Bishop Covers of Rectangular Boards

David C. Fisher and Paul Thalos University of Colorado at Denver

Keywords: Bishops, Chessboard, Domination, Graph Theory

Abstract

A set of Bishops cover a board if they attack all unoccupied squares. What is the minimum number of Bishops needed to cover a $k \times n$ board? Yaglom and Yaglom showed that if k = n, the answer is n. We extend this result by showing that the minimum is $2 \left\lfloor \frac{n}{2} \right\rfloor$ if $k < n \le 2k$. For n > 2k > 2, a cover is given with $2 \left\lfloor \frac{k+n}{3} \right\rfloor$ Bishops. We conjecture that this is the minimum value. This conjecture is verified when $k \le 3$ or $n \le 2k + 5$.

1 Introduction

The Bishop in "Chess" attacks diagonally on an 8×8 board (see fig. 1).

Figure 1 - Bishop Moves. A Bishop attacks squares marked by X.

A Bishop covers a square if it attacks it or is on it. Then a set of Bishops cover a board if they cover all of its squares. Yaglom and Yaglom [2] asked: What is the minimum number of Bishops which can cover an $n \times n$ board? They showed the answer is n (see fig. 2). We try to answer this question for rectangular $k \times n$ boards. Without loss of generality, assume throughout that $k \leq n$.

The Bishop cover problem is a special case of graph domination. A domination of a graph G is a subset of its nodes where every node is either

Figure 2 – A Minimum Cover of an 8×8 Board. Yaglom and Yaglom showed that at least n Bishops are needed to cover an $n \times n$ board. This is one of $108^2 = 11664$ ways to cover a Chessboard with 8 Bishops.

in or adjacent to the subset. The domination number (notated $\gamma(G)$) is the minimum size of a domination of G. Let the $k \times n$ Bishop graph, $B_{k,n}$, have nodes $\{1,2,\ldots,k\} \times \{1,2,\ldots,n\}$ with an edge between nodes (g,h) and (i,j) if $|i-g|=|j-h|\neq 0$ (see fig. 3). The minimum number of Bishops needed to cover a $k \times n$ board is then the domination number of $B_{k,n}$ and is denoted $\gamma(B_{k,n})$.

Section 2 finds $\gamma(B_{k,n})$ when $k \leq n \leq 2k$, and gives a conjecture when n > 2k. Section 3 verifies this conjecture when $k \leq 3$ and when $n \leq 2k + 5$.

Figure 3 – The Bishop Graph of a 5×8 board. Nodes represent squares. There is an edge between nodes if their corresponding squares are in the same diagonal or antidiagonal.

2 The Main Results

First we define several subsets of the nodes of $B_{k,n}$ (see fig. 4). As a graph, $B_{k,n}$ has two components which we will call white and black (which is which will be defined as convenient):

$$\{(i,j) \mid i+j \text{ is even}\}\$$
and $\{(i,j) \mid i+j \text{ is odd}\}\$.

Let the p^{th} diagonal and the q^{th} antidiagonal, respectively, be

$$D_p = \{(i,j) \mid p = k + j - i\} \text{ and } A_q = \{(i,j) \mid q = j + i - 1\}.$$

Figure 4 – Diagonals and Antidiagonals. This shows the 11 diagonals and 11 antidiagonals of a 5×7 board.

Below is a new proof of a result from Yaglom and Yaglom [2]. It is shorter than the proof in [2] and an independent proof given in Cockayne, Gamble and Shepard [1]. Theorem 2 presents a formula for $\gamma(B_{k,n})$ on boards that are no more than twice as wide as high. Let a diagonal or antidiagonal be *empty* if it does not have a Bishop in it. Key to proving these results is the observation that a Bishop can attack at most one square of an empty diagonal or antidiagonal.

Theorem 1. (Yaglom and Yaglom) For all $n \ge 1$, we have $\gamma(B_{n,n}) = n$.

