Inducing regularization of graphs, multigraphs and pseudographs

Joanna Górska and Zdzisław Skupień

Faculty of Applied Mathematics, University of Mining and Metallurgy AGH

al. Mickiewicza 30, 30-059 Kraków, Poland

e-mail: gorska@uci.agh.edu.pl skupien@uci.agh.edu.pl

Abstract

For a given structure (graph, multigraph, or pseudograph) G and an integer $r \geq \Delta(G)$, a smallest inducing r-regularization of G (which is an r-regular superstructure of the smallest possible order, with bounded edge multiplicities, and containing G as an induced substructure) is constructed.

1 Introduction

Graphs are simple, multigraphs without loops, and pseudographs may contain both loops and multiple edges. For terminology and notation we refer to Chartrand and Lesniak [2].

For a given structure (graph, multigraph, or pseudograph) G and an integer $r \geq \Delta(G)$, an r-regular superstructure containing G as an induced substructure is called an inducing r-regularization/regularization of G. The problem of inducing r-regularization is originated in 1916 by König [5, 6]. Therein an r-regular multigraph containing a given multigraph G and its copy G' (if G is not r-regular), both as disjoint induced submultigraphs, is constructed so that additional (possibly multiple) edges join a vertex x of G to its copy x' in G', r being any cardinal number, $r \geq \Delta(G)$. Optimal (i.e. the smallest) inducing regularization of a simple graph G within simple graphs with the smallest possible degree $\Phi(G)$ is published in two papers by Erdős and Kelly [3, 4]. Inducing r-regularization of a simple graph G within simple r-regular graphs with $r \geq \Delta(G)$ is achieved in Chartrand and Lesniak [2] by splitting König's method into $r - \delta(G)$ steps. Then only simple r-regular graph is r-regular graph is

We extend Erdős and Kelly's result both to pseudographs and multigraphs with any multiplicity bound p, maintaining optimality for any upper bound r on the maximum degree Δ . We present examples to show that the upper bound we give on the number of necessary new vertices is sharp. If G is an n-vertex graph and regularization of G is also a graph then in Erdős and Kelly's case (with $r = \Delta(G)$) the optimal inducing r-regularization of G may require up to n new vertices, which is the case if $n \geq 4$ and $G = K_n - e$, see [3, 4]; whereas, if r is odd and r > n then exactly r+1 new vertices are necessary precisely for all graphs G with $\delta(G) = 0$ and even n, otherwise up to max $\{r, n\}$ new vertices only.

2 Main result

For $X \in \{P, M\}$, let X-graph stand for P-graph (pseudograph) if X = P, otherwise for M-graph (multigraph) if X = M. Let G be an X-graph of order n with vertex set $V = \{v_1, v_2, \ldots, v_n\}$. Let δ and Δ stand for the minimum and maximum degrees among vertices of G. Let r be any integer such that $r \geq \Delta$. Call $a_i := r - \deg_G(v_i)$ to be the r-deficiency of the vertex v_i . Then $r - \delta$ is the maximum r-deficiency among vertices in G. Let $\sigma = \sum_i a_i$ be the sum of the r-deficiencies. The number of edges joining two vertices v, v is called the multiplicity of the vertex-pair v, v. The end of a claim's proof will be marked by the symbol \square .

Theorem Given an X-graph G of order n, with minimum and maximum degrees δ and Δ , let p and r be integers such that $r \geq \Delta$ and p is an upper bound on the maximum multiplicity in G. Let F denote any r-regular X-graph with maximum multiplicity at most p and containing an induced sub-X-graph isomorphic to G. The necessary and sufficient condition that n+t be the minimal order possible for F is that t is the least nonnegative integer such that

- (i) $tr \geq \sigma$;
- (ii) $pt \geq r \delta$;
- (iii) (t+n)r is an even integer;
- (iv) either (P) $pt^2 (r-p)t + \sigma \ge 0$ if X = P or (M) $pt^2 (r+p)t + \sigma \ge 0$ if X = M.

