DIGRAPHS WHOSE NODES ARE MULTIGRAPHS
HAVING EXACTLY TWO DEGREES f AND 2.
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ABSTRACT. An (f,2)-graph is a multigraph G such that each vertex
of G has degree either f or 2. Let S(n, f) denote the simple graph
whose vertex set is the set of unlabeled (f,2)-graphs of order no
greater than n and such that {G, H} is an edge in S(n, f) if and only
if H can be obtained from G by either an insertion or a suppression
of a vertex of degree 2. We also consider digraphs whose nodes are
labeled or unlabeled (f,2)-multigraphs and with arcs (G, H) defined
as for {G, H}.

We study the structure of these graphs and digraphs. In particu-
lar, the diameter of a given component is determined. We conclude
by defining a random proccess on these digraphs and derive some
properties. Chemistry applications are suggested.

1. INTRODUCTION

By an (f,2)-graph we mean a multigraph G (with loops and multiple
edges allowed) such that each vertex of G has degree either f or 2. By the
insertion of a vertex of degree 2 in a graph we mean the replacement of an
edge with a path of length 2 and the suppression of a vertex of degree 2
we mean replacing, with an edge, a pair of adjacent edges that meet at a
vertex of degree 2. These operations will simply be called insertions and
suppressions.

Let S(n, f) denote the simple graph whose vertex set is the set of un-
labeled (f,2)-graphs of order no greater than n and such that {G,H }is
an edge in S(n, f) if and only if H can be obtained from G by either an
insertion or a suppression. We are interested in the properties of S(n, f)
and relations between (f,2)-graphs, the latter being viewed as vertices of
S(n, f).

Let G* be the (f,2)-graph obtained from an (f,2)-graph G after all
possible suppressions of its vertices of degree 2. Note that G* may have
vertices of degree 2. For example, the vertex of degree 2 in a 1-cycle (also
called a loop) cannot be suppressed, since a 1-cycle does not contain a pair
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of adjacent edges that meet at a vertex of degree 2. The multigraph G*
is called the suppressed graph associated with G. The suppressed graph
associated with G is unique up to isomorphism. Two (f,2)-graphs G and
H are called equivalent, denoted by G = H, if their suppressed graphs
are isomorphic. A graph G is called irreducible if it is isomorphic to its
suppressed graph (that is G ~ G*), otherwise G is reducible.

A connected (1, 2)-graph G is either a path or a cycle. It follows that the
suppressed graph of G is either an edge or a loop, respectively. A connected
(2,2)-graph is a cycle and its suppressed graph is a loop. Thus, our interest
is in (f,2)-graphs with f > 3.

If G and H are equivalent (f,2)-graphs, the distance d(G,H) between
G and H is defined as the least number of insertions and/or suppressions
in G such that G is transformed into a graph isomorphic to H. If G and
H are not equivalent, d(G, H) = oco. Notice that the distance is equivalent
to the graph theoretical distance in the S(n, f) graph.

The process considered above may be of interest in chemistry studies
if an appropriate molecular graph interpretation of the vertex graphs of
S(n, f) is introduced. That is, the vertices of degree f can correspond to
chemical species of the same type and all vertices of degree 2 can corre-
spond to species of a second type. For example, when f = 4, these types
can be thought of as quaternary and secondary carbons, respectively, or the
vertices of degree 2 as oxygen atoms. The insertions/suppressions of ver-
tices of degree 2 represent transformations of these molecular graphs into
other molecular graphs in which their number of quaternary types remains
constant and the secondary species vary. For a model of this kind to be
applicable it may be necessary to consider certain of these graphs as not
being physically feasible and appropriate adjustments made to handle such -
a situation. The distance between molecular graphs can be defined as their
graph theoretic distance and viewed as a measure of similarity. For a given
component of molecular graphs one may be interested in, as in coding the-
ory, finding graphs that are at a maximum distance apart. Such graphs are
maximally dissimilar. Other graph theoretic invariants of S(n, f) and the
probabilistic/statistical properties of the process when defined as a random
process provide topics for further study and possible application.

2. PROPERTIES OF S(n, f)

Let £,(G) be the subgraph of S(n, f) induced by the (f,2)-graphs H
equivalent to G and having order v(H) no greater than n. If G is an (f, 2)-
graph and G* is the suppressed graph associated with G, then G is said to
be on level I(G) = v(G) — v(G*) in £,(G).
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The insertion outdegree d;,. @) (G) of an (f,2)-graph G is the number of
isomorphically distinct (f,2)-graphs of order not greater then n that can
be obtained from G by the insertion of one vertex of degree 2.

The suppression indegree 4. ) (G) of an (f,2)-graph G is the number
of isomorphically distinct (f,2)-graphs that can be obtained from G by the
suppression of one vertex of degree 2.