Proof. We can cover $B_{n,n}$ with n Bishops in row $\lceil \frac{n}{2} \rceil$ (see fig. 2).

Suppose a cover of $B_{n,n}$ has fewer than n Bishops. At least n diagonals of $B_{n,n}$ have at least $\left\lceil \frac{n}{2} \right\rceil$ squares. So at least one of these "long" diagonals (say it is white) is empty. Therefore there are at least $\left\lceil \frac{n}{2} \right\rceil$ white Bishops used to cover this "long" diagonal via antidiagonals leaving fewer than $n - \left\lceil \frac{n}{2} \right\rceil = \left\lfloor \frac{n}{2} \right\rfloor$ black Bishops. Since there are at least $\left\lfloor \frac{n}{2} \right\rfloor$ "long" black diagonals, at least one is empty. Then at least $\left\lceil \frac{n}{2} \right\rceil$ black Bishops are needed to cover this black diagonal via antidiagonals, a contradiction. \square

Figure 5 – A Minimum Cover of a 5×9 board with 8 Bishops. Theorem 2 shows that placing Bishops in even columns of two middlemost rows is a minimum cover of a $k \times n$ boards when $k < n \le 2k$.

Theorem 2. For all $k < n \le 2k$, we have $\gamma(B_{k,n}) = 2 \lfloor \frac{n}{2} \rfloor$. Further any cover of $B_{k,n}$ contains at least $\lfloor \frac{n}{2} \rfloor$ Bishops of each color.

Proof. We can cover $B_{k,n}$ with $2\lfloor \frac{n}{2} \rfloor$ Bishops in even columns of rows $\lfloor \frac{k}{2} \rfloor$ and $\lfloor \frac{k}{2} \rfloor + 1$ (see fig. 5).

Suppose a cover of $B_{k,n}$ has fewer than $\lfloor \frac{n}{2} \rfloor$ Bishops of a color, say white. Since $\lfloor \frac{n}{2} \rfloor \leq k$, there are not enough white Bishops to cover an empty diagonal of length k. Thus every white diagonal of length k contains a Bishop.

Let p < k be the largest integer where D_p is an empty white diagonal. Then p exists for otherwise all white diagonals D_j with $j \le n$ would have a Bishop, impossible with fewer than $\left\lfloor \frac{n}{2} \right\rfloor$ white Bishops. Let q > n be the smallest integer where D_q is an empty white diagonal (q exists for similar reasons). Since $\frac{q-p}{2}-1$ white diagonals are strictly between D_p and D_q , we have $\frac{q-p}{2}-1 \le \left\lfloor \frac{n}{2} \right\rfloor -1$ and hence $q-p \le n$ (see fig. 6).

Diagonal D_p is between squares (k-p+1,1) and (k,p). Diagonal D_q is between squares (1,q-k+1) and (k+n-q,n). So one end of D_p is in antidiagonal A_{k-p+1} and the other is in antidiagonal A_{k+p-1} , and one end of D_q is in antidiagonal A_{q-k+1} and the other is in antidiagonal $A_{k+2n-q-1}$. Since $q-p \le n \le 2k$ and hence $(q-k+1)-(k+p-1) \le 2$, the antidiagonals intersecting D_q are contiguous with the antidiagonals intersecting D_q (there can be overlap, but no "gap"). Since there are $1+\frac{(k+2n-q-1)-(k-p+1)}{2}=n-\frac{q-p}{2}\ge \frac{n}{2}$ white antidiagonals between A_{k-p+1} and $A_{k+2n-q-1}$ inclusively, covering the squares of both D_p and D_q via antidiagonals requires at least $\frac{n}{2}$ white Bishops, a contradiction. \square

What happens for wider boards? For $k \times n$ boards with $n \ge 2k + 2$ (and k > 1), the cover given in the proof of Theorem 3 has fewer Bishops than the cover in the proof of Theorem 2.

