New Series of Dudeney Sets for p + 2 Vertices

Midori Kobayashi*

School of Administration and Informatics
University of Shizuoka
Shizuoka 422-8526
Japan

Nobuaki Mutoh
School of Administration and Informatics
University of Shizuoka
Shizuoka 422-8526
Japan

Kiyasu-Zen’iti
Semiconductor Research Institute
Sendaisi Aobaku Kawauti 980-0862
Japan

Gisaku Nakamura
Tolkai University
Shibuyaku Tokyo 151-0063
Japan

Abstract

Dudeney’s round table problem was proposed about one
hundred years ago. It is already solved when the number of
people is even, but it is still unsettled except only few cases
when the number of people is odd.

In this paper, a solution of Dudeney’s round table problem
is given when n = p+ 2, where p is an odd prime number such
that 2 is the square of a primitive root of GF(p), p = 1 (mod 4),
and 3 is not a quadratic residue modulo p.

1 Introduction

A Dudeney set in I, is a set of Hamilton cycles with the property that
every path of length two (2-path) in K, lies on exactly one of the cycles.
We call the problem of construction a Dudeney set in K, for all natural
numbers “Dudeney’s round table problem”.

A Dudeney set in K, has been constructed when n is even [3]. In the
case n is odd, a Dudeney set in K, has been constructed only when
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(1) n= 2% +1 (k is a natural number) (6],

(2) n=p+2 (pis an odd prime number and 2 or —2 is a primitive root
of GF(p)) [1,2],

(8) n=p+2 (pis an odd prime number, 2 is the square of a primitive
root of GF(p) and p = 3 (mod 4)) [2],

and some sporadic cases [1]. To construct a Dudeney set in K, for a general
odd integer n > 0, the case n = p+ 2 (p is an odd prime number) has a
central part. But in the case, it has been constructed only when (2) and
(3). In this paper, we will show:

Theorem 1.1 There exists a Dudeney set in K, when n = p+ 2, where
p is an odd prime number such that 2 is the square of a primitive root of
GF(p), p =1 (mod 4), and 3 is not « quadratic residue modulo p.

The method of constructing a Dudeney set given here is new. In paper
[2), the method of exchanging edges was used so the proof of hamiltonicity
was important. In this paper, however, hamiltonicity is trivial because we
use the transformation €. This is the main advantage of our method.

We should mention the case when —2 is the square of a primitive root
of GF(p). In this case, we have a similar theorem.

Theorem 1.2 There exists « Dudeney set in K, when n = p+ 2, where
p is an odd prime number such that ~2 is the square of a primitive root of
GF(p), and either

(1) p=1 (mod 4). and 3 s not a quadratic residue modulo p, or

(2) p = 3 (mod 4).

Theorem 1.2 is trivial from Lemma 1.3, Theorem 1.1 and the known
results.

Lemma 1.3 Let p be an odd prime number.

(1) When p =1 (mod 4), —2 is the square of a primitive root of GF(p) if
and only if 2 is the square of a primitive oot of GF(p).

(2) When p = 3 (mod 4), —2 is the square of a primitive root of GF(p) if
and only if 2 is « primitive root of GF(p).

Proof. Put r = (p—1)/2.

(1) When p = 1 (mod 4), » is even. If —2 is the square of a primitive root,
2 is a quadratic residue, so we have p=1 (mod 8). If -2 = w?, where w is
a primitive root, then 2 = w™*2 = (w(r+2/2)2_ Gince ((r +2)/2,p - 1) =1,
2 is the square of a primitive root, where ( , ) means the greatest common
divisor. The converse is similar.



(2) When p = 3 (mod 4), r is odd.

If —2 = w?, where w is a primitive root, then 2 = w"™*2. Since (r +
2,p-1) = 1, 2 is a primitive root. Conversely, if 2 is a primitive root,
then —2 = (20+1)/2)2_ Gince 2 is not a quadratic residue, we have p = 3
(mod 8). So we have ((r+1)/2,p—1) = 1 and 2("+1)/2 is a primitive root.
(m]

2 Preliminaries

Put n; = p + 1, where p is an odd prime number, and 7 = (p — 1)/2.
We denote by K,, = (V,,, E,,) the complete graph on ny vertices, where
Vo, ={0,1,2,--- ,p—1}U {0} = Z, U{xc} is the vertex set (Z, is the set
of integers modulo p).

For any integer 7, 0 < ¢ < p — 1, define the 1-factors

Fi = {{x,i}}U{{a,b} € E;, | 0,0 # x,a + b= 2i (mod p)}
I = {{oc,i/2}} U {{a,b} € E,, | a,b # 00,a + b =i (mod p)}.

