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Abstract

A radio labeling of a connected graph G is an assignment of
distinct positive integers to the vertices of G, with z € V(G)
labeled ¢(z), such that

d(u,v) + |e(u) — e(v)| > 1+ diam G

for every two distinct vertices u,v of G, where diamG is the
diameter of G. The radio number rzn(c) of a radio labeling ¢ of
G is the maximum label assigned to a vertex of G. The radio
number rn(G) of G is min{rn(c)} over all radio labelings ¢ of
G. Radio numbers of cycles are discussed and upper and lower
bounds are presented.
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1 Introduction

For a vertex v of a connected graph G, the eccentricity e(v) is the distance

between v and a vertex farthest from v. The minimum eccentricity among

the vertices of G is the radius, rad GG, and the maximum eccentricity is

its diameter, diam G. A labeling of a connected graph is an injection

¢: V(G) = N, while a radio labeling is a labeling with the added property

that '
d(u,v) + |e(u) — c(v)] > 1+ diamG

for every two distinct vertices u,v of G. The radio number rn(c) of a radio
labeling c of G is the maximum label assigned to a vertex of G. The radio
number rn(G) of G is min{rn(c)} over all radio labelings ¢ of G. A radio
labeling ¢ of G is a minimum radio labeling if rn(c) = rn(G).

1Research supported in part by the Western Michigan University Arts and Sciences
Teaching and Research Award Program

ARS COMBINATORIA 65(2002), pp. 21-32



Let G be a connected graph and k an integer such that 1 <k < diamG.
A radio k-coloring of G is an assignment of colors (positive integers) to the
vertices of G such that

d(u,v) + |e(u) —c(v)] 2 L+ &

for every two distinct vertices u,v of G. The minimum of the maximum
colors among all radio k-colorings of G is the radio k-chromatic number
rex(c) of G. Let d = diamG. Then rcy(G) is the radio number, rcq—1(G)
is the radio antipodal chromatic number, and rc; (G) is the classic chromatic
number of G. The radio number of a graph has been studied in [1, 2, 6] and
the radio antipodal chromatic number has been studied in [3]. We refer to
the books [4, 5] for graph theory notation and terminology not described
here.

First we make an observation about radio labelings. Let G be a con-
nected graph with rn(G) = k. In any radio labeling ¢ of G with rn(c) =k,
certainly some vertex of G is assigned the label k. Also, some vertex of G
is labeled 1, for otherwise the new labeling obtained from ¢ by replacing
¢(v) by ¢(v) — 1 for each vertex v of G is a radio labeling of G as well,
contradicting the fact that rn(G) = k. That is, if ¢ is a radio labeling of G
with rn(c) = rn(G), then there exist vertices u and v of G with ¢(u) =1
and c(v) = k.

For integers a and b with a < b, the set [a..b] is defined as {z €Z | a <
z < b}. A set S of positive integers is a radio labeling set if the elements of
S are used in a radio labeling of some graph G and S is a minimum radio
labeling set if S is a radio labeling set of a minimum radio labeling of some
graph G. Thus if S is 2 minimum radio labeling set for a graph G order n
with rn(G) = k, then [SN[2.k—1]|=n - 2.

To illustrate these concepts, consider the graph G of Figure 1(a). Since
diam G = 3, it follows that in any radio labeling of G, the labels of every
two adjacent vertices must differ by at least 3 and the labels of every two
vertices whose distance is 2 must differ by at least 2. Thus the labeling of
G given in Figure 1(b) is a radio labeling. Consequently, rn(G) < 8.