Moreover, $t \leq t_0$ where

$$t_0 := \begin{cases} \lceil r/p \rceil + 1 & \text{if both } r \text{ and } \lceil r/p \rceil + n \text{ are odd,} \\ & \lceil r/p \rceil > n, \text{ and } \delta < r + p - p \lceil r/p \rceil, \\ \max \{ \lceil r/p \rceil, n \} & \text{otherwise.} \end{cases}$$
(1)

Proof. Necessity. Suppose the order n + t of the super-X-graph F is minimal. Let G' be the sub-X-graph of F isomorphic to G and let H

be the sub-X-graph induced by the t vertices of F not in G'. Then in F there are σ edges between the sub-X-graphs G' and H. Since each of the t vertices of H is incident with at most r of these edges, (i) follows. The vertex of G' whose r-deficiency is $r-\delta$ has at least $\lceil (r-\delta)/p \rceil$ neighbors in H, whence (ii) holds. Clearly (t+n)r is an even number so (iii) holds. The sum of the degrees in H of the vertices of H is $tr-\sigma$ which cannot exceed the following obvious upper bound on this sum: t(t-1)p if X=M and t(t+1)p if X=P. This gives (P) and (M). So all four conditions (i)-(iv) are necessary.

To establish sufficiency, let t be the least nonnegative integer satisfying conditions (i)-(iv). If $\sigma = 0$ then G is r-regular whence t = 0, which agrees with conditions (i)-(iv). Assume that $\sigma > 0$. Then $r \geq \Delta \geq 0$ and r>0. Moreover, t>0 by (i). Recall that v_i denotes the ith vertex of the X-graph G and V = V(G). Let U be a set of t extra vertices u_1, u_2, \ldots, u_t . Let B be the bipartite V-U multigraph comprising a_i edges joining v_i to U for $i=1,2,\ldots,n$. Thus σ is the number of all V-U edges. Define an X-graph F to be the edge-disjoint union of X-graphs G, B and H where H is induced by the set U. Assume that V-U edges make up a sequence A such that, for each i, edges incident with v_{i+1} follow all those incident with v_i . In order to establish incidence of V-U edges with vertices in U, consider the sequence of vertices $(\tilde{u}_1, \tilde{u}_2, \dots, \tilde{u}_t, \dots, \tilde{u}_\sigma)$, where $\tilde{u}_i = u_i$ if \pmod{t} for $j = 1, \ldots, \sigma$ and $i = 1, \ldots, t$. Assume that the jth vertex \tilde{u}_j is made incident to the jth edge of A. Then multiplicity of the pair v_i , u_i equals at most $[a_i/t]$ which is at most p by (ii). Hence $F = G \cup B$ if equality holds in condition (i) (which is the case if both X = M and t = 1).

Otherwise strong inequality holds in (i) and additionally t>1 if X=M. We are going to show that adding some U-U edges can complete the X-graph F. Notice that $nr+\sigma$ is even as the sum of degrees of vertices in the X-graph $G\cup B$. Hence and by (iii) $tr-\sigma$ is an even number. Then for t=1 and X=P, it is enough to add $(tr-\sigma)/2$ ($\leq p$ by (P)) loops to the vertex u_1 in order to get a required F. For $t\geq 2$ and $X\in \{P,M\}$, define nonnegative integers h and s so that $\sigma/t=h+s/t$ where s< t. Hence h< r because strong inequality in (i) is assumed. Then $\deg_B(u_j)=h+1$ for $j=1,2,\ldots,s$, otherwise $\deg_B(u_j)=h$. Thus the degrees in B of vertices of U differ mutually by one at most. Moreover, the greatest remaining deficiency r-h can be covered up in H if either $r-h\leq (t+1)p$ for X=P or $r-h\leq (t-1)p$ for X=M. But the required conditions (on integers) hold because, by definition of h and s,

$$r-h-s/t=r-\sigma/t \leq \left\{ egin{array}{ll} (t+1)p & ext{due to } (P) ext{ if } X=P, \\ (t-1)p & ext{due to } (M) ext{ if } X=M, \end{array}
ight.$$

where $0 \le s/t < 1$. A required X-graph H can be extracted from the complete X-graph on t vertices by using edge-disjoint complete subgraphs

 K_t and possibly an edge-decomposition of one K_t into Hamiltonian cycles and, additionally for even t, a perfect matching (see Berge [1] for the well-known solution to Kirkman's problem on packing Hamilton cycles into K_t . The solution presented in Berge appears already in Lucas [7] of 1883 wherein no reference to Kirkman is made).

Now we are going to prove the statement on t_0 , t_0 defined in (1).

Claim 1 If $r/p \ge n$ and $\delta < r + p - p\lceil r/p \rceil$ then conditions (ii) and (iii) imply that $t \ge t_0$.