Note that F; = 2I;, where multiplication is considered modulo p and
we define a x 0o = o0 (@ # 0).

Let o be the vertex-permutation (sc)(0 12 ... p—1), and put £ =
{07 |0 < j <p—1}. When C is a set of cycles or circuits in K,,, define
IC={C"|Ce( e}

For any edge {a,b} in [{,,,, we define the length d(e, b):

_f b—a (mod p) (a,b # o)
d(a,b) = { o) (otherwise),
where we define that lengths ¢;, ¢y are equal if ¢; = ¢5 or ¢; = —¢3 (mod
p).
Aset H C Z; = Z,\ {0} is called a half-set modulo p if |H| = (p—1)/2
and HU(-H)=Z;.

A sequence of non-zero intergers d = (dy, ds, - - -, d;) is called a difference
sequence of length ¢. Each component d; is considered modulo p. We
usually write d; satisfying —» < d; < ». For two difference sequences
d = (d1,d2,---,d:) and d' = (df,d5,---,d;), we define d = d’ when d) =

Lwda=dy, - dy =dy or dy = —dy,dy = —d}_,,---,dy = —dj.

For an l-path P = (aq, a1, -, @) (¢ # 00(0 < i < 1)) in Kp,, we define

the difference sequence of P:

d(P) = (a1 — ap, a2 — a1, -, &1 — ai-1).

Lemma 2.1 Let Py, Py be l-paths in Ky, not containing oco. Thend(Py) =
d(P,) if and only if P, = Pf' forsomei, 0 <i<p-—1.



We define the difference sequence of an Hamilton cycle in Ky, as follows.
Write a Hamilton cycle with oc the first. For a Hamilton cycle

C= (oolalla'Z:' o 7a'p)r
define the difference sequence of C:
d(C) = (az — a1,a3 — ag, -+, 8p — &p-1).

Lemma 2.2 Let C;,C> be Hamilton cycles in Ky,. Then d(Cy) = d(Cs)
if and only if Co = C¥ for some i, 0<i<p—1.

For a difference sequence d = (ay,az, - ,ap-1) of length p— 1, we call
W(d) = (00,0,a1,a; + as,- Ef;ll ¢;) the representative Hamilton cycle
of d, if W(d) is 2 Hamilton cycle in K, .

A difference sequence d = (dy, dz,- -+ ,dp-1) of length p—11is symmetric
ifdi=dpi (1<1<7).

We next construct the complete graph K, by adding a new vertex A
to K,,; that is, put n = ny + 1 = p+2, Kp = (Vo,Bp) and V,, =
Vi, U{)\}. Extend o to a permutation of V, and denote it also by o
o= (c0)(A\)(0123 --- p—1). Further we put £ = {ef|0<j<p—1}

Let A be a 1-factor in K,, which satisfies 1 and 2:

1. FgU A is ¢ Hamilton cycle in Ky, .

9. If S is the multiset {d(a,b) | {a,b} € A}, then we have § = {=¢,1,2,--,
r}, i.e. A has all lengths.

If we insert the vertex ) into all the edges in A, we get a set of 2-paths
in K. Denote this set by A*; that is,

A* = {(¢,\,b) | {a,b} € A}.

We note that paths are undirected, i.e., (¢,A,0) = (b,r,0). FoU AN is
considered to be a circuit in K.

Proposition 2.3 Assume h; (1 <i < r) is a Hamilton cycle in K,, and
{h; | 1 <i< 1} is a Dudeney set in K,,. Then

S{FuAr}u{h |1<iLr))
has every 2-path in K, ezactly once.

Proof. Divide the set of all 2-paths in I, into 8 classes:
(1) ((L,b,C), (ll) (a.,oo,b), (lll) (Oc') Cl,b), (]V) ((l., Aab)s (V) (A'a‘ib)' (VI) (A,OO,
a), (vii) (A, a,00), (viil) (00,},a), where a,b, ¢ # o, A.

(i), (i1), (iii) are also 2-paths in Ky, , so they belong to T{h;|1<i<r}



(iv), (viii) Since A has all lengths, we have £.4 = E,,. Hence 2-paths
(a,A,b) and (o0, A, @) belong to ZA*. So (a,),d) and (¢, A, a) belong to
S{Fy U A%}

(v) We have {a,b}°" € Fy for some t (0 < t < p— 1), as Fp has all
lengths. So we can assume {a,b} € Fo without loss of generality. Since
A is a l-factor, we have {a,c} € A for some ¢ € V,,. Then we have
(a,A,¢) € A*. So (), a,b) belongs to Fp U A>

(vi), (vii) Similarly, we can assume a¢ = 0. The 2-paths (), 00,0) and
(A, 0,0) belong to Fy U A*.