Since there are exactly two vertices of the graph G of Figure 1 whose
distance is 3, namely u and z, these are the only vertices that can be labeled
with consecutive integers. Thus at most one of the pairs {1,2}, {3,4}, {5,6}
can be used as labels in a radio labeling of G. Since the order of G is 5,
it follows that rn(G) > 7. On the other hand, rn(G) # 7, for assume, to
the contrary, that there is a radio labeling ¢ of G with rn(c) = rn(G) =T7.
Since exactly two of the integers 2, 3, 4, 5, 6 are not used in this labeling,
either three consecutive integers in {1, 2, - - -, 7} are labels in ¢ or two pairs
of consecutive integers are labels, both of which are impossible. Therefore,
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Figure 1: A radio labeling of a graph

rn(G) = 8, the labeling given in Figure 1(b) is a minimum radio labeling,
and {1, 3,4, 6,8} is a minimum radio labeling set for G.

Another observation will be useful. Let ¢ be a radio labeling of a graph
G with rn(c) = k and let v € V(G) with ¢(v) = k. For each integer
k' > k, define a new labeling ¢’ by ¢/(v) = k' and ¢/(u) = c(u) for all
u € V(G) — {v}. Then ¢ is a radio labeling of G with rn(c’) = ¥’. Thus
if ¢ is a radio labeling of G with rn(c) = k, then for each integer &' > k,
there exists a a radio labeling ¢’ of G with ra(c’) = ¥'.

In [1] the radio numbers of cycles were studied and upper and lower
bounds of these numbers were presented. In this paper, we establish im-
proved upper and lower bounds for the radio numbers of cycles in general.
Moreover, we will also determine the radio numbers of certain cycles.

2 Bounds for Radio Numbers of Cycles
An upper bound for the radio number of a cycle C,, of order n > 6 in terms
of its diameter was given in [1}, which we state below.
Theorem A Let d be an integer.
(a) If d > 3, then rn(Caq) < d* —d +2.
(6) If d > 2, then rn(Coa41) < d° + 1.

It was shown in [1] that the bounds for radio numbers of C,, in Theorem
A are attained for 5 < n < 8. Radio labelings of C}, for 3 < n < 8 are shown
in Figure 2. In fact, all these radio labelings are minimum radio labelings
of the respective cycles. Thus, rn(Cs) = 3, rn(C4) = 5, rn(Cs) = 5,
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rn(Cs) = 8, rn(C7) = 10, and rn(Cs) = 14. On the other hand, the bounds
in Theorem A are not sharp for n > 9. Let Cy : v1,vs,--,vn,v1 be the
cycle of order n > 3. We now present an improved upper bound for rn(Cy)
for odd integers n > 9.

1 1 1
A Oy
3 2

2 2 5

1 1

8 4 8 10 14 5
10 9
° TS Yo 13
2 9 7

2

Figure 2: Minimum radio labelings of Cy, for 3 <n < 8

Proposition 2.1  Let d > 3 be an integer. Then
rn(Coa1) < d* — |d/2] + 2.

Proof. Define a radio labeling ¢ : V(Ca24) = N by ¢(v;) = (i—1)d+1 and
e(vagi) = (i — 1)d + 2 for all i with 1 < i < d. Now let Coa41 be obtained
from the cycle Caq by subdividing the edge v{4/2)v)d4/2j+1 With a new vertex
v. Since diam Ca441 = diam Caq = d, we can extend the radio labeling ¢ of
Cagq described above to a labeling ¢’ of Cagy1 by defining ¢’(v;) = ¢(vi) for
alll <i<2dand ¢(v) = d* —d+2+[d/2] = d* — d/2] +2. Toillustrate
this labeling, consider the radio labelings of C, for Cg and Cy shown in
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Figure 3, where the radio labeling of Cj is obtained from the radio labeling
of Cs using the described labeling technique.

