of R™
and is denoted by x(IR"). It is easy to see that x(R) = 2; simply, color the
intervals of the form [2m,2m +1), m € Z, red, and the rest of the line blue.
Surprisingly, for higher dimensions the problem is much harder and is still
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open, even for the plane. By simple constructions, one can get quickly the
inequalities 4 < x(R?) < 7, but finding the exact value is certainly one of
the most challenging problems of discrete geometry (see [4]).

Of course, there are many possible variations on the above theme. For
instance, suppose that we want to avoid more different distances with as
few colors as possible. A beautiful theorem of Erdés et al. [10] states
that there exists a set S of cardinality 2¥ and a 2-coloring of R such that
f(z) # f(v), if the distance between z and y belongs to S. On the other
hand , such an S can not have positive measure.

Much stronger ”avoidability” can be achieved having more colors at
a disposal. In 1943, Erdés and Kakutani [11] proved, assuming a validity
of Continuum Hypothesis, that there exists an w-coloring of R in which
any given distance appears at most once, that is, if f(z) = f(¥), z # v,
then f(x +1t) # f(y +1), for every t # 0. Actually, they proved that this
statement is equivalent to Continuum Hypothesis. Their result was then
generalized for the plane by Davies [7], and finally, for all finite dimensional
spaces, by Kunen [13].

The next theorem seems to fit nicely into the above collection, although
our primer motivation was of somewhat different nature.

THEOREM 1. (Grytczuk and Stiwa [12]) There ezists a 2-coloring f of
the real line, such that for any two points z, y and any € > 0 there exists
0<t< e suchthat f(z +1t) # f(y +1).

It was found as a generalization of the result of Bean, Ehrenfeucht
and Mc Nulty [2] concerning square-free colorings of R. We say that two
intervals I and its translation ¢ + I, t # 0, are colored in the same way, if
for every = € I, colors of z and z + t agree. A coloring f of R is called
square-free if no two adjacent intervals (i.e. such that ¢ = |I|) are colored
in the same way. This notion was introduced in [2] as a continuous version
of the famous non-repetitive sequences discovered in 1906 by Thue [18] (see
section 3). It was proved there that there are square-free 2-colorings of
R. Clearly, Theorem 1 extends this result by dropping the assumption of
adjacency.

The proof of Theorem 1 is very simple by the use of transfinite in-
duction. However, we would like to present here two other proofs, one of
which provides an ingenious example of an explicit coloring function found
by Rote [17] (see section 2). The purpose of this paper is also to consider
other kinds of situations in which similarly colored objects do not appear.
Many directions and generalizations are possible (see section 3). Suppose,
for example, that instead of translations and intervals on the line we are
interested rather in homeomorphisms and topological disks on the plane.
Now, two disks A and B are colored similarly, if there exists a homeomor-
phism & transforming A onto B, such that every point = € A has the same
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color as h(z). From Theorem 3 of section 3, it follows easily that there
exists a 2-coloring of R? in which no two disks are colored similarly.

New problems arise if we impose some restrictions on the coloring. The
most natural ones are those of set theoretic or measure theoretic nature. For
instance, a coloring of R" is measurable if every color class is a measurable
subset of R®. The coloring function of Rote (see section 2) satisfies this
condition, but one of the color classes is countable, hence of measure zero.
In consequence, two intervals differ only in points forming a null set. So,
one tempts to ask whether there is possible a measurable k-coloring of R
such that for any interval I the set {x € I; f(z) # f(z +t)} has positive
measure, for all £ # 0. A concluding discussion of this and other open
problems is contained in the last section of the paper.

2. Three proofs of Theorem 1

2.1. Proof 1 (by transfinite induction). Let A be the set consist-
ing of all triples {z,y,c}, where z < y and € > 0. Clearly, A is of cardinality
2¢, and, by the Well Ordering Theorem, can be enumerated by ordinals less
then 2. Say, A = {aq; o < 2“}. We will proceed inductively, coloring at
each step at most two different points. In the beginning step we can simply
color the points of the first triple differently. In further steps each time we
have to pick such a number ¢ € [0,€) that neither a point ¢ + x nor ¢ +y
have been already colored, and then color them differently. To see that it
is always possible, suppose that all triples ag, 8 < a are done, for some
a < 2%, and we have to deal now with the element a, = {z,y,€}o. The
number of points that have been colored by this procedure so far is at most
equal to 2c;, which is strictly less then 2. Hence, there are still free points
of the form ¢t + z and t + y, with ¢ € [0,¢), and we are able to do our job
again. We obtain in this way a partial coloring of R possessing the desired
property. Of course, it can be extended to the whole line arbitrarily, so,
the proof is complete. B

The above proof is highly non-constructive as it relies on the Well
Ordering Theorem, which, in turn, is equivalent to the Axiom of Choice.
Therefore, we would like to present another proof of a bit more algebraic
nature, in which transfinite induction is omitted. Unfortunately, the Axiom
of Choice is still present, because our construction uses representatives of
cosets of the subgroup Q of rational numbers in the additive group R.