Given the (3,2)-graph G*, an edge with a loop at each endvertex (i.e.,
¢ =0—O ), the graph £4(G*) in S(4, 3) is shown in Figure 2.1.

Let G* be an irreducible (f,2)-graph of order no greater than n. Then,
En(G*) can be generated from G*, at level 0, to level n — v(G*) through
successive levels using insertions.

*

G

OO

OO OO OO

Figure 2.1. The graph £(G*) C S(4,3), with g* = O—O .

Observations (Properties of £,(G))

(1) €4(G) is a connected bipartite simple graph.

(2) £a(G) can be generated by any graph H in (that is, any vertex H in)
€n(G) using insertions/suppressions.

(3) &n(cycle) is a path of order n in S(n, f) with vertices corresponding
to the k-cycles, k =1 to n.

(4) The number of vertices of degree f in each vertex of £,(G) is the
same.

(5) The number of cycles in each vertex of £,(G) is the same.

(6) For any vertex H of £,(G), the level of H is v(H) —v(H*) = e(H) —
e(H*) (note, that H* = G*).
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(7) Let H be a vertex in £,(G*) at a maximum distance from G*, then
d(G, H) is defined to be the height of £,(G*) and is denoted h(E,(G*)).
It follows that h(£,(G*)) = v(H) — v(G*) = n — v(G*).

(8) For any G*, diam&,(G*) > h(£,(G*)). Moreover, there exist graphs
H* and K* such that diam &, (H*) = h(€,(H*)) and diam £, (K™*) >
h(En(K™))-

Proof.

(1) Observe, that in £,(G) edges can be only between vertices corre-
sponding to two multigraphs H; and Hy such that one of them has
odd order and the second has even order.

(2) If H and F are two vertices in £,(G*), then G* can be obtained from
H by successive suppressions and then F can be obtained from G*
by insertions.

(3) Any insertion/suppression in a cycle generates a new cycle with the
number of vertices increased/decreased by one.

(4) Any vertex H in £,(G*) can be obtained from G* by successive in-
sertions. Each insertion does not change the number of vertices of
degree f (but increases by one the number of vertices of degree 2).

(5) Similary as in the previous observation, insertion does not change the
number of cycles.

(6) Notice, that multigraph H can be obtained from its suppressed graph
H* by the insertion of v(H) — v(H*) vertices and that each insertion
increases the number of vertices and the number of edges by one.

(7) The height h(€,(G)) is the level of any vertex in £,(G*) correspond-
ing to a multigraph with n vertices. Thus, from (6) it follows that
R(Ea(G)) = n — v(G*).

(8) Let G be a vertex in £,(G) corresponding to a graph with n vertices.
Then, from (7) h(€.(G*)) = d(G,G*) < diamE,(G*). Let H* be a
loop and K* the G* C £(G) in Figure 2.1 with n > 4.

a
Theorem 2.1. Let G and H be equivalent (f,2)-graphs (G = H), then
[v(G) — v(H)| < &(G, H) < v(G) + v(H) — 2v(G*)
and that bounds are sharp.

Proof. Let G* be the suppressed graph of G (G* is also the suppressed graph
of H). Then H can be obtained from G by v(G) — v(G*) suppressions
(resulting in the graph G*) followed by v(H) — v(G*) insertions. Thus,
H is obtained from G in v(G) + v(H) — 2v(G*) steps. So, d(G,H) <
v(G)+v(H)—2v(G*). Note that this bound is sharp. Consider, for example,

the graph G* = O in Figure 2.1. Let G be the graph obtained by
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inserting vertices on the loops and H the graph obtained by only inserting
vertices on the edge joining the loops. Then the equality holds.

Assume for simplicity, that v(G) > v(H). Then at least v(G) — v(H)
vertices have to be supressed in G to obtain H. This bound is also sharp.
For the above example, let both G and H be graphs obtained from G* by
insertions on the edge joining the loops. O

Edges e; and e in any suppressed graph G* are equivalent if the insertion
of a vertex of degree two in either e; or ez results in isomorphic multigraphs.

Theorem 2.2. For f > 3 the diameter of £,(G) equals

2(n— v(G*)) if noneguivalent edges

diam&,(G) = in G* exist,

2 (n —e(G*) - '_EYE_TJ + 1) otherwise.

Proof. Let H, and Hj be two vertices of £,,(G). Then from Theorem 2.1
d(Hy, H2) < v(Hy) + v(H2) — 2v(G*) < 2n — 20(G™).
So,
diam &,(G) < 2n — 2v(G*).

If two nonequivalent edges in G* exist (say, e; and e;) then let H; (Hz) be
a graph obtained from G* by inserting n — v(G*) vertices in the edge e,
(e2). Then

diam £,(G) > d(H, H2) = 2n — 2u(G*).

