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Abstract
The Stirling numbers of first kind and Stirling numbers of second
kind denoted by s(n,k) and S(n,k) respectively arise in a variety of
combinatorial contexts. There are several algebraic and combinatorial
relationship between them. Here we state and prove four new
identities concerning the determinants of matrices whose entries are
unsigned Stirling numbers of first kind and Stirling numbers of
second kind. We also observe an interrelationship between them

based on our identities.
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1. Introduction:
The unsigned Stirling numbers of first kind and Stirling numbers of
second kind denoted by s(n,k) and S(nk) respectively arise in a
variety of combinatorial contexts. There are several
interrelationship and between the Binomial coefficients. These

relationship lead to interesting identities involving sums and
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products of these numbers. These numbers satisfy recurrence
equations and have exponential generating functions [1,3] .

In this paper we deduce four new determinantal identities involving
matrices of Stirling numbers. These identities in turn reveal further
hitherto undiscovered interrelationships.

In this section we first define the Stirling numbers and setup some
standard notation. In section 2 and 4 we discuss our identity based
on Stirling numbers of first kind and in section 3 and 5 we discuss
our identity based on Stirling numbers of second kind.

Given s(n,k), the unsigned Stirling numbers of first kind [1,3] and
S(n,k), Stirling numbers of Second kind [1,3] ,we have the
following identities.

For integers 1 <k <n,

s(nk) = s(n-1,k-1)+(n-1)s(n-1,k);

s(n, 1)=(n-1)!, s(n,n)=1 (.1
S(n,k) = S(n-1,k-1)+ k S(n-1,k);

S(n,1)=1, S(n,n)=1 (1.2)
and postulate:
s(nk)= 0, S(nk)=0 if k>n (1.3)

Also the unsigned Stirling numbers of first kind, s(n,k), are the

coefficients of x in the expansion

n

x(x+1D)(x+2) ... (x+n-1) = Z s(n,k) xk
k=1

The left side is also denoted by the falling factorial as (x+n-1)™ .

The Stirling numbers of second kind, S(n.k), describes the number
of ways a set with n elements can be partitioned into k disjoint, non

empty subsets
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We give below table for the Stirling numbers for ISk <n<6.

Table 1. Unsigned Stirling numbers of first kind, s(n,k)

wk 1 2 3 4 5 6
1 1
2 1 1
3 2 3 l
4 6 11 6 1
5 24 50 35 10 1
6 120 274 225 85 15 1

Table 2. Stirling numbers of second kind, S(n,k)

nk 1 2 3 4 5 6
1 1

2 1 1

3 1 3 1

4 I 7 6 1

5 l 15 25 10 1

6 l 31 90 65 15 1

2. Determinantal identity for Stirling numbers of first kind:
In this section we deduce an interesting formula for the
determinant of a certain matrix whose entries are unsigned
Stirling numbers of first kind.
For any integer n 2 1, let P denote the matrix of the order ‘m’
whose (i,j)-th entry is s(n+i-1,j) and let det P denote the
determinant of the matrix P.
Then we have
Proposition 2:

det P= ((n-1)!)n

Proof: In order to reduce the matrix P to a simpler form, we use
the standard combinatorial identities (1.1) and (1.3); and also the
following row transformations are performed sequentially on the
matrix P.

Let R, denote the o—th row and R, < ¢ R, to mean the
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multiplication of all elements of o—th row by constant ¢.
for=2,3,4,...,m-2,m-1,m
anda=m, m-1,m-2,...,B
) Ro-j ¢ [n+0-B] Re g
b) Rg < Ry — Rgeg
) Ro-1 < Ly[n+a-B] Ro-1
The above row operation transforms the matrix to a simpler form
P = s(n, j-i+1) whose elements below the primary diagonal are
zero . Hence the determinant of P is obtained as the product of its
diagonal elements.
detP=g(n,1)m 2.1)
from the identity (1.1) we have
s(n,1)= (n-1)!
and therefore
det P=((n-1)!)m 2.2)

thus proving the proposition 2.