Proof. Note that (ii) implies $t \ge t_1 := \lceil r/p \rceil$ if and only if $r - \delta > (\lceil r/p \rceil - 1)p$ or (equivalently) $\delta < r + p - p \lceil r/p \rceil$. However, if r and $n + t_1$ are odd integers and $t_1 > n$ then $t \ne t_1$ by condition (iii).

Claim 2 Conditions (i) and (ii) hold for $t \ge \max\{\lceil r/p \rceil, n\}$.

Proof. Since $nr \ge \sigma$, condition (i) holds for $t \ge n$. Moreover, (ii) holds for $t \ge \lceil r/p \rceil$.

Assume that $\sigma > 0$ in the following part of the proof. Hence it is easily seen that (P) holds for $t \geq r/p - 1$. This and Claim 2 imply that conditions (i),(ii) and (P) hold for $t \geq \max\{\lceil r/p \rceil, n\}$. Hence by Claim 1 conditions (i)-(iv) hold for $t \geq t_0$ if X = P.

Claim 3 Condition (M) holds for $t \ge n$ if $r \le 2pn$, otherwise for $t \ge \lceil r/p \rceil + 1 - n$.

Proof. Let L(t) stand for the left-hand side of the inequality (M). Then $L(n) = (\sigma - n(r - \Delta)) + n((n - 1)p - \Delta) \ge 0$ as the sum of two nonnegative summands. Hence (M) holds for t = n. Assume that $r \le 2pn$ and note that L(t) is the quadratic trinomial in t which attains its minimum at $\tau := (r/p+1)/2 \le n+1/2$. Therefore for any integer $t \ge n+1$, $L(t) \ge L(n) \ge 0$.

Otherwise r>2pn whence $\tau>n+1/2$. Therefore $L(t)\geq 0$ for $t\leq n$. Hence, since L(t) is symmetrical with respect to $t=\tau>n$, $L(t)\geq 0$ for each $t\geq n+2(\tau-n)=r/p+1-n$.

Claim 3 implies that, for $n \geq 2$ and r/p > 2n, condition (M) holds for $t \geq \lceil r/p \rceil - 1$. Hence and by Claims 1, 2 and 3, conditions (i)-(iv) hold for $t \geq t_0$ if X = M.

Remark 1. A specification of Theorem in case G and F are simple graphs is obtainable by straightforwardly substituting therein X=M and p=1. Additionally, for $r=\Delta$ this way we get main body of the classical Erdős and Kelly's Theorem [3, 4].

Remark 2. For $X \in \{M, P\}$ the following *n*-vertex X-graphs G show that the upper bound t_0 on the smallest t in Theorem is attainable. Assume

that E_m denotes a set of m edges of the complete graph K_n . For X=M, p=1 and $r=\Delta(G)>0$ (which is the Erdős and Kelly's case): t=n if $n\geq 4$ and $G=K_n-E_m$ where $1\leq m\leq \lfloor (n-2)/2\rfloor$ (the Erdős and Kelly example K_n-e beeing included). For any X, any p, and $r/p\leq n$: t=n if G is any X-graph with $e(G)\leq (r-1)/2$ (whence $\Delta< r$); whereas for r/p>n: $t=t_0>n$ if $\delta(G)< r+p-p\lceil r/p\rceil$ (i.e., if $\delta(G)=0$ for p=1).

References

- [1] C. Berge, Graphs and Hypergraphs, North-Holland, Amsterdam et al., 1973, Ch. 11.2.
- [2] G. Chartrand, L. Lesniak, Graphs & Digraphs, Wadsworth & Brooks/Cole, Pacific Grove, California, 1986.
- [3] P. Erdős, P.J. Kelly, The minimal regular graph containing a given graph, Amer. Math. Monthly 70 (1963) 1074–1075.
- [4] P. Erdős, P.J. Kelly, The minimal regular graph containing a given graph, in: F. Harrary, L. Beineke (eds.), A Seminar on Graph Theory, Holt, Rinehart and Winston, New York 1967, 65-69.
- [5] D. König, Über Graphen und ihre Anwendung auf Determinantentheorie und Mengenlehre, Math. Ann. 77 (1916) 453-465.
- [6] D. König, Theorie der endlichen und unendlichen Graphen, Akad. Verlagsgesell., Leipzig, 1936 (Reprinted by Teubner, Leipzig, 1986).
- [7] E. Lucas, Récréations Mathématiques, vol. II, Gauthier-Villars, Paris, 1883.