By counting the number of 2-paths, we prove that every 2-path in Kp
lies only once. D

3 Definition of A(0)

From now to the end of this paper, we assume that p is an odd prime
number with p = 1 (mod 4), p > 41, and that 2 is the square of a primitive
root of GF(p) and 3 is not a quachatlc residue modulo p.

Put ny =p+ 1, »r = (p — 1)/2 same as before and put s = r/2.

Lemma 3.1 Under our assumption of p, s ts even.

Proof. Since (1-2;) =1, we have p =1 or 7 (mod 8), and since (f’-,) =(§) =
—1, we have p = 2 (mod 3), where () is the Legendre symbol. Together
with p = 1 (mod 4), we obtain p = 17 (mod 24) which follows that s is
even. O

Define four paths 4, B,C, D,

A=(1,-1,-2,2,2%, 2% =23 93 ... —2°-1 2:=1 ()
B=(3712,-3712,-3712% 37192 37123 _3-193 ... —3712°,3712° o)
C=(1,3"12)

D = (0,)

and define the Hamilton cycle in K,,,
h(0)=AUBUCUD,

where U means concatenation of paths. Note that 2~} =, 3712 = -3-1
As h(0) contains the 1-factor Fy, we can write h(0) = Fo UG where G
is a 1-factor in K.

Lemma 3.2 If S is the multiset {d(a,b) | {a,b} € G}, then we have S =
{c0,1,2,--+,7}, i.e. G has all lengths.



Proof. From our assumption, it holds GF(p)* = (2) U 3(2), where (2) =
{1,2,22, ..., 2571 -1, =2, —2%,... =2°" !}, Define

Ga = {{-1,-2}.{2,22},{-2%,-2%}, .- {-27%,-2"'}}

Gp = {{_3_12v _3_122}’ {3_122:3_123}) {—3-123’—3-124}r’ )
{_3-125—-1'__3-125}}

Ge = {{1,37"2}}

Gp = {{2°71,0},{3712",<}}

then we have G= G, UGg U Ge UGp.

G4 has lengths 1,2,22,...,2572

Gp has lengths 3712,3712%,... 371271
Ge has lengths 37!

Gp has lengths 2° 71 oc.

Hence G has all lengths. D

4 Conditions of 2(1)

We would like to construct a Hamilton cycle h(1) in K,, satisfying the
following 3 conditions:

1. £{ah(l) | a € H} is a Dudeney set in K, for any half-set & modulo p.
2. h(1) has the 5-path (x,0,1,-1,-2,2).
3. h(1) has the 3-path (-2,2,3,-3).
We will construct ~(1) from the Hamilton cycle
Foul, = (0, 0,1, -1, 2, =2, 3, =3,---,r, —7).
The difference sequence d of Fp U [y is
d=(1,-2,3,—4, -, —r;=7,---,—4,3,=2,1),

and d is symmetric.
For a symmetric difference sequence

d=(dy,ds, -, d?")

of length 2r, we define Property (A):



Property (A): For any half-set # modulo p, {id | i € H} has the difference
sequences of all 2-paths (a,b,c) in Kn, with a,b, ¢ # co exactly once, ie.,

{i(dj,dj1) | 1< j < 2r—1,i€ H} |
={(b—a,c—b) | (a,b,c) is a 2 — path in Kn, with a,b,c # oo},

where equality is one as sets of difference sequences.

Lemma 4.1 Let W be ¢ Hamilton cycle in K,,,. Let H be a half-set modulo

p. Then
S{iW | i € H} = Ujegi(ZW).

Proof.

L=S{iW|ie H}
={iW+j|ie H0<j<p—-1}, and
R = U gi(SW)
={i(W+j)]|i€eH0<j<p-1}
={iW+ij|ie H0<j<p-1}

sowehave L=R. O

Proposition 4.2 Let d = (dy,ds, . ds,) be a symmetric difference se-
quence of length 2r. Assume that W = W (d) is the representative Hamilton
cycle of d in K,,. Then (1) and (2) are equivalent.

(1) d has Property (A).
(2) Z{iW | i€ .H} has all 2-paths in K, for any half-set H modulo p.

