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Abstract

A set of Bishops cover a board if they attack all unoccupied squares.
What is the minimum number of Bishops needed to cover a k x n
board? Yaglom and Yaglom showed that if k = n, the answer is
n. We extend this result by showing that the minimum is 2 [%J if
k <n < 2k. For n > 2k > 2, a cover is given with 2 | &= | Bishops.
We conjecture that this is the minimum value. This conjecture is
verified when k <3 or n < 2k + 5.

1 Introduction

The Bishop in “Chess” attacks diagonally on an 8 x 8 board (see fig. 1).

Figure 1 — Bishop Moves. A Bishop attacks squares marked by X.

A Bishop covers a square if it attacks it or is on it. Then a set of Bishops
cover a board if they cover all of its squares. Yaglom and Yaglom [2] asked:
What is the minimum number of Bishops which can cover an n x n board?
They showed the answer is n (see fig. 2). We try to answer this question for
rectangular k X n boards. Without loss of generality, assume throughout
that k < n.

The Bishop cover problem is a special case of graph domination. A
domination of a graph G is a subset of its nodes where every node is either
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Figure 2 — A Minimum Cover of an 8 x 8 Board. Yaglom and
Yaglom showed that at least n Bishops are needed to cover ann xn
board. This is one of 1082 = 11664 ways to cover a Chessboard with
8 Bishops.

in or adjacent to the subset. The domination number (notated v(Q)) is
the minimum size of a domination of G. Let the k x n Bishop graph, By n,
have nodes {1,2,...,k} x {1,2,...,n} with an edge between nodes (g,h)
and (i,j) if i — g| = |7 — k| # O (see fig. 3). The minimum number of
Bishops needed to cover a k x n board is then the domination number of
By, n and is denoted y(Bg ).

Section 2 finds (Bg,,) when k < n < 2k, and gives a conjecture when
n > 2k. Section 3 verifies this conjecture when k£ < 3 and when n < 2k +5.
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Figure 3 — The Bishop Graph of a 5 x 8 board. Nodes repre-
sent squares. There is an edge between nodes if their corresponding
squares are in the same diagonal or antidiagonal.
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2 The Main Results

First we define several subsets of the nodes of By, (see fig. 4). As a graph,
B, has two components which we will call white and black (which is which
will be defined as convenient): ‘

{G,j) | i+jis even} and {(3,5) | i +j is odd}.
Let the p diagonal and the gt antidiagonal, respectively, be
Dp={(i,j) | p=k+j—i} and Ag = {(4,5) | g=j +3 - 1}.

Ds D¢ D7 Dg Dg Dyo Dn Ay A2 As Ay As Ae Ar

DQ:\\\\\\ LS

9

Ao

An

Figure 4 — Diagonals and Antidiagonals. This shows the 11
diagonals and 11 antidiagonals of a 5 x 7 board.

Below is a new proof of a result from Yaglom and Yaglom [2]. It is
shorter than the proof in [2] and an independent proof given in Cockayne,
Gamble and Shepard [1]. Theorem 2 presents a formula for y(Bg,,) on
boards that are no more than twice as wide as high. Let a diagonal or
antidiagonal be empty if it does not have a Bishop in it. Key to proving
these results is the observation that a Bishop can attack at most one square
of an empty diagonal or antidiagonal.

Theorem 1. (Yaglom and Yaglom) For all n > 1, we have ¥(Bpn,n) = n.

Proof. We can cover By, , with n Bishops in row [2] (see fig. 2).

Suppose a cover of By, , has fewer than n Bishops. At least n diagonals
of By, have at least [ 2] squares. So at least one of these “long” diagonals
(say it is white) is empty. Therefore there are at least [12‘-] white Bishops
used to cover this “long” diagonal via antidiagonals leaving fewer than
n-— [g] = | 2] black Bishops. Since there are at least |2] “long” black
diagonals, at least one is empty. Then at least [2] black Bishops are needed
to cover this black diagonal via antidiagonals, a contradiction. O
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Figure 5 — A Minimum Cover of a 5x9 board with 8 Bishops.
Theorem 2 shows that placing Bishops in even columns of two middle-
most rows is a minimum cover of a k X n boards when k < n < 2k.

Theorem 2. For all k < n < 2k, we have y(By ) = 2|%]|. Further any
cover of By contains at least | 2| Bishops of each color.

Proof. We can cover By, with 2 | 2| Bishops in even columns of rows 15]
and | £| +1 (see fig. 5).

Suppose a cover of By, has fewer than |%| Bishops of a color, say
white. Since |2]| < k, there are not enough white Bishops to cover an
empty diagonal of length k. Thus every white diagonal of length k contains
a Bishop.

