Remarks on a general model of a random digraph
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Abstract Basic properties of in-degree distribution of a general model of a
random digraphs D(n,P) are presented. Then some relations between random
digraphs D(n,P) for different probability distributions P’s are studied. In this
context, a problem of the existence of a threshold function for every monotone
digraph property of D(n,P) is discussed.

1. Introduction

We begin with a definition of a general model of a random digraph
that was introduced in [6]. Let P = (Po, Pi,... ,Pa-1) be a probability
distribution, i.e. an n-tuple of non-negative real numbers which satisfy
Z;_-_—lo P,, = 1. Denote by D(n,P) a random digraph on a vertex set V =
{1,2,... ,n} such that (here, and what follows, N*(i) denotes the set of
images of a vertex i):

1) each vertex "chooses” its out-degree and then its images indepen-
dently of all other vertices,

2) each vertex i € V chooses its out-degree according to the probability
distribution P:

Pr{|N*(i)| =k} =P, k=0,1,...,n-1
3) for every S C V \ {i}, with |S| =k,

(1.1) m=pris=N@) =/} ")
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i.e. px is the probability that a subset S coincides with the set of
images of a vertex 1.

In particular, if P is such that Py = 1 for some d, 1 < d < n —1, the
model D(n,P) is equivalent to a random d-out-regular digraph D(n,d).
Such a digraph can also be defined as an element chosen at random from
the family of all ("E])n digraphs on n labeled vertices each of out-degree
d. (Alternatively, D(n,d) can be thougth as a representation of a sum of d
dependent random mappings as illustrated in [4]).

In a case when P is a binomial distribution B(n — 1, p), i.e.

_ n—1 -k e
P:(qn ]""7( k )pkqn ] k""?p ])7

the model D(n,P) is equivalent to a random digraph D(n, B) on n labeled
vertices in which each of n(n — 1) possible arcs appears independently with
a given probability p=1—gq.

One more step takes us to a classical random graph G{(n,p’). In order
to do this, let us define an wunderlying simple graph G of a digraph D
as a graph obtained from D by omission of the orientation of arcs and
replacement of eventual double edges by a single one. Now an underlying
simple graph of a random digraph D(n,B) is a random graph G(n,p'),
obtained by independent deletion of edges of a complete graph on n vertices,
so that each edge has the same probability p’ = 2p — p? of being present.

Other spaces of random graphs, which can be obtained from the model
D(n,P), are discribed with relations between them in [4], [5] and [6].

In [6] some relations between the general model D(n, P) and its special
case D(n,d) were considered. Also it was proved that, under some tech-
nical restrictions, the vertex connectivity, edge connectivity and minimum
vertex degree of a random digraph D(n,P) have asymptotically the same
distribution. Here, in Section 2, we present basic properties of in-degree
distribution of D(n,P).

Recall that a graph property A is monotone increasing (decreasing) if
from the fact that a graph G has A, it follows that every spanning su-
pergraph (subgraph) of G has also this property. Erdés and Rényi (see
[3]) discovered the important fact that most monotone properties of the
classical model of random graph G(n, p) appear rather suddenly. They in-
troduced the notion of a threshold function for a monotone property. Let
A be a given monotone increasing property. Then a function p*(n) is said
to be a threshold function for A if

lim Pr{G has A R
Jim Pr{G(n,p) has A) =1 if 2 — oo,
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One can show that probability that G(n,p) has a monotone property is a
monotone function of the parameter p (see [1, p.33]). Bollobéds and Thoma-
son (see [2]) observed that every monotone property of subsets of a set has
a threshold function. In particular it follows that any monotone property
of G(n,p) has a threshold function. It is natural to ask whether this fact
is also true in more general setting.

The main aim of our paper is to study some relations between random
digraphs D(n,P) with respect to different probability distributions P’s.
In particular, in Section 3, we show the heuristically obvious fact that a
monotone increasing property of a random digraph D(n,P) is the more
likely to occur the more arcs we are likely to have.