3. Determinantal identity for Stirling numbers of Second kind:
In this section we deduce an interesting formula for the
determinant of a certain matrix whose entries are Stirling
numbers of second kind.
For any integer n 2 1, let Q denote the matrix of the order ‘m’
whose (i,j)-th entry is S(n+i-1,j) and let det Q denote the
determinant of the matrix Q.
Then we have
Proposition 3:

det Q= (m!) (n-1)

Proof: In order to reduce the matrix Q to a simpler form, we use

the standard combinatorial identities (1.2) and (1.3); and also the
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following row transformation is also performed on the matrix Q.
Let R,denote the o—th row and Ro< ¢ Rgto mean the
multiplication of all elements of o—th row by constant ¢.

foroo=m, m-1,m-2,...,2

Ro < Rg = Roy

S(n,1) S(n2) e S(n,m)

0 S(n,1)+S(n,2) o S(n,m-1)+(m-1)S(n,m)
Q=0

0 R S(n+i-2,§-)+(-1)S(n+-2 )

0

0  S(n+m-3,1)+S(n+m-3,2) . . S(n+m-3,m-1)+(m-1)S(n+m-3,m)

0  S(n+m-2,1)+S(n+m-2,2) . . S(n+m-2,m-1)+(m-1)S(n+m-1,m)

since S(j,1)=1forj=1,2,...n
We reduce the above matrix to a much simpler form by
sequentially performing the following row transformations
forp=2,3,4,..., m-2, m-1
and .=m, m-1, m-2, ..., (B+1)
a) Ry-| < B Ro-
b) Ra ¢~ Ra = Ra-y
¢) Ra-y « 1/B Ra-y
and the above row operations transformation the matrix Q with

elements Q;; as

B ) k-1 (i‘])(k-jﬁ-l) S0
Qi;i_ Z (k-j+i-1
=i+

and thereby its determinant is obtained just by the product of its

primary diagonal elements
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m j

detQ = I']IkZ G-D™" s(nk) G.1)
i
moj

detQ=IT 1452 i* stk (3.2)
=1 k=l

from the identity

n

‘™ =

' Snj) = «x
|

J

in the equation (3.2) and we have

m
detQ=11 ] nl
j=1
and thereby we have
det Q = (m!)(n-1) 3.3)

thus proving the proposition 3.

4. Determinantal product identity for Stirling numbers of first
kind :

In this section we deduce an interesting relationship for the
determinant of a certain matrix whose entries are unsigned
Stirling numbers of first kind.
For any integer n 21, let P denote the matrix of the order
‘m x (2m-1)" whose (i,j)-th entry is s(n+i-1,n-2m+i+j) and let
AB & C denote its submatrices of order ‘m’ whose (i,j)-th
entries are

Ajj= s(n+i-1,n-2m+i+j)

Bij= s(n+i-1,n-m+j)

C;j= s(n+i-1,n-m-1+i+j)
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and let det A, det B and det C denote the determinant of the
matrices A, B and C respectively.
Then we have
Proposition 4:
det A= detB . detC
Proof: In order to reduce the submatrix A to a simpler form, we
use the standard combinatorial identities (1.1) and (1.3); and also
the following row transformation is performed on the submatrix
A.
for =234, .. m-2,m-1,m
and o =mm-I,m-2,...,B
Ry ¢~ Ry —Rq-y

The above row operation transforms the submatrix A to a simpler
form

m-2

Aij =TT (0™ { s(n , n-2mei+j) )

j=0

and its determinant is
m-2
det A=L T (n+)™" { det s(n , n-2m+i+j) ) @.1)
j=0

We observe that the reduced submatrix A is in the form of
Hankel matrix, that is one having equal elements along each
diagonal line parallel to the secondary diagonal (persymmetry or
striped matrix).
In order to reduce the submatrix C to a simpler form, we use the
standard combinatorial identities (1.1) and (1.3); and also the
following row transformation is performed sequentially on the

submatrix C.
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- forf =234, ..m2m-1,m
and o= m,m-1,m-2,...,B
Ra —Ry- Ru-l
The above row operation transforms the submatrix C to a simpler
form, whose elements below the secondary diagonal are zero i.e.,
we obtain an reverse upper triangle Hankel matrix and Cj;
becomes
m-2

G =I1 ()™ P{s(n,n-m+i+j-1)} and its determinant becomes

j=0
m-2
det C=(-DIT (@)™ (s(n,n)™)
j=0

but s(n,n)=1 and thereby

m-2
det C=(-DIT (nsj)etd (4.2)

j=0
In order to reduce the submatrix B to a simpler form, we use the
standard combinatorial identities (1.1) and (1.3); and also the
following row transformations are performed sequentially on the
submatrix B.
Let R,denote the o~th row and Ry« ¢ Rgto mean the
multiplication of all elements of a—th row by constant ¢.

for =234, .. m-2,m-1,m

and o =mm-1,m-2,..., B
a) Rg-y ¢ (n+0-B) Ry
b) Ry ¢ Ry — Ry
¢) Ro-y « 1j(n+0:-B) Ry

258



The above row operation transforms the submatrix B to a simple
form and

det B = det s(n,n-m-i+j+1) 4.3)
which has the form of Toeplitz matrix.