Figure 6 – Trying to Cover the White Squares of a 7×12 Board with 5 Bishops. Here k=7 and n=12. Diagonal $D_p=D_5$ is the rightmost empty diagonal in the lower left. It goes from $A_{k-p+1}=A_3$ to $A_{k+p-1}=A_{11}$. Diagonal $D_q=D_{17}$ is the leftmost empty diagonal in the upper right. It goes from $A_{q-k-1}=A_{11}$ to $A_{k+2n-q-1}=A_{13}$. Attacking the squares of both D_p and D_q via antidiagonals requires at least $1+\frac{(k+2n-q-1)-(k-p+1)}{2}=6$ Bishops. With only 5 Bishops, some square of D_p or D_q (marked by \star) must remain uncovered.

Theorem 3. For $n > 2k \ge 4$, we have $\gamma(B_{k,n}) \le 2 \lfloor \frac{k+n}{3} \rfloor$.

Proof. We will describe a cover of $B_{k,n}$ with $\lfloor \frac{k+n}{3} \rfloor$ Bishops per color (see fig. 7). Let square (1,1) be white. For white, put a Bishop in square (2,2). Then put $r \equiv \left\lceil \frac{n-2k-1}{3k-3} \right\rceil$ sets of k-1 Bishops every 3k-3 columns alternating between row 1 and row k:

Let $s \equiv n - (r-1)(3k-3) - 2k - 2 = n - 3kr + 3r + k - 5$. Put $\left\lceil \frac{s}{3} \right\rceil$ Bishops in the white squares of either row $\left\lceil \frac{s}{3} \right\rceil + 1$ (if r is even) or row $k - \left\lceil \frac{s}{3} \right\rceil$ (if r is odd) starting with column $r(3k-3) - 2k + 6 + \left\lceil \frac{s}{3} \right\rceil$. If a Bishop is to be in column n+1 (happens if $s \equiv 1 \pmod{3}$), move it up (if

r is even) or down (if r is odd) one row and left into column n. Then the number of Bishops is

$$1 + r(k-1) + \left\lceil \frac{s}{3} \right\rceil = 1 + r(k-1) + \left\lceil \frac{n - 3kr + 3r + k - 5}{3} \right\rceil = \left\lfloor \frac{k+n}{3} \right\rfloor.$$

Figure 7 – A Cover of a 5×42 board. This shows the placement of white Bishops (top) and black Bishops (bottom) prescribed by the proof of Theorem 3.

For black, put $r \equiv \left\lfloor \frac{n-2k+2}{3k-3} \right\rfloor$ sets of k-1 Bishops every 3k-3 columns alternating between row 1 and row k:

Let $s \equiv n - (r - 1)(3k - 3) - 2k + 1 = n - 3kr + 3r + k - 2$. Place $\left\lceil \frac{s}{3} \right\rceil$ Bishops in the black squares of either row $\left\lceil \frac{s}{3} \right\rceil + 1$ (if r is even) or row $k - \left\lceil \frac{s}{3} \right\rceil$ (if r is odd) starting in column $r(3k - 3) - k + 2 + \left\lceil \frac{s}{3} \right\rceil$. If a Bishop is in column n + 1 (happens if $s \equiv 1 \pmod{3}$), move it up (if r is even) or down (if r is odd) one row and left into column n. Then the number of black Bishops is

$$r(k-1) + \left\lceil \frac{s}{3} \right\rceil = r(k-1) + \left\lceil \frac{n-3kr+3r+k-2}{3} \right\rceil = \left\lfloor \frac{k+n}{3} \right\rfloor. \ \Box$$

We believe that the cover given in the proof of Theorem 3 is minimum.

Conjecture. For all
$$n \ge 2k > 2$$
, we have $\gamma(B_{k,n}) = 2 \left\lfloor \frac{k+n}{3} \right\rfloor$.