2. Basic properties of D(n,P)

Let Xt be a discrete random variable having a probability distribution
P=(Po,P,...,Pu-1):

Pr{X*=k}=P, k=01,... ,n—1

Due to the homogeneous structure of the random digraph D(n,P), the
random variable X+ defines the out-degree of a given vertex of D(n,P).
Actually, we have n independent, identically distributed random variables
X*+(1),X*(2),...,X*(n). Therefore we can write shortly X * instead of
X(4).

The first property expresses, by appropriate factorial moment of X, the
probability that a given subset of vertices is contained in the set of images
ofavertexi €V = {1,2,...n}. Asusuall, (n)y =n(n—1)...(n —k+1)
and E.(X) stands for the k-th factorial moment of a random variable X.

Property 2.1. Foragiveni, 1 <i<n,letUCV\{i}and Ul =t>1.
Then

Pr{U C N*(i)} = E/(X™).

1
(n—1),

Proof. Assume that we are given a vertex i € V and t-element subset
U C V\ {i}. Let W be an l-element subset of V' \ (U U {i}). Then

P{UCN'()}= Y  Pr{UUW =N"(i)}
WCV\U\{i}
n—t—1
=Y Pr{UUW = N*()}.

=0 WCV\U\{i}
W=t
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So, by (1.1) we have

Pr{U C N*(i)} Z (” o ‘)pm

1 gyt
_(n_])tE,(X ). O

In particular, if £t = 1 the above property defines an arc occurence prob-
ability in digraph D(n,P). Denoting this probability by p* we have

2.1) P = n—]_—]-E(X*).

Now let X~ = X~ () be the in-degree of a given vertex i € {1,2,... ,n}
of D(n,P). Clearly, the probability distribution of X~ depends on P. We
have the following result.

Property 2.2. Fori=1,2,...,n therandom variable X ~ (i) has binomial
distribution B(n — 1, p*).

Proof. For a given vertex i € {1,2,...,n}, let N~(i) be the set of vertices
that “have chosen” vertex i. Without loosing generality we may take ¢ = 1.
Then, again due to the homogeneous structure of D(n,P), we obtain

Pr{X~(1) = k} = Pr{IN~(1)| = )
- (";c‘ 1) Pr{l € N*(2),1 € N*(3),...,1 € N*(k+1),
1¢ Nt (k+2),...,1¢ N*(n)}
= (" )i € N N pes g N

and the result follows from Property 2.1. O

In contrast with out-degrees of vertices of D(n, P), the random variables
X~(3),i=1,2,...,n, are not, in general, independent. The only case when
these variables are independent is when X is binomially distributed. As
a matter of fact we have the following equivalence.
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Property 2.3. Random variables X~ (1), X~(2),...,X~(n) are indepen-
dent if and only if the out-degree of each vertex has a binomial distribution.

Proof. Let X—(1),...,X~(n) be independent random variables. By Prop-
erty 2.1 each of these variables has the binomial distribution B(n — 1, p*)
with p* = 5 E(X ™). Now reverse direction of each arc (out-degrees be-
come in-degrees and vice versa). Then in a new digraph, by Property 2.2,
the in-degree of a given vertex (but the out-degree in the original digraph)
has binomial distribution with parameters n — 1 and p*.

Conversely, let P be a binomial distribution B(n — 1,p). Then, for
each vertex, appearances of arcs going from the vertex can be considered
as independent events. Therefore the definition of D(n,P) implies that
all arcs appear independently and with probability p in such a digraph.
This insures the independence of each in-degree in the random digraph
D(n,P). O

3. Main results

Using a standard terminology of stochastic ordering, we say that a ran-
dom variable Y is smaller than a random variable X in the usual stochastic
order (and we write Y < X) if

(3.1) Pr{Y > u} < Pr{X > u}

for all u € (—00,00). In the particular case, when X and Y are discrete
random variables such that

Pr{X =k} =P
Pr{Y =k} = Q4
for k=0,1,2...,n~ 1 the condition (3.1) is equivalent to
u u
(3.2) Y P < > Qk
k=0 k=0
forallu=10,1,2,...,n — 1. In such a case we simply write Q@ < P, where

clearly P = (Po, P1,... ,Pp—1) and @ = (Qo, @1, ... , Qn-1).