Proof. (2) = (1)

Let H be a half-set modulo p. Let (a,b,c) be any 2-path in K,, with
a,b,c # co. The 2-path (a, b, ¢) belongs to T{iW | i € H}, so the difference
sequence (b — a,c — b) belongs to {id | i € H}. Note that W (id) = iW(d).
1) =)

Let H be a half-set modulo p and put W = Z{iW | i € H}. Let
P = (a,b,c) be any 2-path in K{,,.

(i) When a,b,c # o, (b— a,c — b) belongs to id for some i € H, so
P = (a,b,c) belongs to T{iW} so belongs to W.

(ii) When a = oc, we have P = (o<, b, ¢). We will show that P belongs
to W. We may assume b = 0 without loss of generality. (If necessary, apply
=% to P, then we obtain (oc,0,¢— b).)

Now P = (o¢,0,¢) with ¢ # o0,0. Since d is symmetric, we have dy, =
dy, so W has 2-paths (oc,0,d;) and (&, 2 + dy, ), where x = 12;;1 d;.



~x=dy

Since (z,z + dy,o0)? = (—dy,0,0¢c), ZW has 2-paths (00,0,d;) and
(—dl, 0, 00)

If ¢ = idy for some i € H, we have (x,0,¢) = i(00,0,d;), then 2-path
(00,0, ¢) belongs to i(SW). Otherwise, ¢ = —id; for some : € H as dy # 0
and H is a half-set. Then the 2-path (s¢,0,c) belongs to (W) since
(00,0,¢) = i(00,0,—d;). In both cases (¢,0,¢) belongs to Ujegi(ZW),
which is W by Lemma 4.1.

(111)) When b = o, we have P = (¢,0¢,¢). We will show that P belongs
to W. We may assume « = 0 without loss of generality. Now P = (0, 00, ¢).
W has 2-paths (0, >, z), where © = ZJZ’:I d;. Note that z # 0 because W
is a Hamilton cycle.

If ¢ = ix for some i € H, the 2-path P = (0,00,c) belongs to iW.
Otherwise, ¢ = —iz for some 1 € H. Then the 2-path P = (0, 00, ¢) belongs
to T(iW) since (0, ¢, ¢) = (i(z,2¢,0))7 . In both cases, P belongs to W.
0

Proposition 4.3 The difference sequence of Fo U I; has Property (A).

Proof. It is well-known that S{:(Fy Ul,) | i € H} is a Dudeney set for any
half-set H modulo p». So the difference sequence of Fy U I, has Property
(A) by Prop. 4.2. O

5 Transformation of difference sequences: £(a)
Let d = (dy,da,---,dy;dy.- -+, da, d1) be a symmetric difference sequence
with —r < d; <», di 0 (1 <1< 7).

Let a be an integer with —r < a < r,e¢ # 0,21,4+r. We define the
transformation £ (a) of difference sequences as follows.

(i) The case a > 0.

If (—(a—1),a,—(a+ 1)) appears in the first half of d in this order, we
define the transformation &(a) from d to &(e)d as follows.

If

d=(dy,da, - dy,.~(a = 1),0,~(a+1),ds 44y, do;
drz"'-(lt1+‘l~"(“‘+ l):{"a-(a’— 1)1d£1""sd21d1))

then

€(a)d= (d],d'_g,"’,(l;“—(ﬂ-— 1)'_1’(a'+ l)l_d£|+4)"'s_dr;
—drv t 'a_(lt)-v}-fl: ((l+ 1))—17_(0_ l)adtla"' 1d21d1)9

that is to say, £(«a) changes a to —1, changes the sign from —(a + 1) to d,,
and then makes &(a)d symmelric.

(ii) The case a < 0.
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If (—(a + 1), a,—(a— 1)) appears in the first half of d in this order, that
is, :
d= (dlrdﬁv" : vdl)v_(a-i‘ 1)1“’:-(0 - l)tdt|+41'° ',dr;
dr‘v"'sd21+4)_(a— 1),0,-(“"‘1),dgl,"',d2,dl),

then

E(a) dl’(l’n o ;(ltla_(a' + 1)1 1» (a - 1)) _dt1+41 U )_df;
dr’ Tty _df.l+4y(c"_ 1); 1:_(a+ 1))dt1)' . 1d2:d1)'

When d has Property (A), £(a)d doesn’t generally have Property (A).
To make £(a)d to have Property (A) we should transform £(a)d by &(b) for
some b. Prop. 5.1 gives the number b.

Proposition 5.1 Letd = (d1,ds,-+,dpidy,- -, da,dy) be a symmetric dif-

ference sequence, where —r < d; < r,di # 0 (1 < i < r). Assume d has

Property (A). Let dy = &(a)d, where —r < a <7, a # 0,x1,%r. Let b be

an integer with —r < b < r satisfying b= a™! or b= —a~! (mod p), then

we have b # 0, x1.