3 Partial Verifications of the Conjecture

We now verify the conjecture in several cases. Theorems 4 and 5 verify the conjecture when $n \leq 2k + 5$. The proof of Theorem 4 and the first part of the proof of Theorem 5 are similar to the proof of Theorem 2. Theorems 6 and 7 verify the conjecture for $2 \times n$ and $3 \times n$ boards, respectively.

Theorem 4. For all k > 1, we have $\gamma(B_{k,2k+1}) = \gamma(B_{k,2k+2}) = 2k$. Further any cover of $B_{k,2k+1}$ or $B_{k,2k+2}$ contains at least k Bishops of each color.

Proof. Let n=2k+1 or 2k+2, and let $\ell=n-2k$. Theorem 3 shows

$$\gamma(B_{k,2k+\ell}) \leq 2\left\lfloor \frac{k+n}{3} \right\rfloor = 2\left\lfloor \frac{k+2k+\ell}{3} \right\rfloor = 2\left\lfloor k+\frac{\ell}{3} \right\rfloor \leq 2\left\lfloor k+\frac{2}{3} \right\rfloor = 2k.$$

Suppose a cover of $B_{k,2k+\ell}$ with $\ell=1,2$ has fewer than k Bishops of a color, say white. Let p < k be the largest integer where D_p is an empty white diagonal, and let q > n be the smallest integer where D_q is also an empty white diagonal. Since $\frac{q-p}{2}-1$ white diagonals are strictly between D_p and D_q , we have $\frac{q-p}{2}-1 \le k-1$ and hence $q-p \le 2k$. As in the proof of Theorem 2, the number of white Bishops needed to cover the squares of diagonals D_p and D_q via antidiagonals is $n-\frac{1}{2}(q-p) \ge n-k = k+\ell \ge k+1$, a contradiction. \square

Theorem 5. For all k > 1, we have $\gamma(B_{k,2k+3}) = \gamma(B_{k,2k+4}) = \gamma(B_{k,2k+5}) = 2k + 2$. Further any cover of $B_{k,2k+3}$, $B_{k,2k+4}$, or $B_{k,2k+5}$ contains at least k+1 Bishops of each color.

Proof. Let n=2k+3, 2k+4 or 2k+5, and let $\ell=n-2k$. Theorem 3 shows

$$\gamma(B_{k,2k+\ell}) \leq 2\left\lfloor \frac{k+n}{3} \right\rfloor = 2\left\lfloor k + \frac{\ell}{3} \right\rfloor \leq 2\left\lfloor k + \frac{5}{3} \right\rfloor = 2k+2.$$

Suppose a cover of $B_{k,2k+\ell}$ for $\ell=3,4,5$ has fewer than k+1 Bishops for one color, say white.

First assume no diagonals of length k are empty. Let p < k be the largest integer where D_p is an empty white diagonal, and let q > n be the smallest integer where D_q is also a white empty diagonal. Since there are $\frac{q-p}{2}-1$ white diagonals strictly between D_p and D_q , we have $\frac{q-p}{2}-1 \le k$ and hence $q-p \le 2k+2$. As in Theorem 2, the number of Bishops needed to cover the squares of both diagonals D_p and D_q via antidiagonals is $n-\frac{1}{2}(q-p) \ge n-(k+1)=k+\ell-1 \ge k+2$ which is more than the number of white Bishops, a contradiction.