Now we are ready to state our main result and its consequences. It
is a generalization of a well-known result about monotone properties in a
classical random graph model G(n, p) (see [1, p.33]).
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Theorem 3.1. If Q < P then for any digraph monotone increasing prop-
erty A

(3.3) Pr{D(n, Q) has A} < Pr{D(n,P) has A}.

Moreover, if A is any monotone decreasing digraph property, then the
opposite inequality holds.

The proof is based on the following lemma which shows, that even a
very small "distruction” (known as a Dalton transfer) of the probability
distribution of out-degree of a random digraph D(n,P) has a significant
influence on the probability of this graph having a monotone property A.

Lemma 3.1. Let P = (Po, ey Prx,... ,Pa_y) be a probability distribu-
tion. Let {Pr(z)}, k=1,... ,n—1 be a distribution defined as follows

Pk(w)__—(POv'-- ,Pk_|+.'L',Pk’—.’B,...,Pn_.])

where x is any real number such that 0 < x < P,. Then for any monotone
increasing digraph property A and for any integer k, 1 <k <n -1,

(3.4) Pr{D(n,P) has A} > Pr{D(n,Pr(z)) has A}.
Moreover, if A is any monotone decreasing digraph property, then the
opposite inequality holds.

Proof. We show the lemma in a case of monotone increasing property A (if
a property A is monotone decreasing then ,,not .A” is monotone increasing).
Let k, 1 <k <n-1, be fixed and put

fr(z) = Pr{D(n,Pi(z)) has A}.
To prove (3.4) it is enough to show that

©5) i) = 242 < o

For, if fi(x) is a decreasing function on the interval (0, Py], then for any
z € [0, P;] and any k we have

Pr{D(n,P) has A} = fi(0) > fi(z) = Pr{D(n, Pr(z)) has A}.

Now denote by A(ng,n1,...,nn-1) the number of digraphs (without
loops and multiple arcs) with n; vertices of out - degree ¢, ¢ = 0,1,... ,n—1,
having an increasing property .A. Then

Pr{D(n,'P) has A} = Z A(nO’nl,"' ?nn—l) Hp?i7
i=0

(no,... Mn-1)
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where p; is given by (1.1) and the summation is over all n-tuples (no, 71, ... , Tn—1)
such that each n; > 0 and

n—1

E g =n.

=0

Therefore

P, + k-1 P nx

- T -

fk(x) = Z A('I’lo,nl,... ynn—l) [ knl_l ] [ I;_l } ‘
(no,... ,'n,,_l) (k-l ( k )

i=0

itk—1,k

Calculating the derivative fJ(z) and then using the inequality (see [4])

(n — k)ng—1 A(ng,n1,..+ ,n—1)
< (nk + l)kA(no,... JMg—1 — Lng +1,... \ip—1)

which holds for a monotone increasing property A and any k, 1 < k <n-—1,
one can confirm that (3.5) is true. 0O

Now we are ready to prove the main result.
Proof of Theorem 8.1. By (3.2) it is clear that Qn_1 < Pp—y. Let
Tn-1 = Pao1 — Qa1
and let us consider the distribution

P* = (Po, P1y.o. yPoca +Tn_1, Paci — Tn-1)
= (Po,Pl, N .’Bn_l,Qn_l).

By Lemma 3.1, for a monotone increasing digraph property A,
Pr{D(n,P) has A} > Pr{D(n,P*) has A}.
Now let

Tp-2 = P o+zpn-1— Qn-2
= (Pa—2 + Pno1) = (Qn-2 + Qn-1).
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Again, by (3.2), zn_2 > 0. Taking

P = (P01P]1 v ,Pn—3 +mn—21Pn—2 + Tn— —zn—2aQn—l)
= (Po,Py,... ,Pa—3 +2n-2,Qn-2,Q@n-1)

we have, again by Lemma 3.1,

Pr{D(n,P*) has A} > Pr{D(n,P**) has A}.
Analogously, applying succesively this lemma for

Tk =(Pe+...+ Poc1) = (Qx + ...+ Qn-1),
with k =n—-3,...,2,1 we finally obtain the inequality (3.3). O

An interesting problem is to answer the question: what assumptions
should be made about the class of stochasticaly ordered probability dis-
tributions to quarantee the existence of a threshold function (threshold
probability distribution) for every monotone property of D(n,P). At least
one can expect that this is the case when P depends only on two param-
eters, including n. Below we present corollaries of our theorem for some
distributions of this type.

