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ABSTRACT. This paper studied the problems of counting inde-
pendent sets, maximal independent sets, and maximum inde-
pendent scts of a graph from an algorithmic point of view. In
particular, we present linear-time algorithms for these problems
in trees and unicyclic graphs.

1 Introduction

All graphs in this paper are simple, i.e., finite, undirected, loopless, and
without multiple edges. In a graph G, an independent set is a subset S of
V(G) such that no two vertices in S are adjacent. A mazimal independent
set is an independent set that is not a proper subset of any other indepen-
dent set. A mazimum independent set is an independent set of maximum
size. Note that a maximum independent set is maximal, but the converse
is not always true.

Erd8s and Moser raised the problem of determining the largest number
of maximal independent sets in (the complement of) a general graph of
order n and those graphs achicving the maximum value. This problem
was solved by Erdés, and later Moon and Moser [21]. It then has been
extensively studied for various classes of graphs, including trees {3, 7, 20,
22, 23], forests [14], (connected) graphs with at most one cycle [14], bipartite
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graphs [18, 19|, connected graphs [6, 8], k-connected graphs [4], triangle-
free graphs [11] and connccted triangle-free graphs [1]; for a survey see [13].
Upper bounds for the number of maximum independent sets were studied
in [15, 24]. Chang and Yeh [2] gave an algorithm for counting the number
of maximum independent sets of a functional graph.

The purpose of this paper is to study the problems of counting inde-
pendent sets, maximal independent sets, and maximum independent sets
from an algorithmic points of view. In particular, we present linear-time
algorithms for these problems in trees and unicyclic graphs. In the rest of
this section, we fix some notation.

Denote by /() the set. of all independent sets of a graph G. Ior a vertex
z,let [:(G)={Sel(CG):zeS}and [_;(G)={S € I(C): z ¢ S}. The
cardinalities of I(G), [:(G) and I_(C) are denoted by i((), i.(G) and
i_-(G), respectively. It is clear that i(G) = i_z(G) + i(G).

The set of all maximal independent, sets of G is denoted by MI(C). For
a veriex z, let MI(G) = {§ € MI(G): z € S} and MI_,(C) = {S ¢
MI(G): z ¢ S}. The cardinalities of MI(G), M1 (G) and MI__(C) are
denoted by mi((7), mi (C) and mi  (G), respectively. It is clear that
mi(G) = mi_z(G) + miz(G).

The set of all maximum independent sets of G is denoted by XI(G).
For a vertex z, let XI(G) = {S € XI(G): z € S} and XI_.(C) =
{S € X(G): =z ¢ S}. The cardinalities of XI(G), XIz(G) and X1 .(G)
are denoted by xi(G), xi,(C) and xi_.(G), respectively. It is clear that
xi(C) = xi L(C) + xi (C).

In a graph G, the neighborhood Ne(x) of a vertex z is the set of vertices
adjacent to z, and the cosed neighborhood Ng(z] is Ng(z) U {x}. A vertex
z is a leaf il [N¢:(x)| = 1. The deletion of a subset U C V() from G is the
graph G — U obtained from G by removing all vertices in U and all cdges
incident to these vertices.

2 Independent sets

This section presents linear-time algorithms for computing i(7) of a tree T
and i(H) of a unicyclic graph H. For technical reasons, we investigate the
following weighted version of the problem. In a graph G, supposc ¢ and d
are two functions from V() to the set. N of all positive integers. Define
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i(Ged= Y (H“z) II14].

Sel(G) \z€8 ygS
ir(Ced)= > (H c,) [[d| forzev(G),
Se1.(C) \zeS$ Y¢S

i2(Ge,d)= ) (ch> [Idy) forz e V().

Scil - (G) \z2€8 yéS

We can interpret the functions ¢ and d as follows: ¢, (respectively, d,) is
the weight when vertex z is contained (respectively, y is not contained) in
an independent set. S. When we count the number of independent sets of G,
an independent sct S contributes [, ¢ ¢, [, g5 dy copies of itsell. Thus,
the total number of weighted copies of independent sets is (G, ¢, d). It is
obvious that if ¢, = d, =-1 for each vertex v in G, then i(G, ¢,d) = i(G),
1z(G, c,d) = 15(G) and <5 (G, ¢, d) = i_(G) lor any vertex z.

The following theorems are the base of the algorithms for computing
(T, c,d) of a tree T and i(H, ¢, d) of a unicyclic graph H.

Theorem 2.1. For any vertex v in G,

i(Gedy=c, | [] dy)ilC—-Nelc,d)+di(G —v,c,d).

yENG(v)

Proof: By definition, we have
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Co ( 11 d.,) i(G ~ Ng), ¢, d) + dyi(G — v, ