The spectra for two classes of graph designs¹

Yanxun Chang

Department of Mathematics
Northern Jiaotong University, 100044, Beijing, China
email: yxchang@center.njtu.edu.cn

Abstract

A $(\lambda K_n, G)$ -design is a partition of the edges of λK_n into sub-graphs each of which is isomorphic to G. In this paper we investigate the existence for (K_n, G_{16}) -design and (K_n, G_{20}) -design, and prove that the necessary conditions for the existence of the two classes of graph designs are also sufficient.

1 Introduction

Let G = (V(G), E(G)) be a simple graph without isolated vertices. A $(\lambda K_n, G)$ -design is a partition of the edges of λK_n into sub-graphs (G-blocks) each of which is isomorphic to G. A $(\lambda K_n, K_k)$ -design is nothing but a (n, k, λ) -BIBD. If there exists a $(\lambda K_n, G)$ -design, then

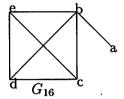
- 1. $\lambda n(n-1) \equiv 0 \pmod{2|E(G)|}$, and
- 2. $\lambda(n-1) \equiv 0 \pmod{d}$, where d is the greatest common divisor of the degrees of the vertices of G.

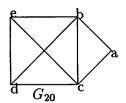
It was proved in [9] that the necessary conditions 1 and 2 for the existence of a $(\lambda K_n, G)$ -design are asymptotically sufficient, that is, there exists an integer $N(G, \lambda)$ such that there is a $(\lambda K_n, G)$ -design for $n \geq N(G, \lambda)$ and k, λ satisfying the necessary conditions 1 and 2.

The existence of a $(\lambda K_n, G)$ - design for various graphs G has been studied in literature (see [3], [11], [5]). The case where G is a graph with at most four vertices has been solved completely in [2]. If G has no isolated vertices and |V(G)| = 5, the known existence of a

¹Supported by NSFC grant 10071002.

 (K_n, G) -design has been very nearly solved in [1], [7], [8], [6], which is also summarized in [3]. There remain several graphs for which there are a few values of n for which it is not known whether or not decompositions of K_n yet. In this article we deal with the two graphs (the notation is borrowed from [1]) as follows:





It is known that in [3]:

Lemma 1 The necessary condition $n \equiv 0, 1 \pmod{7}$ and n > 8 for the existence of a (K_n, G_{16}) - design is sufficient except the possibly exceptions of n = 119, 120, 147, 203, 204.

Lemma 2 There exists a (K_n, G_{20}) -design for $n \equiv 1 \pmod{16}$ and $n \neq 65$; If a (K_{65}, G_{20}) - design exists, then there exists a (K_n, G_{20}) -design for $n \equiv 0 \pmod{16}$.

2 Constructions for (K_v, G_{16}) -design

In this section we will give several direct constructions for (K_v, G_{16}) -design by using perfect base, where $G_{16} = (V, E)$ and $V = \{a, b, c, d, e\}$, $E = \{ab, bc, bd, be, cd, ce, de\}$. We usually denote G_{16} as $\{a; b, c, d, e\}$. Next we introduce the definition of perfect base.

Let G be an Abelian group of order v and G_0 be the set of all elements of order less or equal to 2 in G. A perfect base in G is a set of triples $S = \{\{x_{i1}, x_{i2}, x_{i3}\}: 1 \leq i \leq t\}, t = \lfloor \frac{v - |G_0|}{6} \rfloor$, with elements x_{ij} from $G \setminus G_0$ satisfying the following properties:

- (1) $\pm x_{ij}$, $1 \le j \le 3$, $1 \le i \le t$ are different;
- (2) $\pm(x_{i1}-x_{i2})$, $\pm(x_{i1}-x_{i3})$, $\pm(x_{i2}-x_{i3}) \in G \setminus G_0$, $1 \le i \le t$, are different.

Note that the elements in the conditions (1) and (2) are taken from the set $G \setminus G_0$. When $G = Z_v$, the definition here is the same as that

in [10], where perfect base is used to construct optical orthogonal codes.

Lemma 3 [4] If $v \equiv 1 \pmod{6}$ is a prime power, then there exists a perfect base in GF(v).

With the aid of the computer we have

Lemma 4 There exists a perfect base in Z_v for v = 59, 60, 73, 101, 102.