Otherwise, let D_r be an empty white diagonal of length k. It takes k white Bishops to attack the squares of D_r via antidiagonals. So there must be a Bishop is in every white antidiagonal between A_{r-k+1} and A_{r+k-1} , inclusively, and all other antidiagonals are empty (see fig. 8). Since square (k,1), or squares (k-1,1) and (k,2) must be covered, a Bishop is in A_{k-1} , A_k , or A_{k+1} . So $r-k+1 \le k+1$ and hence $r \le 2k$. Since square (1,n), or squares (1, n-1) and (2, n) are also covered, there must be a Bishop is in one of antidiagonals A_{n-1} , A_n , or A_{n+1} . So $r+k-1 \ge n-1$ and hence $r \geq n-k$. Since $n-k \leq r \leq 2k$, antidiagonal A_{r-k-1} exists (because $r-k-1 \ge (n-k)-k-1 = \ell-1 \ge 2$) and has length r-k-1 (since $r-k-1 \leq 2k-k-1 = k-1$). Further, antidiagonal A_{r+k+1} exists (because $r+k+1 \le 2k+k+1 = n-\ell+k+1 \le n+k-2$) has length k+n-(r+k+1) = n-r-1 (since $r+k+1 \ge n-k+k+1 = n+1$). So A_{r-k-1} and A_{r+k+1} are empty and the set of diagonals intersecting them are disjoint (D_r separate the sets). Thus the number of white Bishops needed to attack the squares of both A_{r-k-1} and A_{r+k+1} via diagonals is the sum of their lengths: $r-k-1+n-r-1=n-k-2=k+\ell-2\geq k+1$, a contradiction.

Either way, k + 1 Bishops are needed of each color. \square

Figure 8 – Trying to Cover the White Squares of a 6×15 Board with 6 Bishops. Here k=6 and n=15. Diagonal $D_r=D_{12}$ is an empty diagonal of length k=6. It goes from $A_{r-k+1}=A_7$ to $A_{r+k-1}=A_{17}$. Attacking the squares of D_r via antidiagonals requires all k=6 Bishops. So antidiagonals $A_{r-k-1}=A_5$ and $A_{r+k+1}=A_{19}$ are empty. Since A_{r-k-1} has r-k-1=5 squares, and A_{r+k+1} has n-r-1=2 squares, at least 5+2=7 Bishops are needed to cover these two antidiagonals via diagonals. With only 6 Bishops, some square of A_{r-k-1} and A_{r+k+1} (marked by \star) must not be covered.

Theorem 6. For all n, we have $\gamma(B_{2,n}) = 2 \left\lceil \frac{n}{3} \right\rceil$.

Proof. Let P_n a path of length n. Then $B_{2,n} = P_n \cup P_n$ is disjoint union of two paths of length n. It is well known that $\gamma(P_n) = \left\lceil \frac{n}{3} \right\rceil$. So $\gamma(B_{2,n}) = \gamma(P_n \cup P_n) = 2\gamma(P_n) = 2\left\lceil \frac{n}{3} \right\rceil$. \square

Theorem 7. For all $n \geq 4$, we have $\gamma(B_{3,n}) = 2 \lfloor \frac{n+3}{3} \rfloor$. Further, any cover of $B_{3,n}$ contains at least $\lfloor \frac{n+3}{3} \rfloor$ Bishops of each color.

Proof. Theorem 2 shows $\gamma(B_{3,4})=2\left\lfloor\frac{4}{2}\right\rfloor=4$, $\gamma(B_{3,5})=2\left\lfloor\frac{5}{2}\right\rfloor=4$, and $\gamma(B_{3,6})=2\left\lfloor\frac{6}{2}\right\rfloor=6$. Theorem 4 gives $\gamma(B_{3,7})=\gamma(B_{3,8})=2\cdot 3=6$. Theorem 5 shows $\gamma(B_{3,9})=2(3+1)=8$. Further, these minimum cover equally divide the Bishops between the two colors. For n=4, 5, 6, 7, 8, and 9, we have $2\left\lfloor\frac{n+3}{3}\right\rfloor=4$, 4, 6, 6, 6, and 8, respectively. So the result holds for $4\leq n\leq 9$.

For n > 9, Theorem 3 shows $\gamma(B_{3,n}) \le 2 \left\lfloor \frac{n+3}{3} \right\rfloor$. Assume (for induction) that for all m with $4 \le m < n$, a cover of $B_{3,m}$ contains at least $\left\lfloor \frac{m+3}{3} \right\rfloor$ Bishops of each color. Consider a cover of one color, say white, of $B_{3,n}$.