Let p < k be the largest integer where D), is an empty white diagonal.
Then p exists for otherwise all white diagonals D; with j < n would have
a Bishop, impossible with fewer than | 2 | white Bishops. Let ¢ > n be the
smallest integer where D, is an empty white diagonal (g exists for similar
reasons). Since 452 — 1 white diagonals are strictly between D, and D,,
we have 252 — 1 < | 2| — 1 and hence ¢ — p < n (see fig. 6).

Diagonal D, is between squares (k — p +1,1) and (k,p). Diagonal D,
is between squares (1, — k+1) and (k + n — g,n). So one end of D, is in
antidiagonal Ax_p41 and the other is in antidiagonal Ag4p-1, and one end
of D, is in antidiagonal A;_x+1 and the other is in antidiagonal Akton—q-1.
Since ¢g—p < n < 2k and hence (¢—k+1)—(k+p—1) < 2, the antidiagonals
intersecting D, are contiguous with the antidiagonals intersecting D, (there
can be overlap, but no “gap”). Since there are 1+ (k"'z"“";)_("—”“) =n—
455E > 2 white antidiagonals between Ag_p4; and Agy2n—g—1 inclusively,
covering the squares of both D, and D, via antidiagonals requires at least
2 white Bishops, a contradiction. O

What happens for wider boards? For k x n boards with n > 2k+2 (and
k > 1), the cover given in the proof of Theorem 3 has fewer Bishops than
the cover in the proof of Theorem 2.
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Figure 6 — Trying to Cover the White Squares of a 7 x 12
Board with 5 Bishops. Here k = 7 and n = 12. Diagonal D, =
Ds is the rightmost empty diagonal in the lower left. It goes from
Agept1 = A3 t0 Ag4p-1 = Ay Diagonal Dy = Dy is the leftmost
empty diagonal in the upper right. It goes from A,—x-1 = An to
Apton—g-1 = Ais. Attacking the squares of both Dy and D, via
antidiagonals requires at least 1 + (k“"-q") (k=p+!) — § Bishops.
With only 5 Bishops, some square of D, or Dq (marked by *) must
remain uncovered.

Theorem 3. For n > 2k > 4, we have y(Bi») < 2| 552].

Proof. We will describe a cover of By with [%ﬂj Bishops per color
(see fig. 7). Let square (1,1) be white. For white, put a Bishop in square
(2,2). Then put r = [%-I sets of k — 1 Bishops every 3k — 3 columns
alternating between row 1 and row k:

(5,1) (7,1) (9,1) .. (2k +1,1)
(3k-3+5k) (Bk-3+7,k) (3k—3+9,k) ... (3k—3+2k+1,k)
(6k—6+51) (6k—6+7,1) (6k—6+9,1) ... (6k—6+2k+1,1)
9k —9+5,k) (9k—9+7,k) (9k—9+9,k) ... (9k—9+2k+1,k)

Lets=n—(r—1)3k—3)—2k—2=n—3kr+3r+k—5. Put [£]
Bishops in the white squares of either row [ ]+ 1 (if r is even) or row

k — [£] (if r is odd) starting with column r(3k — 3) — 2k +6 + [§]. Ifa
Bishop is to be in column n + 1 (happens if s =1 (mod 3)), move it up (if

203



7 is even) or down (if 7 is odd) one row and left into column n. Then the
number of Bishops is

1+r(k—1)+|§] =l+r(k_l)+[n—3kr+3r+k—5'| _ ‘.k+nJ.

3

Figure 7 — A Cover of a 5 x 42 board. This shows the placement
of white Bishops (top) and black Bishops (bottom) prescribed by the
proof of Theorem 3.

For black, put r = l"gT"’f}‘;—z J sets of k — 1 Bishops every 3k — 3 columns
alternating between row 1 and row k:

2,1) (4,1) (6,1) . (2k — 2,1)
(3k—3+2,k) (3k—3+4,k) (3k—3+6,k) ... (3k—3+2k—2,k)
(6k—6+2,1) (6k—6+4,1) (6k—6+6,1) ... (6k—6+2k—2,1)
9k —9+2,k) (9%k—9+4,k) (9k—9+6,k) ... (9k—9+2k—2,k)

Let s=n—(r—1)3k—3)—2k+1=n—-3kr+3r+k—2. Place
[4] Bishops in the black squares of either row [2] +1 (if  is even) or row
k- [£] (if r is odd) starting in column r(3k-3)-k+2+] £]. If a Bishop
is in column n + 1 (happens if s = 1 (mod 3)), move it up (if 7 is even)
or down (if r is odd) one row and left into column n. Then the number of
black Bishops is

r(k—1)+[§] =r(k-1)+’-

n—3kr+3r+k—-2'| lk+nJ
3 =13 |

We believe that the cover given in the proof of Theorem 3 is minimum.