(1) The case b > 0. If (—(b— 1),b,—(b+ 1)) appears in the first half of
dy in this order, put ds = g(l))d] Then do is a symmetric difference
sequence and has Property (A).

(2) The case b < 0. If (=(b+1),b,—~(b— 1)) appears in the first half of
dy in this order, put dy = £(b)d1. Then dy is a symmetric difference
sequence and has Property (A).

Proof. (1) (a) Assume a > 0. dy has (—(a — 1),—1,(a+ 1)) in the first
half. We consider only when (—{(b — 1),b,—(b+ 1)) is on the right side of
(=(a—=1),-1, (a+1)) in dy, including the case that a+1 = —(b—1). When
(=(b=1),b,—(b+ 1)) is on the left side, the proof is similar.
Then we have
= (dly o ':dh)_(a'— 1),0,—(ﬂ~+ 1))d£1+4) e vdt;y (b_ 1))_bl(b+ 1))
dt;+4)' o ld!‘;dl'y e )dtz+4)(b+ 1):_’)) (b - 1):dtzv Cr dh+4|
—(a+1),a,—(a—1),dy,,---,d1),
dl = (dlr" ';dhr_(a'_ 1),—’1,(0"' 1):_dt1+4;“ 'y—dtzl_(b— 1))b:
—(b'l' 1)1 —dt;-+4v o '1-d1';—d1" T _dt;+4r —(b + l)abl_(b - 1)!
—d;,, v ,—(1¢1+4, ((l- + 1),—1,—(0- - 1))dt“' . ,dl),
d2 = (dl; . ‘,dg‘,—((l. - 1)1 _11 (a’+ 1)! _di1+41 a0 :_d-‘.za _(b - 1)1_1)
(b+ 1)) d!g+4a Tt d?';dr; T d’tg+4, (b + 1)) _11 _'(b - 1); "dt,, T
—dt1+4: (a, + .‘), —-‘1, —(Cl. bl 1),(1;{,, e ,dl).
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We consider the following 9 subsequences of d and dz. The subsequences
of d are on the left sides and the subsequences of d2 are on the right sides
of arrows. If a+ 1= — (b~ 1), (iii) and (vii) are omitted.

(i) (di,--,dp,,—(a—=1)) — (dy, -, di,, —(a — 1))
i) (-(e—1),a,—(¢+1)) — (=(¢~1),-1,(a+1))

(
(lll) (—(a' + 1)’dh+4) Y dﬁ'.-! (b - 1))
> (a4 1), ~dey 4, —doys—(b = 1))

(iv) ((b=1),=b,(b+1)) — (—=(b-1),-1,(b+1))

(V) ((b+ l)’dtz'i-‘l: e 1d1'; d?‘) R} dtg+4) (b+ 1))
— ((b + 1)1dt3+4) v ld"; di‘) MY dla-l-‘h (b + 1))

(vi) ((b+1),=b,(b=1)) — ((b+1).-1,-(b—-1))

(Vu) ((b - l)ydt'." T d/-1+4) _((" + 1))
— (—(b - 1)! —di:n Ty _dt1+41 ((l + 1))
(vil)) (=(e+1),¢,—~(a—=1)) — ((e¢+1),-1,—(a—-1))
(IX) (_(a - 1)’ dh E dl) — (—(Cl. - 1)!dhr° t :dl)
The left sides and the right sides of (i), (v), (ix) are the same sequences,
respectively. The left side of (iii) is the same as the right side of (vii) and the

left side of (vii) is the same as the right side of (iii) as difference sequences.
Let H be a half-set modulo p. We will show that

{i(—(e - 1),a )| ie HYU{i(~(e +1),a,—(a—1)) | i€ H}

= {i(- b—l (b+l)|lAEH}U{} ((b+1),-1,—-(b—1)) |t € H},
‘as sets of difference sequences. To show it, we may show
{i(=(a-1),¢,—(a+1)) | i€ Z;} = {i(=(b=1),~1,(b+1)) i € Z;} (5.1)
because

(1) (—(a=1),a,—(e+1)) = ((a = 1),—a,(a+ 1))

(a+1)! ’ (a—l))!
(b—1),1,—(b+1))
(b+1),-1,—(b-1)),

(-1)(=(-1),-1,(+1))

(
(=
(
(

and HU(-1)H = Z;. If b= ™!, then

_a—l(..(a - 1),a,—(a+1))=(=(b—1),-1,(b+ 1)),

12



and if b = —a~1, then
a-l(_(a - 1))”‘1 _(a‘+ 1)) = (—(b'l' 1)! 1, (b— 1)) = (_(b- 1),—1,(b+ 1))

So (5.1) holds. Therefore the left sides of (ii) and (viii) are the same as the
right sides of (iv) and (vi), by multiplying by elements of H.
Next we will show that

{i(—(a—1),-1(a+1)) i € H}U{i((e + 1), -1, —(a—l)) i€ H}
={i((b—1),=b,(b+1)) | i € HYU{i((b+1),=b,(b—1)) | i € H}.