1 1
14 5 14 5
10 9 10 16
6 13 6 9
2 2 13

Figure 3: Radio labeling of Cg and Cy

Next we show that ¢’ is a radio labeling of C2441. The only possibilities
for a vertex u for which |e(u) — ¢(v)] < d are u = vq or u = va4 as c(vq) =
d? —d+1 and c(vag) = d> —d+2. If u = vg, then |c(u) — c(v)| = [d/2] +1
and d(u,v) = |d/2]; while if u = vaa, then |c(u) — ¢(v)| = [d/2]. and
d(u,v) = [d/2] + 1. Thus, in each case, d(u,v) + |¢(u) — ¢(v)| > d+1 and
so ¢’ is a radio labeling of Cag41. Since ra(c’) = ¢/(v), it follows that

rn(Cayr) < ra(d) = d° - |d/2] + 2,

as desired. -

A lower bound for radio numbers of cycles was established in [1], which
we state as follows.

Theorem B Forn > 6,

m(c,.)23[g—1].

In order to present an improved lower bound for radio numbers of cycles,
we first study some important properties of a radio labeling of a cycle.
Observe that three consecutive colors, namely, 1, 2, 3, are used in the radio
labelings of C3 and Cs shown in Figure 2. This cannot occur for C,, when
n =4 or n > 6, as we show next.
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Lemma 2.2  Ifc is a radio labeling of a cycle C,,, where n =4 orn > 6,
then ¢ cannot use three consecutive labels from N.

Proof. Assume, to the contrary, that there is a radio labeling ¢ of Cy,
where n = 4 or n > 6, such that a,a+1,a +2 are in the label set C of ¢ for
some positive integer a. If n = 4, then there exist three consecutive vertices,
say vy, va, and v3, in Cy such that {c(v1),c(v2), c(v3)} = {a,a+1,a + 2}.
This implies that there exist at least two consecutive vertices in Cy assigned
two consecutive labels, which is a contradiction.

Now assume that n > 6 and, without loss of generality, that c(vi) =
a+ 1. If n = 2k for some integer k > 3, then v is the only vertex
of C, that can be labeled by a or a + 2, which is impossible. If n =
2k + 1 for some integer k > 3, then {c(vx),c(vk41)} = {a,a+ 2}. Then
d(vk, vk 41) +le(vk) —c(vk41)| = 3 < 1+k for k > 3, which is a contradiction.
u

Theorem 2.3  Let k > 2 be an integer and let ¢ be a radio labeling of a
cycle Cy,.

(i) Ifn is even and n > 4k + 2, then for every positive integer a at most
two vertices of Cy, are labeled with elements of the set [a .. a4+ k +1].

(i) If n is odd and n > 4k — 1, then for every positive integer a at most
two vertices of C, are labeled with elements of the set [a .. a + k).

Proof. We proceed by induction on k. First, we verify (i). Let k = 2.
Assume, to the contrary, that there is a radio labeling ¢ of C,, where
n = 2d > 4k + 2 = 10 for some integer d, such that at least three elements
from {a,a + 1,a + 2,a + 3} are in the label set C of ¢ for some positive
integer a. It then follows by Lemma 2.2 that exactly three elements from
{e,a+1,a+2,a+ 3} are in C and these elements are not consecutive, say
a,a+1,a+ 3 are in C. Assume, without loss of generality, that c(v1) = a
and ¢(vgy1) = @ + 1. Also, we may assume that ¢(v;) = a + 3 for some
i with 1 < i < d. Since ¢(vi) — ¢(vap1) = 2 and c is a radio labeling,
d(vi,va41) = d+1—1i > 1+ d—2, implying that i = 2. However, then,
le(v1) = c(v2)| + d(v1,v2) = 4 < d, which is a contradiction.