Conjecture. For all n > 2k > 2, we have v(By ) = 2 lk + nJ .
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3 Partial Verifications of the Conjecture

We now verify the conjecture in several cases. Theorems 4 and 5 verify the
conjecture when n < 2k + 5. The proof of Theorem 4 and the first part of
the proof of Theorem 5 are similar to the proof of Theorem 2. Theorems 6
and 7 verify the conjecture for 2 x n and 3 x n boards, respectively.

Theorem 4. For all kK > 1, we have ¥(Bgak+1) = Y(B2k+2) = 2k.
Further any cover of By ak+1 0r By 2k+2 contains at least k Bishops of each
color.

Proof. Let n =2k + 1 or 2k + 2, and let £ = n — 2k. Theorem 3 shows

’Y(Bk,2k+l)$2|.anJ =2|_-112:—+—eJ =2lk+§J §2|.k+-§--| = 2%.

Suppose a cover of By, ox+¢ With £ = 1,2 has fewer than k Bishops of a
color, say white. Let p < k be the largest integer where D, is an empty
white diagonal, and let ¢ > n be the smallest integer where D, is also an
empty white diagonal. Since 452 — 1 white diagonals are strictly between
D, and D, we have 15 —1 < k—1 and hence ¢ —p < 2k. As in the proof
of Theorem 2, the number of white Bishops needed to cover the squares of
diagonals D, and Dy via antidiagonalsis n—1(g—p) > n—k = k+£ > k+1,
a contradiction. O

Theorem 5. For all £ > 1, we have Y(Bk2k+3) = Y(Bko2k+s) =
Y(Bk,2k+5) = 2k + 2. Further any cover of By 2r+3, Bk2k+4, 07 Bk ak+s
contains at least k + 1 Bishops of each color.

Proof. Let n =2k + 3, 2k +4 or 2k + 5, and let £ = n — 2k. Theorem 3
shows

v(Br 2kse) < 2 [k;"J =2 lk+ gJ <2 I-k+ gJ =2 +2.

Suppose a cover of By ax4¢ for £ = 3,4,5 has fewer than k + 1 Bishops
for one color, say white.

First assume no diagonals of length &k are empty. Let p < k be the
largest integer where D, is an empty white diagonal, and let ¢ > n be the
smallest integer where D, is also a white empty diagonal. Since there are
452 — 1 white diagonals strictly between Dy and Dy, we have 432 —1 < k&
and hence ¢ — p < 2k + 2. As in Theorem 2, the number of Bishops
needed to cover the squares of both diagonals D, and D, via antidiagonals
isn—3(g—p)>n—(k+1)=k+£—12> k+2 which is more than the
number of white Bishops, a contradiction.
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Otherwise, let D, be an empty white diagonal of length k. It takes k
white Bishops to attack the squares of D, via antidiagonals. So there must
be a Bishop is in every white antidiagonal between A,_;4; and A, 451,
inclusively, and all other antidiagonals are empty (see fig. 8). Since square
(k, 1), or squares (k —1,1) and (k,2) must be covered, a Bishop is in Ax_;,
Ag,or Agyy. Sor —k+ 1< k+1 and hence r < 2k. Since square (1,n),
or squares (1,n — 1) and (2,n) are also covered, there must be a Bishop is
in one of antidiagonals A,_1, An, or Ap+1- SoT7+k—12>n—1 and hence
r > n—k. Since n -k < r < 2k, antidiagonal A,_,_; exists (because
r—k—-1>(n—-k)—k-1=¢-1>2)and has length r — k — 1 (since
r—k—1<2k—k-1=k—1). Further, antidiagonal A, exists
(because r + k+1<2k+k+1=n-€+k+1<n+k-2) has length
k+n—(r+k+1)=n—r—1(sincer+k+1>n—-k+k+1=n+1). So
Ar_j—1 and A,4i41 are empty and the set of diagonals intersecting them
are disjoint (D, separate the sets). Thus the number of white Bishops
needed to attack the squares of both A,_x—; and A,;+¢4; via diagonals is
the sum of their lengths: r—k—1+n—r-1=n-k-2=k+0-2>k+1,
a contradiction.

Either way, k + 1 Bishops are needed of each color. O
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Figure 8 — Trying to Cover the White Squares of a 6 x 15
Board with 6 Bishops. Here k = 6 and n = 15. Diagonal D, =
D, is an empty diagonal of length k = 6. It goes from A,_j41 = A7
to Ar4k—1 = Aj7. Attacking the squares of D, via antidiagonals
requires all k = 6 Bishops. So antidiagonals A,_x—-; = As and
Artk+1 = Ayo are empty. Since A,_k_; has r — k — 1 = 5 squares,
and Arqk41 has n — r — 1 = 2 squares, at least 5 + 2 = 7 Bishops
are needed to cover these two antidiagonals via diagonals. With only
6 Bishops, some square of A,-_1 and A,; ¢+ (marked by *) must
not be covered.
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Theorem 6. For all n, we have v(Bzn) = 2[2].