This complete the proof in the case of nonequivalent edges.
If all e(G*) edges of G* are equivalent let H; be a graph obtained from
G* by inserting n — e(G*) vertices on one edge of G*, while H; is a graph

obtained by inserting I_"—;(%%‘IJ or ["7:%(7?-] on each edge of G*, such

that the number of inserted vertices is n — e(G*). Then

d(Hy, Hp) = 2 (” - (e(G') + [%(C);)J))

=2(n—e(G*)—{LJ+1).

e(G*)
So,
i > —e(G*) — | = .
diam &,(G) > 2 (n e(G*) le(G*)J + 1)
It is easy to see that this is the maximal distance between vertices of £,(G*)
in this case. (]
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Let dg g+ (G) and dg (G.)(G) denote the suppression indegree and in-
sertion outdegree of vertex G in the graph £,(G"), respectively.

Theorem 2.3. For any (f,2)-graph G which is a vertez of £,(G)
g (G-)(G) < e(G*)
and

E“(G-)(G) < ¢(G*)
where G* is the suppressed graph of G.

Proof. Note, that the insertion of a new vertex on any edge in a path
corresponding to a single edge of G* results in isomorphic graphs. So, only
insertions in paths corresponding to different edges of G* can give different
graphs. Thus, d s ") (G) < e(G*).

Similarly, any vertex H in £,(G) has a predecessor obtained by the
suppression of a vertex of degree 2 in H. However, suppression of any vertex
in a path corresponding to an edge in G* will yield isomorphic graphs. Thus,
dE..(G')(G) < e(G*). O

Let p(G) = e(G)/v(G) denote the density of the graph G.
Theorem 2.4. For any (f,2)-graph G which is a vertez of £,(G)

_UG)+e(C")
"9 =16 + (@)

where I(G) is the level of G in £,(G). Moreover,
if I(G) — oo then p(G) — 1.

Proof. From observation (6) it follows that v(G) = (G)+v(G*) and e(G) =
I(G) + e(G*).

Notice, that any (f,2)-graph can be uniquely transformed into a (3, 2)-
graph by replacing all vertices of degree f by an f-cycle. Insertion and
suppression operations can be done on the (3, 2)-graph except for insertion
in the edges of f-cycles corresponding to the initial vertices of degree f.
Then the reverse process (that is, contractions of the f-cycles corresponding
to the initial vertices of degree f) can be used to obtain an, equivalent to
the original, (f,2)-graph. So, (3,2)-graphs are basic, in the sense that
some properties of (f,2)-graphs (f > 3) can be viewed as properties of
(3,2)-graphs. An example of (5,2)-graph G and corresponding (3, 2)-graph
H is shown in Figure 2.2.
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Figure 2.2. An example of (5,2)-graph G and its corresponding
(3,2)-graph H.

3. RANDOM PROCESSES BASED ON S(n, f)

We shall now define a random process with the vertices of £,(G) as the
states of this process. Let G* have order v(G*), size e(G™), k vertices of
degree f and for technical reasons that follow, let the e(G*) edges of G* be
labeled. 4

If G is a vertex of £,(G*), there is a one-to-one correspondence between
the labeled edges of G* and the paths in G that start at a vertex of degree f,
end at a vertex of degree f, and have no intermediate vertices of degree f.
Let these paths be labeled with the same labels as the edges they correspond
to in G*. If G* has an edge that is a loop, we shall consider this edge in
correspondence with the closed path in G that starts and ends with the
same vertex of degree f on which the original loop was based.

The transition digraph DE,(G*) for the random process on &£,(G*) is
defined as follows. An arc (G, H) is in DE,(G*) if and only if a path-
labeled copy of H can be obtained from a path-labeled copy of G either
by the insertion of a vertex of degree 2 into one of its labeled paths or by
the suppression of a vertex of degree 2 in one of its z, labeled paths that
contain at least one vertex of degree 2 (0 < zg < e(G*)). Such a transition
from G to H is called an admissible move.

For each G there are e(G*) + z, possible admissible moves. Assuming
each of these are selected with uniform probability 1/( e(G*) + z,) com-
pletes the definition of this random process on the vertices of £,(G*). Note
that z_. = 0. If G has order n, no vertex of degree 2 can be inserted into
G. Thus, an admissible move is a suppression that only involves paths with
vertices of degree 2 and these are selected uniformly with probability 1/z.

Since DE,(G*) is strongly connected, DE,(G*) is the transition digraph
for an ergodic Markov chain (see [3]).