To show it, we may show
{i(=(a—=1),-1,(e+1)) | i€ Z;} = {i((b—1),-b,(b+1)) | i € Z, }. (5.2)
‘Since
a Y (=(a=1),-1,(a+1)) = ((b-1),-b,(b+1)),

(5.2) holds. Therefore the left sides of (iv) and (vi) are the same as the
right sides of (ii) and (viii), by multiplying by elements of H.
Hence we have

{id |i € H} = {ids | i € H},

so dy has Property (A) since d has Property (A).

(b) Assume a < 0. ¢y has (—=(e¢ + 1),1,(a — 1)) in the first half. We
consider only when (—(b —1),,—(b+ 1)) is on the right side of (—(a +
1),1,(a — 1)) in d;. Then we have

d=(dy, -, de,, —(a+1),¢,—(¢—1),di, 44, ds,, (b—1),=b,(b+ 1),
o, it s (04 ). (0= ) o
—(a—=1),a,—(a+1),ds,, . d1),

dy=(dy, -, dy,, —(a+1),1, (@ = 1), —dt,4a, -+, —dsy, — (b= 1), b,
—(b+1),—dsyqa, y—dr;—dr, -+, —dpyqa,—(b+1),b,—(b— 1),
—dsy, o =dyypa, (@ = 1),1, —(a + 1),ds, - - -, dy),

dy=(dy, -, di,, —(a+1),1,(¢ = 1), —de, 44, -+, —dp,, —(b— 1), =
(b+1),dsypa, -, drs e, - dyyga, (04 1), =1, = (b= 1), —ds,, - -+,
—ds 44, (a—1),1,—(a+1),ds,, -, dh).

Similarly, we have {id | i € H} = {id3 | i € H} for any half-set H, so
ds has Property (A).

(2) The proof is similar to that of (1). O
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6 Construction of h(1)

We construct the Hamilton cycle h(1) satisfying conditions 1, 2 and 3 in
this section. Let d be the difference sequence of Fo U I;. Then we have
W(d) = Fo Ul,. W(d) satisfies condition 1, i.e.,, S{iW(d) | ¢ € H} is
a Dudeney set, but does not satisfy conditions 2 and 3. The difference
sequence d has Property (A) by Prop. 4.3 and d has (—2, 3, —4) in the first
half. Put d; = £(3)d, then we have

dy =(1,-2,-1,4,-5,6,—7,---,—(r = 1), 7;
r,—(r-1),---,-7,6,-5,4,-1,-2,1).
Note that W(d;) = (=<, 0,1,-1,-2, 2, —3,3,—4,4, ), so it satisfies condi-
tion 2. Put p = 24k+17 (k is a natural number), then we have 3= = 8k+6
which is even and 14 < 8k + 6 < 7 — 2. Therefore Lemma 6.1 holds.

Lemma 6.1 The difference sequence dy has (—(371—1),371,—(371 +1))
in the first half.

Put dy = £(37)d;, then we have

d=(1,-2,-1,4,-5,6,-7,---,—(8k +5),(8k + 6),—(8k + 7),- -,
—(r=1),7;--)
d2 = (1;_2)_1)41—5: 6:-7y' ne |_(8k +5):_1a (8k+ 7): T (T— 1),-7‘;

Proposition 6.2 W(d,) is a Humilton cycle and it satisfies conditions 1
and 2.

Proof It is trivial that W(d,) is a Hamilton cycle (see Figure 1). d has
Property (A) by Prop. 5.1, hence W (d,) satisfies condition 1 by Prop. 4.2
and that W(d,) is a Hamilton cycle. We have W(d;) = (0,0,1,-1,-2,2,
-++), so it satisfies condition 2. O '

Next we consider about condition 3. The difference sequence of the 3-
path (-2,2,3,—3) is (4,1, —6). da still has the difference sequence (4, —5,6)
in the first half because 3~! = 8k + 6 > 14. Put d3z = £(—5)d3, then we
have

ds = (1,-2,-1,4,1,-6,7,--).