Proof: There is a perfect base in Z_{73} by Lemma 3. For each of v = 59, 60, 101, 102, we list a set of perfect base blocks as follows:

$$v = 59: \{1, 2, 4\}, \{3, 7, 12\}, \{5, 13, 19\}, \{6, 33, 43\}, \{8, 28, 39\}, \{9, 30, 42\}, \{10, 25, 44\}, \{11, 24, 41\}, \{14, 21, 37\}.$$

$$v = 60$$
: $\{1, 2, 4\}$, $\{3, 7, 12\}$, $\{5, 11, 18\}$, $\{6, 32, 43\}$, $\{8, 24, 39\}$, $\{9, 29, 37\}$, $\{10, 27, 45\}$, $\{13, 25, 46\}$, $\{16, 26, 40\}$.

$$v = 101:\{5, 11, 18\}, \{6, 14, 24\}, \{8, 19, 31\}, \{9, 23, 38\},$$
$$\{15, 50, 69\}, \{7, 10, 12\}, \{13, 17, 33\}, \{16, 57, 58\},$$
$$\{20, 52, 73\}, \{21, 66, 97\}, \{22, 56, 65\}, \{25, 53, 75\},$$
$$\{27, 54, 71\}, \{29, 62, 100\}, \{34, 60, 99\}, \{37, 61, 98\}.$$

$$v = 102:\{6, 14, 24\}, \{10, 58, 73\}, \{3, 7, 12\}, \{15, 43, 68\},$$

 $\{9, 26, 40\}, \{17, 49, 82\}, \{8, 11, 27\}, \{13, 19, 39\},$
 $\{16, 23, 45\}, \{18, 61, 74\}, \{21, 65, 66\}, \{22, 52, 64\},$
 $\{25, 48, 72\}, \{31, 42, 69\}, \{32, 98, 100\}, \{35, 56, 97\}. \square$

Theorem 5 If there exists a perfect base in Z_v where v = 14t + 3 $(t \ge 2)$, then there exists a (K_{2v+1}, G_{16}) -design.

Proof: Let $S = \{B_1, B_2, \dots, B_s\}$ be a perfect base, where $B_i = \{x_i, y_i, z_i\}$ $(i = 1, 2, \dots, s)$ and $s = |S| = \lfloor \frac{v-1}{6} \rfloor \geq 2t + 1$.

Let $X = (Z_v \times Z_2) \cup \{\infty\}$. Next we will construct a (K_{2v+1}, G_{16}) -design on vertices set X. Let \mathcal{B}_1 and \mathcal{B}_2 be as follows:

$$\mathcal{B}_1 = \{\{0_1, (x_i)_0, (y_i)_0, (z_i)_0\} : i = 1, 2, \dots, 2t + 1\},$$

$$\mathcal{B}_2 = \{\{0_0, (x_i)_1, (y_i)_1, (z_i)_1\} : i = 1, 2, \dots, 2t\}.$$

We can assume that

$$R_{00} = (Z_{v} \setminus \{0\}) \setminus \Delta_{00}(\mathcal{B}_{1}) = \{\pm a_{1}, \pm a_{2}, \cdots, \pm a_{t-2}\},$$

$$R_{11} = (Z_{v} \setminus \{0\}) \setminus \Delta_{11}(\mathcal{B}_{2}) = \{\pm b_{1}, \pm b_{2}, \cdots, \pm b_{t+1}\},$$

$$R_{01} = (Z_{v}) \setminus \Delta_{01}(\mathcal{B}_{1} \cup \mathcal{B}_{2})$$

$$= \{c_{1}, c_{2}, \cdots, c_{t-1}\} \cup \{d_{1}, d_{2}, \cdots, d_{t+1}\}.$$

where Δ_{01} denotes the (0,1)-mixed difference and Δ_{ii} ($i \in \mathbb{Z}_2$) denotes the (i,i)-pure difference. Let \mathcal{A} consist of the following base G_{16} -blocks:

$$\begin{array}{ll} \text{part 1. } \{\infty; 0_0, (x_1)_1, (y_1)_1, (z_1)_1\}, \\ \{\infty; 0_1, (x_1)_0, (y_1)_0, (z_1)_0\}; \\ \text{part 2. } \{(a_i)_0; 0_0, (x_{i+1})_1, (y_{i+1})_1, (z_{i+1})_1\}, \ i=1,2,\cdots,t-2; \\ \text{part 3. } \{(b_i)_1; 0_1, (x_{i+1})_0, (y_{i+1})_0, (z_{i+1})_0\}, \ i=1,2,\cdots,t+1; \\ \text{part 4. } \{(c_i)_0; 0_1, (x_{i+t+2})_0, (y_{i+t+2})_0, (z_{i+t+2})_0\}, \ i=1,2,\cdots,t-1; \\ \text{part 5. } \{(-d_i)_1; 0_0, (x_{i+t-1})_1, (y_{i+t-1})_1, (z_{i+t-1})_1\}, \ i=1,2,\cdots,t+1 \}. \end{array}$$

It is readily checked that $\Delta_{00}(A) = Z_v \setminus \{0\}$, $\Delta_{11}(A) = Z_v \setminus \{0\}$ and $\Delta_{01}(A) = Z_v$. Hence, (X, dev(A)) is a (K_{2v+1}, G_{16}) -design. \square

Theorem 6 If there exists a perfect base in Z_v where v = 14t + 4 $(t \ge 2)$, then there exists a (K_{2v}, G_{16}) -design.

Proof: Let $S = \{B_1, B_2, \dots, B_s\}$ be a perfect base, where $B_i = \{x_i, y_i, z_i\}$ $(i = 1, 2, \dots, s)$ and $s = |S| = \lfloor \frac{v-2}{6} \rfloor \geq 2t + 1$.

Let $X = Z_v \times Z_2$. Next we will construct a (K_{2v}, G_{16}) - design on vertices set X. Let \mathcal{B}_1 and \mathcal{B}_2 be as follows:

$$\mathcal{B}_1 = \{ \{0_1, (x_i)_0, (y_i)_0, (z_i)_0\} : i = 1, 2, \dots, 2t + 1\},$$

$$\mathcal{B}_2 = \{ \{0_0, (x_i)_1, (y_i)_1, (z_i)_1\} : i = 1, 2, \dots, 2t\}.$$

We can assume that

1.

$$R_{00} = (Z_v \setminus \{0, \frac{v}{2}\}) \setminus \Delta_{00}(\mathcal{B}_1) = \{\pm a_1, \pm a_2, \cdots, \pm a_{t-2}\},$$

$$R_{11} = (Z_v \setminus \{0, \frac{v}{2}\}) \setminus \Delta_{11}(\mathcal{B}_2) = \{\pm b_1, \pm b_2, \cdots, \pm b_{t+1}\},$$

$$R_{01} = (Z_v) \setminus \Delta_{01}(\mathcal{B}_1 \cup \mathcal{B}_2)$$

$$= \{c_1, c_2, \cdots, c_t\} \cup \{d_1, d_2, \cdots, d_{t+1}\}.$$

Let A consist of the following base G_{16} -blocks:

part 1.
$$\{(a_i)_0; 0_0, (x_i)_1, (y_i)_1, (z_i)_1\}, i = 1, 2, \dots, t-2;$$

part 2.
$$\{(b_i)_1; 0_1, (x_i)_0, (y_i)_0, (z_i)_0\}, i = 1, 2, \dots, t+1;$$

part 3.
$$\{(c_i)_0; 0_1, (x_{i+t+1})_0, (y_{i+t+1})_0, (z_{i+t+1})_0\}, i = 1, 2, \dots, t;$$

part 4.
$$\{(-d_i)_1; 0_0, (x_{i+t-2})_1, (y_{i+t-2})_1, (z_{i+t-2})_1\}, i = 1, 2, \dots, t+1$$

Then
$$\Delta_{00}(\mathcal{A}) = Z_v \setminus \{0, \frac{v}{2}\}, \Delta_{11}(\mathcal{A}) = Z_v \setminus \{0, \frac{v}{2}, \pm (x_{2t} - y_{2t}), \pm (x_{2t} - z_{2t}), \pm (y_{2t} - z_{2t})\}$$
 and $\Delta_{01}(\mathcal{A}) = Z_v \setminus \{x_{2t}, y_{2t}, z_{2t}\}.$

Let \mathcal{B} consist of the following base G_{16} - blocks:

- (1) $\{(\frac{v}{2}+k)_0; (0+k)_0, (x_{2t}+k)_1, (y_{2t}+k)_1, (z_{2t}+k)_1\}$, where $k=0,1,2,\cdots,\frac{v}{2}-1$.
- (2) $\{(x_{2t}+k)_1; (x_{2t}+\frac{v}{2}+k)_1, (\frac{v}{2}+k)_0, (y_{2t}+\frac{v}{2}+k)_1, (z_{2t}+\frac{v}{2}+k)_1\},$ where $k=0,1,2,\cdots,\frac{v}{2}-1$.

