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Abstract

We show that if M(n, m) denotes the time of a (u, v)-minimum
cut computation in a directed graph with n > 2 nodes, m edges, and
s and t are two distinct given nodes, then there exists an algorithm
with O(n?m + n - M(n, m)) running time for the directed minimum
odd (or even) (s, £)-cut problem and for its certain generalizations.

Let G = (V, E) be a directed graph with » > 2 nodes and m edges, s
and ¢ two distinct given nodes of G. The cut of the graph is a subset C of
the nodes. An (s, t)-cut of the graph is a subset C C V with s € C and
t ¢ C. The value of the cut f(C) is the number or the total capacity of the
edges leaving C. A function f over all subsets of a ground set V' is called
submodular if all X, Y C V satisfy f(X)+ f(Y) > f(XNY) + f(XUY).
An example of a submodular function is the cut value function. The no-
tion of minimum cut and its generalization, the minimum of a submodular
function, plays an important role in combinatorial optimization. See [5]
for a survey of the application of submodular functions and [6] for that of
minimum cuts.

Grotschel et al. ([4]) generalize the notion of an odd (cardinality) set
and define a triple family as follows. A family of subsets of a ground set V'
forms a triple family over V if for all X C V and Y C V whenever three
of the four sets X, Y, XNY and X UY are not in the triple family, then
so is the fourth.
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We consider the following optimization problems related to (s, ¢)-minimum
cuts in directed graphs:

e The odd (even) minimum (s, t)-cut problem asks for a cut C, such
that s € C,t ¢ C, |C| is odd (even) with f(C) minimum.

e For a prescribed node subset T', the T-odd (T-even) minimum
(s, t)-cut problem asks for a cut C, such that s€ C,t ¢ C, |CNT)|
is odd (even) with f(C) minimum.

o The problem of minimum (s, t)-cut with cardinality not divisible by a
given integer p (or for a given node subset T the problem of minimum
(s, t)-cut C with |C N T} not divisible by p).

o The problem of minimum (s, t)-Steiner cut asks for a cut C such that
s€C,t ¢ C,C subdivides a given subset T of V (i.e. 9 # CNT # T)
with f(C) minimum.

e The problem of minimum (s, t)-generalized Steiner cut asks for a cut
C such that s € C, t ¢ C, C subdivides at least one of the given
subsets Ti,...,Tx C V with f(C) minimum.

If we leave out the condition s € C, t ¢ C everywhere, all families
of sets from each example are triple families over V' (see [1], Section 1.3),
but the above mentioned problems do not ask for the minimum value cut
in these triple families like problems of [1]. Here each example asks for
the minimum value (s, t)-cut in these triple families. Notice that if G is a
triple family over V, then for two arbitrarily fixed distinct nodes s and ¢
Gn{X CcV:se X,t ¢ X} is not a triple family over V.

Lemma 1 Let G C 2V be a triple family over V, s, t € V two distinct
given nodes from V. Then G*:= {X — {s}: X € G,s € X,t ¢ X} forms a
triple family over V — {s,t}.

Proof. Note that a subset A of V — {s,t} is not in G* iff AU {s} is
not in G. Let A and B two arbitrarily fixed subsets of V — {s, t}. Suppose
that three of the four sets A, B, AN B and AU B are not in G*, this means
that three of the four sets AU {s}, BU{s}, (ANB)U{s} and (AUB)U{s}
are not in the triple family G, hence so is the fourth. If we leave out s from
the fourth set we obtain the fourth set from A, B, AN B and AU B, this
is a subset of V — {s, t}, which is not in G*. O

Theorem 2. Let G C 2V be a triple family over V, let s, t € V be two dis-

tinct given nodes of V and let V, s:={X C V:s € X,t ¢ X}. Then there
ezists an algorithm with O(n?>m+n- M(n, m)) running time for finding an
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f-minimizer set C over G such that s € C, t ¢ C, where M(n, m) denotes
the time of a submodular function minimization over V,, .

Proof. Let G* be the triple family over V — {s, ¢} from Lemma 1. We use
for G* our algorithm for minimizing submodular functions over triple fami-
lies from [1], which may return @ or V —{s, t}, with O(n?m+n- M(n, m))
running time, where M(n, m) denotes the time of a (u, v)-minimum cut
computation ([1], Section 4.2). A (u, v)-minimum cut computation in G*
corresponds to computing a minimum cut with source s and u contracted
and sink ¢ and v contracted. Our algorithm from [1] uses two major tools:
the Cheng-Hu flow-equivalent tree and a special uncrossing step, and means
a factor O(n) improvement over the running time of the previous most ef-
ficient algorithm of Goemans and Ramakrishnan for triple families [3]. If
Y, is the output of the algorithm, i.e. Yo C V —{s, t}, Yo € G* with f(Yo)
minimum, then C:= Yy U {s} is an f-minimizer over G such that s € C,
t¢C. O
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