Assume now that the statement is true for k — 1, where k£ > 3, that
is, we assume that if ¢ is a radio labeling of C,, where n is even and
n > 4(k — 1) + 2, then for every positive integer a, at most two vertices
of C, are labeled with elements of the set [a .. a + k]. Let ¢ be a radio
labeling of a cycle Cy,, where n is even, n > 4k + 2, and k& > 3. Let
n = 2d and so d > 2k + 1. Assume, to the contrary, that there exist
three vertices u,v,w in Cp such that c(u),c(v),c(w) € [a .. a + k + 1] for
some positive integer a. By the induction hypothesis, we may assume that
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¢(u) = a and ¢(v) = a + k£ + 1. Furthermore, let u = v;. Since ¢(v;) = a,
it follows that v € {vay1-k, Va+2—~k,- -, Va+k+1}. Let 7 = [(k + 1)/2] and
we may assume that ¢(w) € [a+ 1 .. a + 7], say ¢(w) = a + ¢ for some i
with 1 < 7 < r. This implies that w € {v441-i, va42-i, - -, Va+i+1}. Since
c(v) = a+ k + 1, it follows that |e(v) — e¢(w)] = k+ 1 — i. Note that
v € {Vdgi—k,Vd42-k, -, Vatk+1} a0d W € {Watp1-i,Vaga—i, -, Vdtit1)-
This implies that d(v, w) < d(va+1—k, Vati+1) = (d+i+1)—(d+1-k) = i+k.
Hence

dv,w)+ |e(v) —c(w)| < (k+1-9) + (i +k)=2k+1<d,

which is a contradiction and so (i) holds.

Next we verify (ii). By Lemma 2.2, the statement is true for k& = 2.
Assume now that the statement is true for k — 1, where k > 3, that is, we
assume that if ¢ is a radio labeling of C,,, where n is odd and n > 4(k-1)-1
for some integer & > 3, then for every positive integer a, at most two
vertices of Cy, are labeled with elements of the set [a .. a + k — 1]. Let ¢
be radio labeling of C,,, where n = 2d+ 1 is odd, n > 4k — 1, and k > 3.
So d > 2k — 1. Assume, to the contrary, that there exist three vertices
u,v,w in C, such that c(u),c(v),c(w) € [a .. a + k] for some positive
integer a. By the induction hypothesis, we may assume that ¢(u) = a and
c(v) = a + k. Furthermore, let u = v;. Since ¢(v;) = a, it follows that
v € {Va42—k,Vd43—k, " -, Va+1+k}- Let r = [(k 4+ 1)/2] and we may assume
that c¢(w) € [a .. a + 7], say c¢(w) = a + i for some i with 1 < i < r.
Thus w € {vdat2—i, Va4s—-i, "+, Vat+1+i}. Since ¢(v) = a + k, it follows that
[e(v) = e(w)] = k — i. Moreover, since v € {vgya—k, Va+s—k, * > Vd+1+k}
and w € {Vg42-i, Va43-i, "+, Va41+i }, We have d(v,w) < k+i— 1. Hence

dv,w) + [e(v) —c(w)| < (k=) + (k+i-1)=2k-1<d,

which is a contradiction and so (ii) holds. =

As a consequence of Theorem 2.3, we are now in a position to establish
a lower bound for rn(Cy) for n > 9.

Corollary 2.4  Let k > 2 be an integer.
(1) r™(Carq1) > 2k% + 2k +1,
(%) rn(Cakt2) > 2k® + 5k + 2,
(i1d) rn(Cakgs) > 2k2 +5k+3
(iv) rn(Cakysa) > 2k + 6k + 4.

Proof. First, assume that c is a radio labeling of G = Cyx 41 with rn(c) =
rn(G), where k£ > 2. Note that ¢ must use the labels 1 and »n(G). Since
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n = 4k +1 is odd, by Theorem 2.3, the labeling ¢ uses at most two elements
from each of the sets [(i —1)(k+1) + 1 .. i(k+1)] for all ¢ with 1 < i < 2k.
This implies that the elements from the set [1 .. 2k(k + 1)] can be used to
label at most 4k vertices of Cyk41. Since all labels of ¢ are distinct,

rn(G) =rn(c) > (2k)(k+ 1) +1 =2k +2k + 1

and so (i) holds.