Firstly, the five elements in each block of (2) are different. (If $x_{2t} = y_{2t} + \frac{v}{2}$, then change the blocks in (2) by the blocks in (2') as follows:

(2')
$$\{(z_{2t}+k)_1; (z_{2t}+\frac{v}{2}+k)_1, (\frac{v}{2}+k)_0, (x_{2t}+\frac{v}{2}+k)_1, (y_{2t}+\frac{v}{2}+k)_1\},$$

where $k=0,1,2,\cdots,\frac{v}{2}-1$.

Then the five elements in each block of (2') are different. Otherwise, if $z_{2t}=x_{2t}+\frac{v}{2}$ or $z_{2t}=y_{2t}+\frac{v}{2}$, it implies that $z_{2t}=y_{2t}$ or $z_{2t}=x_{2t}$ (since $x_{2t}=y_{2t}+\frac{v}{2}$). It is impossible by the definition of perfect base.)

It is readily checked that $(X, dev(A \cup B))$ is a (K_{2v}, G_{16}) -design. \Box

Theorem 7 The necessary condition $n \equiv 0, 1 \pmod{7}$, n > 8 for the existence of a (K_n, G_{16}) - design is also sufficient.

Proof: It follows by Lemma 1, Theorem 5 and Theorem 6. □

3 A direct construction for (K_{65}, G_{20}) -design

In this section we will give a direct construction for (K_{65}, G_{20}) -design, where $G_{20} = (V, E)$, $V = \{a, b, c, d, e\}$ and $E = \{ab, ac, bc, bd, be, cd, ce, de\}$. We usually denote G_{20} as (a:b,c,d,e).

Lemma 8 There exists a (K_{65}, G_{20}) -design.

Proof: Let \mathcal{B} consist of the following base G_{20} -blocks on Z_{65} :

- (0:57,7,2,27); (0:49,26,22,28);
- (0:24,52,21,33); (0:17,64,28,50).

It is readily checked that $(Z_{65}, dev(\mathcal{B}))$ is a (K_{65}, G_{20}) - design. \square

Theorem 9 The necessary condition $n \equiv 0,1 \pmod{16}$ for the existence of a (K_n, G_{20}) - design is also sufficient.

Proof: It follows immediately by Lemma 2 and Lemma 8. □

References

- [1] J. C. Bermond, C. Huang, A. Rosa and D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin., 10(1980), 211-254.
- [2] J. C. Bermond and J. Schönheim, G-decomposition of K_n , where G has four vertices or less, Discrete Math., 19(1977), 113-120.
- [3] C. J. Colbourn and J. H. Dinitz, CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton FL, 1996.
- [4] T. Etzion, Optimal constant weight codes over Z_k and generalized designs, Discrete Math., 169(1997), 55-82.
- [5] D. G. Hoffman, K. S. Kirkpatrick, G-designs of order n and index λ where G has 5 vertices or less, Australasian Journal of Combinatorics, 18(1998), 13-37.
- [6] M. Martinova, An isomorphic decomposition of K_{24} , Ars Combin., 52(1999), 251-252.
- [7] C. A. Rodger, Graph-decompositions, Le Matematiche (Catania), XLV (1990), 119-140.
- [8] C. A. Rodger, Self-complementary graph decompositions, J. Austral. Math. Soc. (A), 53(1992), 17-24.
- [9] R. M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Congr. Numer., 15(1976), 647-659.
- [10] J. Yin, Some combinatorial constructions for optical orthogonal codes, Discrete Math., 185(1998), 201-219.
- [11] J. Yin and B. Gong, Existence of G- designs with |V(G)| = 6, in:W. D. Wallis et al.(eds), Combinatorial Designs and Applications (Marcel Dekker, New York, 1990), 201-218.