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Abstract

For a given structure {graph, multigraph, or pseudograph) G and
an integer r > A(G), a smallest inducing r-regularization of G (which
is an r-regular superstructure of the smallest possible order, with
bounded edge multiplicities, and containing G as an induced sub-
structure) is constructed.

1 Introduction

Graphs are simple, multigraphs without loops, and pseudographs may con-
tain both loops and multiple edges. For terminology and notation we refer
to Chartrand and Lesniak [2].

For a given structure (graph, multigraph, or pseudograph) G and an
integer 7 > A(G), an r-regular superstructure containing G as an induced
substructure is called an inducing r-regularization/regularization of G. The
problem of inducing r-regularization is originated in 1916 by Koénig [5, 6).
Therein an r-regular multigraph containing a given multigraph G and its
copy G’ (if G is not r-regular), both as disjoint induced submultigraphs, is
constructed so that additional (possibly multiple) edges join a vertex z of
G to its copy =’ in G/, r being any cardinal number, r > A(G). Optimal
(i.e. the smallest) inducing regularization of a simple graph G within simple
graphs with the smallest possible degree A(G) is published in two papers
by Erdés and Kelly [3, 4]. Inducing r-regularization of a simple graph G
within simple r-regular graphs with r > A(G) is achieved in Chartrand
and Lesniak [2] by splitting Koénig’s method into r — §(G) steps. Then
only simple zz’ edges are added at each step and the order of the resulting
r-regular graph is 2"~%(%) times as large as that of G.
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We extend ErdSs and Kelly’s result both to pseudographs and multi-
graphs with any multiplicity bound p, maintaining optimality for any upper
bound r on the maximum degree A. We present examples to show that the
upper bound we give on the number of necessary new vertices is sharp. If G
is an n-vertex graph and regularization of G is also a graph then in Erdds
and Kelly’s case (with 7 = A(G)) the optimal inducing r-regularization
of G may require up to n new vertices, which is the case if n > 4 and
G = K, —e, see [3, 4]; whereas, if 7 is odd and r > n then exactly r+1 new
vertices are necessary precisely for all graphs G with 6(G) = 0 and even n,
otherwise up to max{r,n} new vertices only.

2 Main result

For X € {P, M}, let X-graph stand for P-graph (pseudograph) if X = P,
otherwise for M-graph (multigraph) if X = M. Let G be an X-graph of
order n with vertex set V = {v1,v2,...,vn}. Let § and A stand for the
minimum and maximum degrees among vertices of G. Let r be any integer
such that r > A. Call a; := r — dege(v;) to be the r-deficiency of the
vertex v;. Then r — § is the mazimum r-deficiency among vertices in G.
Let o = )", a; be the sum of the r-deficiencies. The number of edges joining
two vertices v, u is called the multiplicity of the vertex-pair v, u. The end
of a claim’s proof will be marked by the symbol O.

Theorem Given an X-graph G of order n, with minimum and mazimum
degrees § and A, let p and r be integers such that r > A and p is an upper
bound on the mazimum multiplicity in G. Let F denote any r-regular X -
graph with mazrimum multiplicity at most p and containing an induced sub-
X -graph isomorphic to G. The necessary and sufficient condition that n+t
be the minimal order possible for F is that t is the least nonnegative integer
such that

() tr = o;

(i) pt>2r—4;

(#33) (t+ n)r is an even integer;

(iv) either (P) pt?—(r—p}t+o>0 ifX=P or

(M) p2—(r+p)t+020 fX =M.

Moreover, t < tg where

[r/p] +1 if both r and [r/p] +n are odd,

to := [r/p] >n, and§ <r+p—p[r/pl, (1)
max{[r/p|,n} otherwise.

Proof. Necessity. Suppose the order n + ¢ of the super-X-graph F is
minimal. Let G’ be the sub-X-graph of F isomorphic to G and let H
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be the sub-X-graph induced by the ¢ vertices of F' not in G’. Then in F
there are o edges between the sub-X-graphs G’ and H. Since each of the
t vertices of H is incident with at most r of these edges, (i) follows. The
vertex of G’ whose r-deficiency is r — § has at least [(r — §)/p] neighbors
in H, whence (i) holds. Clearly (¢ + n)r is an even number so (ii) holds.
The sum of the degrees in H of the vertices of H is tr — ¢ which cannot
exceed the following obvious upper bound on this sum: t(t - 1)pif X = M
and ¢(t + 1)p if X = P. This gives (P) and (M). So all four conditions
(2)-(iv) are necessary.

To establish sufficiency, let ¢ be the least nonnegative integer satisfy-
ing conditions (i)-(iv). If ¢ = 0 then G is r-regular whence ¢ = 0, which
agrees with conditions (i)—(iv). Assume that ¢ > 0. Thenr > A > 0 and
r > 0. Moreover, t > 0 by (i). Recall that v; denotes the ith vertex of the
X-graph G and V = V(G). Let U be a set of t extra vertices u;, us,...,u;.
Let B be the bipartite V-U multigraph comprising a; edges joining v; to
Ufori=12...,n Thus o is the number of all V-U edges. Define an
X-graph F to be the edge-disjoint union of X-graphs G, B and H where
H is induced by the set U. Assume that V-U edges make up a sequence
A such that, for each i, edges incident with v;4; follow all those incident
with v;. In order to establish incidence of V-U edges with vertices in U,
consider the sequence of vertices (@, 2, ... ,Ut,...,Us), where @; = u; if
j=i (modt)for j=1,...,0 and i =1,...,t. Assume that the jth ver-
tex @, is made incident to the jth edge of .A. Then multiplicity of the pair
v;, uj equals at most [a;/t] which is at most p by (i¢). Hence F' = GUB if
equality holds in condition (i) (which is the case if both X = M and ¢ = 1).