Let b be an integer with 1 < b < r satisfying b = 5~% or b = —5~! (mod
p). d has trivially (—(b—1),b,—(b+1)) or ({6 —1),—b, (b+1)) in the first
half. So dj still has (—(b—1),6,—(b+1)) or ((b—1),—b,(b+1)) in the first
half, since 8 < b < r — 1 and b # 8k + 5,8k + 6,8k + 7. Therefore Lemma
6.3 holds.
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Lemma 6.3 (—(b—1),b,—(b+1)) or ((b—1),—b, (b + 1)) appears in the
first half of d3.

If (=(b—1),b,—(b+ 1)) appears in the first half of ds, put dg = £(b)d3.
If ((b—1),=b,(b+ 1)) appears in the first half of d3, put dg = £(—b)d3.

Proposition 6.4 W(d4) is ¢ Hamilton cycle and it satisfies conditions 1,
2 and 3.

Proof. 1t is trivial that W (d4) is a Hamilton cycle (see Figure 2). d4 has
property (A) by Prop. 5.1, hence it satisfies condition 1 by Prop. 4.2 and
that W(d,) is a Hamilton cycle. Since

d‘i = (1» _2; _1)4) 17 —6)7: t ')a
we have
Id/-(d‘l) = ('xl 0) 17 —1) _2) 2)3y —3y41 " '))

which contains the 5-path (20, 0,1,~1,—2,2) and the 3-path (-2,2,3,-3),
so it satisfies conditions 2 and 3. O

Therefore we put (1) = W(d,) from now on.

7 Construction of a Dudeney set

Let G be the 1-factor with h(0) = Fo UG. Insert the vertex A into all edges
in G and define G same as before; that is,

G* = {(a,\,b) | {a,b} € G}.

Put h(a) = ah(1), where « is an integer # 0. Since G has all lengths
(Lemma 3.2), we obtain by Prop. 2.3,

Proposition 7.1 Let H be a half-set modulo p. Then
S({FouG*YU{h(a) | a € H})
has every 2-path in K, exactly once.

We would like to leave one A in Fy UG? and scatter the remaining r s
over {h(a) | a € H}. Remember G = G4 UGB UGc UGp. We consider
As in these 4 subsets of G each.

(1) Ga

It holds that G4 = {(- ‘{1—2}{0<z<s—2} Put H, =
{(-2)" | 0 < i< s—2}. As h(1) has a 3-path (1,-1,-2,2), h((-2)’ ) has
a 3-path ((—=2)", —(=2)f, =2(~2)",2(—2)"). Denote h(( 2)!)* the cycle in
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K, obtained from h{(—2)?) inserting A into the center of this 3-path, i.e.,
inserting A between —(—2)° and —2(~2)*.
(2) Ge

It holds that Gg ={‘ {1—2}|0<z___s—2}. Put

={3712(-2)' |0<i<s- 2} h =12(-2)%) has a 3-path (3-12(-2)},

-3-12(-2) -3 14 -2)i,3714(-2)* ) Denote h(3712(—2)*)* the cycle ob-
tained from h( =2y ) inserting ) into the center of this 3-path.
3) Ge

As h(1) has the 3-path (—3,3,2,-2), A(3"!) has a 3—path (-1,1,3712,
—3712). Denote h(371)* the cycle obtained from h(3~!) inserting X into
the center of this 3-path.
(4) Gp

As h(1) has a 3-path (0,0, 1,-1), h(») has a 3-path (0,0,r,—r). De-
note h(r)* the cycle obtained from h(r) inserting A into the center of this
3-path. h(0) has an edge {~,3712°}. Denote h(0)* the cycle obtained
from h(0) inserting A into the center of this edge.

Put Hy = HiUH2U{3"1}u{r}. Then Hp is a half-set modulo p, since
(-2 |0<i<s—1}U{3712(-2) |0<i<s—1}
is a half-set, and (=2)*~! = —r, 3712(-2)*"1 =3~
Proposition 7.2
= S({AO} U {h(a)* | a € Ho})
is @ Dudeney set in K.

Proof. Each element of D is trivially a Hamilton cycle in /i;;. The set of
all 2-paths in Z({Fo U G*}U {h(a) | @ € Hp}) and the set of all 2-paths in
D are the same. Hence D has every 2-path in K, exactly once by Prop.
7.1. Therefore D is a Dudeney set in K,,. O

Since there is a Dudeney set in I\.,,.,.) when p = 17 [6], we complete the
proof of Theorem 1.1.