First assume square (1,n) is white. To cover square (1,n), a Bishop must be on either square (1,n), (2,n-1) or (3,n-2). If a Bishop on square (1,n), it can be moved to square (2,n-1) and we still have a cover.

Figure 9 – Covering the White Squares of a $3 \times n$ Board. If square (1, n) is white, then without loss of generality, either a Bishop is at square (2, n-1) or Bishops are at squares (1, n-2) and (3, n-2). For (a), we must cover the white squares of a $3 \times (n-3)$ board. For (b), we must cover the white squares of a $3 \times (n-5)$ board. If square (1, n) is black, either a Bishop is at square (2, n) or, without loss of generality, Bishops are at squares (1, n-1) and (3, n-1). For (c), we must cover the white squares of a $3 \times (n-2)$ board. For (d), we must cover the white squares of a $3 \times (n-6)$ board.

If a Bishop is on square (2, n-1) (see fig. 9(a)), it only covers squares in the right 3 columns. So the left n-3 columns have at least $\lfloor \frac{n}{3} \rfloor$ Bishops (any other white Bishops in the right 3 columns can be moved to square

(2, n-4) and we still have a cover of $B_{3,n-3}$). Thus this cover contains at least $1+\left|\frac{n}{3}\right|\geq \left|\frac{n+3}{3}\right|$ white Bishops.

Otherwise a Bishop is on square (3, n-2) (see fig. 9(b)). Then another Bishop must cover square (3, n). Among squares where this Bishop could be, one at square (1, n-2) covers a superset of the uncovered squares. Then these two Bishops cover only squares in the right 5 columns. So the left n-5 columns have at least $\lfloor \frac{n-2}{3} \rfloor$ Bishops (other white Bishops in the right 5 columns can be moved to (2, n-5) and we still have a cover of $B_{3,n}$). Thus the cover contains at least $2 + \lfloor \frac{n-2}{3} \rfloor \geq \lfloor \frac{n+3}{3} \rfloor$ white Bishops.

Now assume square (1,n) is black. To cover square (2,n), a Bishop must be on either square (2,n), (1,n-1), or (3,n-1).

If a Bishop is on square (2,n) (see fig. 9(c)), it only covers squares in the right 2 columns. So the left n-2 columns have at least $\lfloor \frac{n+1}{3} \rfloor$ white Bishops (a Bishop on square (1,n-1) or (3,n-1) can be moved to square (2,n-2) and we still have a cover of $B_{3,n}$). Thus this cover contains at least $1 + \lfloor \frac{n-2}{3} \rfloor + 1 \geq \lfloor \frac{n+3}{3} \rfloor$ white Bishops.

Otherwise without loss of generality, a Bishop is on square (1, n-1) (see fig. 9(d)). Then another Bishop must cover square (3, n-1). Among the squares where this Bishop could be, square (1, n-3) covers a superset of the uncovered squares. These two Bishops only cover squares in the right 6 columns. So the left n-6 columns have at least $\lfloor \frac{n-3}{3} \rfloor$ white Bishops (other white Bishops in the right 6 columns can be moved to (2, n-6) and we still have a cover of $B_{3,n}$). Thus the cover contains at least $2 + \lfloor \frac{n-3}{3} \rfloor = \lfloor \frac{n+3}{3} \rfloor$ white Bishops. \square

We also tried to numerically find counterexamples to the conjecture. In particular, we used Lindo (a commercial optimization system) to solve integer programming formulations for the minimum number in a Bishop cover of a $k \times n$ board for all $k \leq 9$ and $n \leq 110$. The answers were consistent with the conjecture. While not showing the conjecture is true even for these values, these calculations increase our confidence in the correctness of the conjecture.

Reference

- E.J. Cockayne, B. Gamble and B. Shepherd, Chessboard Domination Problems, Discrete Mathematics 86 (1990) 13-20.
- A.M. Yaglom and I.M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, Volume 1, (Dover Publications, Inc., New York, 1964).