Otherwise strong inequality holds in (i) and additionally £ > 1 if
X = M. We are going to show that adding some U-U edges can complete
the X-graph F. Notice that nr + ¢ is even as the sum of degrees of vertices
in the X-graph GU B. Hence and by (i) tr — o is an even number. Then
fort =1 and X = P, it is enough to add (tr—0)/2 (< p by (P)) loops to the
vertex u; in order to get a required F. For t > 2 and X € {P, M}, define
nonnegative integers h and s so that o/t = h + s/t where s < t. Hence
h < r because strong inequality in (z) is assumed. Then degg(u;) = h+1 for
j=1,2,...,s, otherwise degg(u;) = h. Thus the degrees in B of vertices
of U differ mutually by one at most. Moreover, the greatest remaining
deficiency r — h can be covered up in H if either r—h < (¢ +1)p for X = P
or 7 —h < (¢ — 1)p for X = M. But the required conditions (on integers)
hold because, by definition of » and s,

(t+1)p dueto (P)if X =P,

r—h—S/t="_a/tS{(t—1)P due to (M) if X = M,

where 0 < s/t < 1. A required X-graph H can be extracted from the
complete X-graph on t vertices by using edge-disjoint complete subgraphs
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K, and possibly an edge-decomposition of one K, into Hamiltonian cycles
and, additionally for even t, a perfect matching (see Berge [1] for the well-
known solution to Kirkman'’s problem on packing Hamilton cycles into K,.
The solution presented in Berge appears already in Lucas [7] of 1883 wherein
no reference to Kirkman is made).

Now we are going to prove the statement on tg, ¢o defined in (1).

Claim 1 Ifr/p > n and 6§ <r +p— p[r/p] then conditions (i) and (iii)
imply that t > to.

Proof. Note that (i) implies t > ¢, := [r/p] if and only if r — & > ([ /p] —
1)p or (equivalently) § < r + p — p[r/p]. However, if r and n + ¢ are odd
integers and ¢; > n then ¢ # t, by condition (i3¢). 0

Claim 2 Conditions (i) and (ii) hold for t > max{[r/p],n}.

Proof. Since nr > o, condition (i) holds for t > n. Moreover, (ii) holds for
t > [r/p]. o

Assume that ¢ > 0 in the following part of the proof. Hence it is
easily seen that (P) holds for ¢ > r/p — 1. This and Claim 2 imply that
conditions (%),(iz) and (P) hold for ¢t > max{[r/p],n}. Hence by Claim 1
conditions (i)-(iv) hold for t > to if X = P.

Claim 3 Condition (M) holds for t > n if r < 2pn, otherwise for t >
[r/p] +1—n.

Proof. Let L(t) stand for the left-hand side of the inequality (M). Then
L(n) = (6 —=n(r— A))+n((n—1)p— A) > 0 as the sum of two nonnegative
summands. Hence (M) holds for ¢ = n. Assume that 7 < 2pn and note
that L(t) is the quadratic trinomial in ¢ which attains its minimum at 7 :=
(r/p+1)/2 < n+1/2. Therefore for any integer t > n+1, L(t) > L(n) > 0.

Otherwise r > 2pn whence 7 > n+1/2. Therefore L(t) > 0 for t < n.
Hence, since L(t) is symmetrical with respect tot = 7 > n, L(t) > 0 for
eacht>n+2(r—n)=r/p+1—-n. O

Claim 3 implies that, for n > 2 and »/p > 2n, condition (M) holds for
t > [r/p] — 1. Hence and by Claims 1, 2 and 3, conditions (i)—(iv) hold for
t>toif X =M. ]

Remark 1. A specification of Theorem in case G and F' are simple graphs
is obtainable by straightforwardly substituting therein X = M and p = 1.
Additionally, for 7 = A this way we get main body of the classical Erdés
and Kelly’s Theorem (3, 4].

Remark 2. For X € {M, P} the following n-vertex X-graphs G show that
the upper bound ¢, on the smallest ¢ in Theorem is attainable. Assume
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that E,, denotes a set of m edges of the complete graph K,,. For X = M,
p =1and r = A(G) > 0 (which is the Erdés and Kelly’s case): t = n if
n>4dand G = K,, — E,, where 1 <m < [(n —2)/2] (the Erdés and Kelly
example K, — e beeing included). For any X, any p, and r/p <n: t =n
if G is any X-graph with e(G) < (r — 1)/2 (whence A < 7); whereas for
r/p>n:t=ty>nif §(G) <r+p-p[r/p] (ie., if §(G) =0 for p = 1).
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