Finally, we mention the existence of odd prime numbers such that (1)
2 is the square of a primitive root of GF(p), (2) p =1 (mod 4), and (3) 3
is not a quadratic residue modulo p.

Proposition 7.3 [4, 5] If we assume the Extended Riemann Hypothesis,
there exist infinitly many odd prime numbers satisfying (1), (2) and (3).
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8 Example
Put p = 41, then n = 43 and » = 20. We have

h(0) = (1,-1,-2,2,4,-4,-8,8,---,-20,20,0,00,—14,14,7, -7, --, —15,
13,-13)
d=(1,-2,3,-4,5,-6,7,-8,9,-10,11,-12,13, —14,15,-16,17,-18,
19, -20; -20,19,-18,17,-16,15,—14,13,-12,11,-10,9,-8, 7,
-6,5,—4,3,-2,1)

d =(1,-2,-1,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17, 18,
-19,20;20,-19,18,-17,16,-15,14,-13,12,-11, 10,-9,8,-7,6,
-5,4,-1,-2,1)

d, =(1,-2,-1,4,-5,6,-7,8,-9,10,-11,12,-13, -1, 15, 16,17, —18,
19, -20; -20,19, -18,17,-16,15,-1,-13,12,-11,10,-9,8, -7,
6,—5,4,—1,-2,1)

d3=(1,-2,-1,4,1,-6,7,-8,9,-10,11,-12,13,1,-15,16,—-17, 18,
-19,20; 20, -19, 18, -17,16,-15,1,13,-12,11,-10,9,-8,7, -6,
1,4,-1,-2,1)

dy =(1,-2,-1,4,1,-6,7,1,-9,10,-11,12,-13,-1,15,-16,17, 18,
19,-20;~20,19,~-18,17,-16,15,-1,-13,12,-11,10,-9,1,7,
-6,1,4,-1,-2,1)

h(l) = (0,0,1,-1,-2,2,3,-3,4,5,—4,6,-5,7, -6,-7,8,-8,9,-9,10,
-10,11,~-11,12,-12,13,-13, —14, 14, —-15, 15, -16, 16,17, -17,
18,19, -18,—19, 20, —20).

The following r + 1 cycles and their rotations by £ make a Dudeney set in

K,.

h(0)* = (¢, A, —14,14,7,-7,---)

(R(1)* = (,0,1,-1,},-2,2,--)

h(=2)* = (¢,0,-2,2,,4,—4,--)

h(4)* = (20,0,4,-4,),-8,8,--)

h(—8)* = (¢,0,-8,8,1,16,~16---)

| A(10)* = (o¢,0,10,~10, A, ~20,20, - )

h(-=13)* = (2¢,0,-13,13,),~15,15,--+)
,”(—15)>‘ = (00)01—151 15)’\) _11’ 11, )

R(=T)* = (00,0,=7,7, A, 14, 14, - )

\
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h(20)* = (,0, A, 20, -20,---)
h(14)* = (x¢,0,14,-14,13,-13,),1,-1,--)
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Figure 1: W(d,)
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Radio Labelings of Cycles
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Abstract

A radio labeling of a connected graph G is an assignment of
distinct positive integers to the vertices of G, with z € V(G)
labeled ¢(z), such that

d(u,v) + |e(u) — e(v)| > 1+ diam G

for every two distinct vertices u,v of G, where diamG is the
diameter of G. The radio number rzn(c) of a radio labeling ¢ of
G is the maximum label assigned to a vertex of G. The radio
number rn(G) of G is min{rn(c)} over all radio labelings ¢ of
G. Radio numbers of cycles are discussed and upper and lower
bounds are presented.
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1 Introduction

For a vertex v of a connected graph G, the eccentricity e(v) is the distance

between v and a vertex farthest from v. The minimum eccentricity among

the vertices of G is the radius, rad GG, and the maximum eccentricity is

its diameter, diam G. A labeling of a connected graph is an injection

¢: V(G) = N, while a radio labeling is a labeling with the added property

that '
d(u,v) + |e(u) — c(v)] > 1+ diamG

for every two distinct vertices u,v of G. The radio number rn(c) of a radio
labeling c of G is the maximum label assigned to a vertex of G. The radio
number rn(G) of G is min{rn(c)} over all radio labelings ¢ of G. A radio
labeling ¢ of G is a minimum radio labeling if rn(c) = rn(G).

1Research supported in part by the Western Michigan University Arts and Sciences
Teaching and Research Award Program

ARS COMBINATORIA 65(2002), pp. 21-32