Proof. Let P, a path of length n. Then By, = P, U P, is disjoint
union of two paths of length n. It is well known that 7(P,) = [%]. So

Y(Bz,n) = v(PaUP,) = 2¢(P.) =2[%]. O

Theorem 7. For all n > 4, we have ¥(Bs ) = 2|™3|. Further, any
cover of By, contains at least | 2+2| Bishops of each color.

Proof. Theorem 2 shows y(B34) = 2 I_%J =4, v(B3s) = 2 [%J =4, and
v(Bss) = 2|8] = 6. Theorem 4 gives ¥(Bs) = 7(B3zs) = 2-3 = 6.
Theorem 5 shows (B3 9) = 2(3 + 1) = 8. Further, these minimum cover
equally divide the Bishops between the two colors. For n = 4, 5, 6, 7, 8,
and 9, we have 2 |2}3| = 4, 4, 6, 6, 6, and 8, respectively. So the result
holds for4 <n <9.

For n > 9, Theorem 3 shows (B3 n) < 2| 2}2|. Assume (for induction)
that for all m with 4 < m < n, a cover of B; , contains at least | ZF2 |
Bishops of each color. Consider a cover of one color, say white, of B3 .

First assume square (1,n) is white. To cover square (1,n), a Bishop
must be on either square (1,n), (2,7 — 1) or (3,n — 2). If a Bishop on
square (1,n), it can be moved to square (2,7 — 1) and we still have a cover.

Figure 9 — Covering the White Squares of a 3 x n Board. If
square (1, n) is white, then without loss of generality, either a Bishop
is at square (2, n—1) or Bishops are at squares (1,n—2) and (3,2—2).
For (a), we must cover the white squares of a 3 x (n — 3) board. For
(b), we must cover the white squares of a 3 x (n — 5) board. If square
(1,=n) is black, either a Bishop is at square (2, n) or, without loss of
generality, Bishops are at squares (1,7 — 1) and (3,n — 1). For (c),
we must cover the white squares of a 3 x (n — 2) board. For (d), we
must cover the white squares of a 3 x (n — 6) board.

If a Bishop is on square (2,n — 1) (see fig. 9(a)), it only covers squares
in the right 3 columns. So the left n — 3 columns have at least | 2] Bishops
(any other white Bishops in the right 3 columns can be moved to square
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(2,n — 4) and we still have a cover of B; ,_3). Thus this cover contains at
least 1+ | 3] > | 22| white Bishops.

Otherwise a Bishop is on square (3,7 — 2) (see fig. 9(b)). Then another
Bishop must cover square (3,n). Among squares where this Bishop could
be, one at square (1,n — 2) covers a superset of the uncovered squares.
Then these two Bishops cover only squares in the right 5 columns. So the
left n — 5 columns have at least | 252 | Bishops (other white Bishops in the
right 5 columns can be moved to (2,n — 5) and we still have a cover of
Bj,;). Thus the cover contains at least 2 + | 232| > | 243 | white Bishops.

Now assume square (1,n) is black. To cover square (2,n), a Bishop
must be on either square (2,n), (1,n - 1), or (3, —1).

If a Bishop is on square (2,n) (see fig. 9(c)), it only covers squares in
the right 2 columns. So the left 7 — 2 columns have at least |2+ white
Bishops (a Bishop on square (1,n — 1) or (3,7 — 1) can be moved to square
(2,n — 2) and we still have a cover of B3 ;). Thus this cover contains at
least 1+ |232| +1 > | 22| white Bishops.

Otherwise without loss of generality, a Bishop is on square (1,n—1) (see
fig. 9(d)). Then another Bishop must cover square (3,7 — 1). Among the
squares where this Bishop could be, square (1,n — 3) covers a superset of
the uncovered squares. These two Bishops only cover squares in the right 6
columns. So the left n—6 columns have at least | 253 | white Bishops (other
white Bishops in the right 6 columns can be moved to (2,7 —6) and we still
have a cover of Bs,5). Thus the cover contains at least 2+ | 253 | = | 2£2]
white Bishops. O

We also tried to numerically find counterexamples to the conjecture.
In particular, we used Lindo (a commercial optimization system) to solve
integer programming formulations for the minimum number in a Bishop
cover of a kxn board for all £ < 9 and n < 110. The answers were consistent
with the conjecture. While not showing the conjecture is true even for these
values, these calculations increase our confidence in the correctness of the
conjecture.
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