2.2. Proof 2 (by cosets). First, we shall color only rational points
such that the assertion of the theorem restricted to the set Q will be sat-
isfied. Note that now the translation summand ¢ must be rational. It can
be done the same way as before, by considering the countable set of ratio-
nal triples {z,y,€} and applying the usual induction. Hence, assume that
f : Q@ — {0,1} is a function that do the job, and consider an arbitrary
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coset H of Q, in the additive group R. Let r > 0 be a fixed representative
of H. We shall copy the coloring of Q on H by translation. So, if h € H
and h = 7 + ¢, where ¢ € Q, then we set f(h) = f(g). Since cosets form a
partition of R, this definition extends f to the whole line.

We will show now that f possesses the property postulated in the
theorem. Let there be given real numbers z < y and e > 0. Thenz =r+¢q
and y = 8+ ¢q2, ¢1,q2 € Q, where r, s > 0 are fixed representatives of cosets
containing = and y, respectively. If ¢; # ¢2, then it suffices to choose a
rational 0 < t < &, such that colors of ¢; +t and ¢z + ¢ are different.
Indeed, in this case we have z +t =+ (q1 +1), y +t = s+ (g2 + t), with
7 and s still being the representatives of cosets containing z +% and y + ¢,
respectively. Hence, f(z +1t) # f(y +1).

If g1 = go, then first we have to shift £ and y by some small number
0 < a < &, so as to place y+¢ into the set Q. Then certainly z+a ¢ Q and
we get the same situation as in the previous case. Namely, z+a =71'+g¢s,
" > 0 and y + & = 0+ g4, with g3 # ¢4, by the initial assumption that
¢ < y. Thus, the proof is complete. B

Finally, we would like to present third proof of Theorem 1, discovered
by Giinter Rote [17]. This elegant argument not only omits induction, but
also provides a simple example of an explicit coloring function. However,
on the other hand, it is based on a powerful number theoretic result - the
Lindemann-Weierstrass theorem (see [1]). It goes as follows.

2.3. Proof 3 (by guessing an explicit function). Consider a func-
tion f : R — {0,1} assigning O to a real number z, if In|z| € Q, and 1 in
all other cases. As we shall soon see, the signs of considered numbers do
not matter, so, assume, only for convenience, that 0 < z < y. If colors of
z and y agree, shift them slightly to get  +¢; = e®, where 0 < ; < ¢
and ¢; € Q. Then f(z +t1) = 0, by the definition of f. If at the same
time f(y +t1) = 0, then there must exist a rational number g2 # g1, such
that y +¢; = e?2. In such a bad situation we have to make another shift
by some t; < tp < € to get z + t3 = €%, for some ¢z € Q, different from ¢,
and ¢». If it would again happened that y + t2 = €™ is a rational power
of e, then we will get the equality e?! — e?? = €93 — %, with all ¢; differ-
ent rational numbers. However, this contradicts the well-known result of
algebraic number theory, which we formulate below as a lemma.

LEMMA 1. (Lindemann- Weierstrass theorem) If a1, ..., an are non-zero
algebraic numbers and by,...,b, are pairwise distinct algebraic numbers,
then a e + ... + ane® #£0.

This finishes the proof. B
Let us remark here that from the above lemma it follows, in particular,
that the function e*® takes only transcendental values at rational points
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z # 0. Hence, the example of Rote does not work if we restrict ourselves
to the set @, and we could ask for explicit construction in that case, too.
One such, rather complicated example, was found by Wieslaw Sliwa [12],
but it would be nice to have something simpler.

3. Some generalizations

Theorem 1 can be generalized in many diverse directions. For instance,
we can consider any finite or even countable configuration A of points on the
line, and look for copies of A with prescribed color patterns, lying arbitrarily
close to A. We can also allow more colors and expect multicolored copies
of A. The following striking fact covering all these cases can be deduced
by the use of transfinite induction.

THEOREM 2. For every cardinal k < w there exists a k-coloring f of the
real line, such that given any countable configuration A C R, any function
p: A —k (a color pattern), and any £ > 0, there exists 0 < t < €, such
that f(a+1) = p(a), for alla € A.