The first special case is the following result on monotone properties of
the classical random graph G(n,p) which was already mentioned in the
Introduction.

Corollary 3.1. Suppose A is any graph monotone increasing property and
let 0 < py < pp <1. Then

Pr{G(n,p1) has A} < Pr{G(n,pz) has A}.

Proof. Let @ = B(n~1,p;) and P = B(n—1,p2). Since the first derivative
L 0 Lt e i P (At
dp k=0 k u—2

is less or equal to zero for any u = 0,1,... ,n—1, s0 Q@ < P and by Theorem
3.1 we obtain our result. O

Clearly for two degenerate distributions @ and P, where Qq, =1 and

Py, = 1, d; < dg, we have by (3.2) that @ <P. Hence by Theorem 3.1
we obtain
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Corollary 3.2. Suppose A is any graph monotone increasing property and
let 1 <dy <dy <n-—1. Then

Pr{D(n,d;) has A} < Pr{D(n,dz) has A}. O

Note that possessing an increasing graph property by a match graph
M (n,d) is an increasing digraph property of D(n,d). Therefore we imme-
diately obtain

Corollary 3.3. Suppose A is any graph monotone increasing property and
let 1 <dy <dy<n-—1. Then

Pr{M(n,d;) has A} < Pr{M(n,dy) has A}. O

For many graph (digraph) properties A we know (or at least we believe)
that there exists d such that

Pr{D(n,d) has A} =0 and Pr{D(n,d+1) has A} =1.

It is natural to search for the " threshold” two-point distribution on {d, d+1}
such that Py =1 — p, Pyy; = p. Denote by D(n,d; p) the corresponding
digraph. Then the following direct consequence of Lemma 3.1 can be useful.

Corollary 3.4. Suppose A is any graph monotone increasing property and
let d be fixed and 0 < py < p2 < 1. Then

Pr{D(n,d; p)) has A} < Pr{D(n,d; p;) has A}. O

Finally let us consider digraphs ”generated” by geometrical distribution,
more precisely by distribution

_ q g1-q) g(l—g) g(1—g)"!
Plmg)= (1 1= 1-(1-g™'1-(1-g""" ’1—(1-4)“)

Denote the corresponding random digraph by D(n,P(n,q)) .

Corollary 3.5. Suppose A is any graph monotone increasing property let
0<q1 <q2<1. Then

Pr{D(n,P(n,q2)) has A} < Pr{D(n,P(n,q1)) has A}
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Proof. Let Q ="P(n,q2) and P = P(n,q1). One can easily check that the
first derivative

gl-g* \ _d /1-(1—gm*
dg (Z“(]"q)”)_dq( 1-(1-gq)m )
= [1__(1_—_)Tn]2( —u=1)(1=¢)" =n(1-q)* ™'+ (u+ 1))

is greater or equal to zero for any u =0,1,... ,n—1and ¢>0,s0 Q <P
and by Theorem 3.1 we obtain our corollary. O

Acknowledgment

This research work was partially supported by grant XBN 2 P03A 028 09.

References

(1] B. Bollobas, Random Graphs, Academic Press inc. (London) Ltd.,
1985.

[2] B. Bollobds, A. Thomason, Threshold functions, Combinatorica 7
(1987), 35-38

[3] P. Erdés, A. Rényi, On the evolution of random graphs, Publ. Math.
Inst. Hungar. Acad. Sci. 5, (1960), 17-61.

[4] J. Jaworski, M. Karonski, On the connectivity of graphs generated by
a sum of random mappings, J. Graph Th. 17, No 2, (1993), 135-150.

[5) J. Jaworski, Z. Palka, Subgraphs of random match-graphs, Graphs and
Combinatorics, in press.

[6] J. Jaworski, I. Smit, On a random digraph, Annals of Discrete Math. 33,
(1987), 111-127.

144