It is easy to see that Toeplitz and Hankel matrices are closely
related; In (4.1) if the rows of matrix A are reversed in order, it
becomes a Toeplitz matrix, the same thing happens if its columns
are reversed in order. Conversely, if the row or columns of
matrix B in (4.3) are reversed in order than it becomes a Hankel
matrix.

We know that det(B) = det(B") where det(BT) denote the
determinant of the transposed matrix B of order m. The factor
(-1) in (4.2) is nothing but the determinant of the reverse unit

matrix. This factor is multiplied with det (B™) and we have

0 0..1
detB=det(BhH 0. .1 0 = dets(nn-2m+i+j) (4.4)
0 1..0
1 0..0
thereby
m-2
detB . detC = Il ()™ (det s(nn-2me+i+)))

j=0

but RHS is nothing but det A. Therefore
det A = det B. det C thus proving the proposition 4.
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5. Determinantal product identity for Stirling numbers of second
kind:

In this section we deduce an interesting relationship for the
determinant of a certain matrix whose entries are unsigned
Stirling numbers of second kind.
For any integer n 21, let Q denote the matrix of the order
‘(2m-1) x m” whose (i,j)-th entry is S(k+i+j-2, k+j-1) and let A,B
& C denote its submatrices of order ‘m’ whose (i,j)-th entries are

Ajj= S(k+i+j-2, k+j-1)

Bi;= S(k+mi-2, k+j-1)

Cij= S(k+m+i+j-3, k+j-1)
and let det A, det B and det C denote the determinant of the
maitrices A, B and C respectively.
Then we have
Proposition 5:

det C=det A . det B

Proof: In order to reduce the submatrix A to a simpler form, we
use the standard combinatorial identities (1.1) and (1.3); and also
the following row transformation is also performed sequentially
on the submatrix A.
Let C, denote the o—th column and

for p =2,34,... m-2,m-1,m

and 0=m,m-1,m-2,...,f

Cou & Co = Can
The above column operation transforms the submatrix to a
simpler form
m-2

Aij=L T (k+jY {S(k+i-1,k+j-1)} and its determinant is
j=0
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m-2
detA=IT (k+jydet S(k+i-1, k+j-1)

j=0
But det S(k+i-1, k+j-1) is a lower triangular matrix of order ‘m’
which is equal to S(k,k)™ and therefore

m-2

detA=I T (k+j) det S(k, k)™
j=0

but S(k,k)=1 and thereby

m-2
detA=IT (k+jy G.1)
=0
In order to reduce the submatrix C to a simpler form, we use the
standard combinatorial identities (1.1) and (1.3); and also the
following column transformation is performed sequentially on
the submatrix C.
for p =2,3,4,... m-2,m-1,m
and o = m,m-1,m-2, ...,
Co—Cou—Can
The above column operation transforms the submatrix to a
simpler form

m-2

Ciy=IT (k) (S(k+m+i-2, k1))
=0

and its determinant is

m-2

detC= IT (k+jy det S(k+m+i-2, k+j-1) (5.2)
j=0
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but S(k+m+i-2, k+j-1) = B as defined, hence
det S(k+m+i-2, k+j-1)=det B and
m-2
deta=IT (k+jy
j=0
thereby in (5.2) we have

det C = det A. det B thus proving the proposition 5.

Conclusions : We have observed the proof for the determinantal
identities of Stirling numbers in factorial notation and the implication
of the results (2.2) and (3.3) leads to the conclusion that Det P = Det
Q iff m =(n-1). The other interesting identity is:

Det[s(n+i-1,n+j-2)] 2,2 = S(n+1, n-1) and

Det[S(n+i-1,n+j-2)] 242 = s(n+1, n-1)

which establishes another relationship between the unsigned Stirling
numbers of first kind and Stirling numbers of second kind. If
binomial numbers in the matrices (4) and (5) replaces the Stirling
numbers we get similar determinantal identities. On the basis of the
above determinantal approach, it would be possible to deduce other
matrix identities in the context of several combinatorial identities
connecting the Stirling numbers of first kind, Stirling numbers of

second kind and Binomial numbers.
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