Assume that ¢ is a radio labeling of G = Cyk42 with rn(c) = ra(G),
where k > 2. Since n = 4k + 2 is even, by Theorem 2.3, the labeling c uses
at most two elements from each of the sets [(i — 1)(k + 2) + 1 .. i(k + 2)]
for all i with 1 < < 2k + 1. This implies that

ra(G) = ra(c) > (2k + 1)(k +2) = 2k> + 5k + 2,

which establishes (ii).

Next, assume that ¢ is a radio labeling of G = Cyr43 with ra(c) =
rn(G), where k > 2. Since n = 4k + 3 = 4(k + 1) — 1, by Theorem 2.3, the
labeling ¢ uses at most two elements from each of the sets [(i — 1)(k +2) +
1..i(k+2)] for all 7 with 1 < ¢ < 2k + 1. This implies that the elements
from the set [1 .. (2k +1)(k+2)] can be used to label at most 4k +2 vertices
of Csg+3. Thus

ra(G) =rn(c) > (2k+ 1)(k+2) +1 =2k* + 5k + 3,

which establishes (iii).

Finally, assume that c is a radio labeling of G = Cyx44 with rn(c) =
rn(G), where k¥ > 2. Since n = 4k +4 > 4k + 2, it then follows by
Theorem 2.3 that the labeling ¢ uses at most two elements from each of the
sets [(i—1)(k+2)+1 .. i(k+2)] for all i with 1 < ¢ < 2k 42. This implies
that

rn(G) = ra(c) > (2k + 2)(k +2) = 2k* + 6k + 4,

establishing (iv). ]

3 Radio numbers of Certain Cycles

By Corollary 2.4, rn(C10) > 20 and rn(Cy1) > 21. On the other hand,
in Figure 4, the radio labeling of Cjo has the radio number 20 and the
radio labeling of C;; has the radio number 21. Thus rn(Cio) = 20 and
rn(C11) = 21. In this section, we determine the radio numbers of certain
cycles. First we show that, for all even k > 2, the inequality rn(Car42) >
2k2 + 5k + 2 in Corollary 2.4 is, in fact, equality and, for odd k > 3, the
numbers rn(Cig42) and 2k® + 5k + 2 differ by at most 1.
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1 21
8 12 8 12
17 3 17 5
4 16 4 16
20 20 1

Figure 4: Minimum radio labelings of Cjp and Ci;

Theorem 3.1  Let k > 2 be an integer.
() Ifk is even, then rn(Caxsa) = 2k + 5k + 2;

(#2) If k is odd, then there is a radio labeling ¢ of Cyryo with ro(c) =
2k? + 5k + 3.

Proof. We first verify (i). By Corollary 2.4, rn(Caxy2) > 2k* + 5k + 2.
Thus it suffices to show that, for each even integer & > 2, there exists a
radio labeling ¢ of Cyy4a with rn(c) = 2k? 45k + 2. According to the proof
of Corollary 2.4, such a radio labeling ¢ of Cyxy2 uses exactly two labels
from [1 +i(k + 2) (¢ + 1)(k + 2)] for every integer ¢ with 0 < 7 < 2k. For
each ¢ with 0 < ¢ < 2k, we assign the vertex vz the label 1 + (k + 2)i,
where the operations in the subscript 14 ki for v144; are computed modulo
4k +2 and expressed as an element of [1 .. 4k +2]. In particular, for ¢ = 2k,
Vipki = Vr42k2 = Usk43 Since 262 4+1=38k+3 (mod 4k + 2). Thus Vak+3
is assigned the label 2k2 + 4k + 1. We have now labeled all vertices v; for
j odd with j € [1 .. 4k + 2]. We illustrate this labeling of Cjs in Figure 5,
where the solid vertices of Cis have odd subscripts. Also, notice that, for
n =18 =4-4+ 2, we have k = 4. Thus, in this labeling of Cig, we have
¢(v1) =1 and ¢(vis) = c(varqs) = 49 = 2k2 + 4k + 1.
Letting c(var42) = 2k2 + 5k + 2 and c(vj42x+1) = ¢(vj) — 1 for all such odd
j > 3, that is, assign the vertex antipodal to v; the label 2k% + 5k + 2 and
the vertex antipodal to v;, where j is odd and j € [3 .. 4k + 2], the label
¢(v;) — 1, we obtain a radio labeling ¢ of Cyx42 with rn(c) = 2k? + 5k + 2.
Moreover, the label set of ¢ is {1+ i(k+2),(i + 1)}(k+2) | 0 < i < 2k}.
This radio labeling ¢ of Cig is shown in Figure 5 with rn(c) = 54. ,
Next we verify (ii). We show that for each odd integer & > 3, there
exists a radio labeling ¢ of Cax42 with rn(c) = 2k2 4+ 5k +3. Let k = 2¢+1
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Figure 5: A minimum radio labeling ¢ of Cig with ra(c) = 54