PROOF. The idea is the same as in the first proof of Theorem 1. It
suffices to note, that there are only 2 all possible triples {A,p,€}, and that
at most & X w < 2¢ points have been colored before the step a < 2v. §

1t is worth mentioning now, that this argument can be applied in much
more general situations. It works, for instance, in all finite dimensional
Euclidean spaces. Actually, Theorems 1 and 2 can be regarded as special
cases of a purely set theoretical result that can be found in [12]. The set
theoretic approach is also fruitful when we would like to consider other types
of transformations in Euclidean spaces (or even other types of ”spaces”).
In fact, isometry is not the only way of mapping one line segment onto the
other. So, let us make now a general setting, which will be convenient for
our further discussion. Suppose we consider some space S with a group G
of transformations acting on S. Let f denote a k-coloring of S. We say that
two subsets A4, B C S are colored similarly with respect to G, if there is
some transformation g € G mapping A onto B and preserving the coloring
Jyie. f(a) = f(g(a)), for all a in A. If S is the real line and G is the group
of translations, then Theorem 1 establishes the possibility of coloring points
of the line red and blue, with no two distinct segments colored similarly.
This concerns, of course, only segments of equal positive length. If we would
like to consider segments of different lengths, we must allow other kinds of
mappings. It is somewhat surprising that, even if we take the group of all
homeomorphisms as G, then an analogous result holds for topological line
segments (arcs) in any finite dimensional Euclidean space.

THEOREM 3. There exists a 2-coloring of R™ such that no two different
arcs are colored similarly.
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PROOF. Again, the essential point is to apply transfinite induction ar-
gument. As before, we consider the set of triples {A,B,h}, where A and
B are different arcs, and h is a homeomorphism mapping A onto B. The
space R™ is separable, in consequence, this set has cardinality of contin-
wum. Thus, we can make the same conclusions as before noting that, by
continuity of A, there are also 2* non-fixed points in A. il

This time we have no hope for any explicit coloring. So, to make things
more concrete, let us concentrate now on translations over the set of in-
tegers Z. It is obvious that an analog of Theorem 1 can not hold here.
However, restricting attention to consecutive intervals leads to very inter-
esting problems. A coloring of Z is called square-free (or, more generally,
n-th power-free), if no two (no n) consecutive intervals A = [a,a +m) and
B = [a+m,a+2m), a,m € Z, m > 0, are similarly colored. The following
unexpected results were discovered by Axel Thue in 1906, [18].

THEOREM 4. (Thue [18]) There ezist a square-free 3-coloring and
cube-free 2-coloring of the set of integers Z.

The method invented by Thue relies on iterating substitutions on words.
For example, iterating the substitution 0 — 01, 1 — 10 gives an infinite
sequence of words 0, 01, 0110, 01101001, ... defining in a natural way the
infinite word 7" = 0110100110010110..., in which no finite block B appears
three times consecutively. In other words, no fragment of T' looks like
BBB, hence the name - a cube-free word. Actually, the above sequence
was discovered earlier by Prouhet [16] in connection to a number theoretic
problem concerning sums of powers, but Thue was the first who recognized
its avoidability properties. The sequence T was rediscovered later many
times in different contexts, especially intriguing being its appearance in
symbolic dynamics. For this and much other relevant information, one can
consult survey articles in [15] and [3].

An infinite square-free word over three symbols can be generated by
substitution a — abe, b — ac, ¢ — b, which was found by Dekking, who con-
sidered also a stronger avoidance property [8]. An infinite word is strongly
square-free, if no two of its consecutive blocks are permutations of each
other. In other words, for any two adjacent blocks the number of appear-
ances of some letter in these blocks must be different. It is checked easily
that the minimal possible number of symbols for an infinite word with this
property is 4, and it was Erdés, who first asked the question of the exis-
tence of such a sequence [9]. This was not answered in the affirmative until
1992 by Kersinen, who found the appropriate (rather large) substitution.
Although the literature concerning avoidable properties of words is rather
huge, there are still many exciting unsolved problems (see [2), [3], s, (6],
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[15]). In the next section we would like to add one more to this collection,
together with some continuous analogs of the above.

4. Open problems

Let us return once more to Theorem 1. Given a coloring f of R denote,
for any ¢ > 0, the set D(¢) = {z € R; f(z) # f(z +1)}, and, by D(¢,1), its
intersection with an interval I. In this terms it can be formulated as follows:
there ezists a 2-coloring of R such that the set D(t) is dense for every
t > 0. The size of the set D(t,I) expresses how much the intervals I and
its translate ¢+ I differ. So, we may try to impose stronger conditions on its
cardinality or structure to obtain colorings of higher degrees of irregularity.
Our first question is the following.

PROBLEM 1. Is it possible for the set D(t) to be everywhere of second
category, for some 2-coloring of R, and allt >0 ?

Another natural problem appears if we want the set D(t, I) to be large
in the measure theoretic sense. Here we have to consider only measur-
able colorings. This problem can be seen as a continuous analog of strong
avoidance for the integers.

PROBLEM 2. Can all of the sets D(t,I) be of positive measure, for
some finite (countable) measurable coloring of R ?

Finally, we would like to go the opposite direction and state our last
problem that arose as a discrete analog of Theorem 2. If true, it would be
a far reaching extension of the theorem of Thue.

PROBLEM 3. Do there exist, for every integer k > 2, a k-coloring of the
set of positive integers such that, given any k term arithmetic progression
A with positive difference d, there is an integer 0 <t < d, such thatt+ A
s multicolored ?
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