For any ergodic Markov chain two fundamental things to determine are:
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(a) the eguilibrium vector, defined as the unique probability vector w =
[wg] such that wT = w, where T =[p,,,] is the transition matrix for
the chain, and

(b) whether the chain is time-reversible, for which a necessary and suffi-
cient condition is w;pg,; = WyPug, for all states G and H in the
chain. For interpretations of the equilibrium vector w and time-
reversibility see [4].

Starting with G*, we shall now define a random process with the path-
labeled (f, 2)-graphs homeomorphic to G* as the states of this process. The
path-labeled (f,2)-graphs are as defined in the definition of the random
process DE,(G*), but remain labeled and distinct as path-labeled graphs
not as graphs as is done in DE,(G*).

The transition digraph d€,(G*) for this random process is defined anal-
ogously to that for DE,(G*) as follows. An arc (G, H) is in d€,(G*) if and
only if (a path-labeled copy of) H can be obtained from (a path-labeled
copy of) G either by the insertion of a vertex of degree 2 into one of its
labeled paths or by the suppression of a vertex of degree 2 in one of its z,
labeled paths that contain at least one vertex of degree 2. Here too we call
such a transition from G to H an admissible move.

For each G there are e(G*) + = possible admissible moves. Assuming
each of these moves is selected with uniform probability 1/( e(G*) + =)
completes the definition of the random process on the path-labeled (f,2)-
graphs homeomorphic to G*. As in the Markov chain DE, (G*) we have
z.. =0 and if G has order n, no vertex of degree 2 can be inserted into G
so that as before an admissible move can only be a suppression and only
involves paths with vertices of degree 2 selected uniformly with probability
1/z,.

Since d€,(G*) is strongly connected, d€,(G*) is the transition digraph
for an ergodic Markov chain which we denote £3(G*).

We note that the transition digraph d&,(G*) is equivalent to the simple
graph with vertex set the same as the nodes of d€,(G*) and transitions
from a vertex G to a neighboring vertex H are uniform with probability
Puc = 1/ deg G, where deg G = e(G*) +z,. Thus, the analysis of the chain
with transition digraph d€,(G*) can be pursued using the theory of random
walks on graphs (see[4]). This observation yields the following theorem.

Theorem 3.1. The Markov chain E3(G*) is time-reversible and has equi-

librium vector with components w, = gggng’ where m is the size of d€,(G*).

Proof. That wg = 4% is given in [4]. Since time-reversibility is equivalent
to the condition w,p,y, = W, Pye, it is sufficient to show that w;p,, does

not depend on G and H. We have wgp, = *lg,%a%c- =z O

The following, as noted in [4], is an immediate corollary of this theorem.
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Corollary 3.1. If a random walk is at vertez G, then the expected number

of steps before it returns to G is t = dz%. O

Theorem 3.2. The order of E3(G*) is (“"'ef;%a'.’gc‘)).

Proof. Let G* be an f-regular multigraph of order v = v(G*) and size
e = e(G*). Let the edges of G* be labeled. Inserting ¢ vertices of degree
2 into G* yields a graph on level ¢ . Noting that the ¢ vertices can be
considered as ¢ indistinguishable objects and the labeled paths of G* as
distinguished boxes implies there are (""’2'1) different path-labeled (f,2)-
graphs on level ¢. Let t* be the number of vertices of degree 2 that have to
be inserted into G* to obtain a graph of order n (t* = n — v(G*)). Thus
the total number of such graphs up to and including those on level ¢* is

tho (e+t—1) = (e+t‘). (]

4. SOME EXAMPLES

The graph £;(G*) with G* = K, with a loop at each vertex is shown in
Figure 2.1. The transition digraph DE4(G*) is shown in Figure 4.1.

*

G

/
/\\

o0 OO O0—O

Figure 4.1. The digraph D (£,(G*)) with 6* = O—O .

14

In Figure 4.2 we show the transition digraph d€4(G*).
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1
Figure 4.2. The digraph d (£(G*)) with 6* = O2O .

Figure 4.3. The simple graph associated with d (£4(G*))
1 3

with ¢* = O2O .

Analysis of these examples yields the following information. By Theorem
3.1 the equilibrium vector for the random process £J(G*) is

i3444122121
24

and £}(G*) is time-reversible.
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Furthermore, we find that by combining components, that correspond to
isomorphic graphs, in the equilibrium vector for £J(G*) and summing their
values we can obtain the equilibrium vector for DE,(G*). The equilibrium
vector for the random process £,(G*) is

%[3842421]

and DE&,(G*) is time-reversible. It is conjectured that a formalization of
the above operations for the general case will yield a method for obtaining
the equilibrium vector for DE,(G*) for any G*. See [1] [2] for what was
done for an analogous random process.

Problem: For DE,(G*) determine the equilibrium vector and whether
time-reversibility holds.
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