for some integer £ > 1. First we consider a radio labeling of Cik 42, where
k = 2¢ + 1 for some integer £ > 1. Hence 4k + 2 = 8¢ + 6. Observe
that 24+ 1 and 8¢+ 6 are relatively prime and so k& is a generator of the
cyclic group Zax4+2. Hence {vi4ki : 0 < k < 4k + 1} = V(Car42). Also,
1+ k(2k+1) =2k +2 (mod 4k +2), S0 V) 4x(2k+1) = V2k+2. We now assign
the vertex vy 4 the label 1+ (k+2)i for every integer ¢ with 0 < ¢ < 4k+1,
where the operations in the subscript 1+ k7 for vy 4+x; are computed modulo
4k + 2 and expressed as an element of [1 .. 4k + 2], while the operations in
the color 1+ (k + 2)i are computed modulo 2k? + 5k + 3 and expressed as
an element of [1 .. 2k? 4 5k + 3]. We illustrate the radio labelings of Ci4
and Cy2 are shown in Figure 6.

By the observations made above, this is a radio labeling ¢ of Cyr42 with
rn(c) = 2k® + 5k + 3 in which the antipodal vertex w42 of vy is labeled
2k% 45k + 3 and |c(v;) — c(vigak41)| = 1 for alli € [2 .. 4k + 2]. "

By Theorem 3.1 and Corollary 2.4, we see that if k¥ > 3 is odd, then
2k? + 5k 4+ 2 < ra(Cagq2) < 2k + 5k + 3.

Using the radio labeling of Cyx42 described in Theorem 3.1, we can show
that the inequality rn(Cak43) > 2k% + 5k + 3 in Corollary 2.4 is equality
for all k > 2.

Theorem 3.2  For every integer k > 2,
ra(Caxq3) = 2k% + 5k + 3.
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10 26
21 15
30 6
5 31
16 20
24 11
36

Figure 6: Radio labelings of Cy4 and Cs»

Proof. By Corollary 2.4, rn(Cak43) > 2k®+5k+3. Thus it suffices to show
that there is a radio labeling ¢ of Cyx4.3 with r(Cak43) = 2k +5k +3. Let
Cik+3 be obtained from the cycle Cyk42 by subdividing the edge V2k41V2k 42
by introducing a new vertex v. Note that diamCyxyz = diamCyg 4o =
2k + 1. Let ¢ be the radio labeling of Caxy42 described in the proof of
Theorem 3.1. We obtain a radio labeling ¢’ of Cyr43 from ¢ by defining
c¢(v1) = 2k? + 5k +3, ¢/(v) = 1 and ¢ (vak42) = 2k% + 5k + 2, and ¢/(v;) =
c(v;) for all i # 1,2k + 2. We illustrate the radio labelings of Cy5 and Cig
described in Theorem 3.2 in Figure 7.

It is then routine to verify that ¢’ is a radio labeling of Cyx43 with
rn(c’) = 2k% + 5k + 3. =
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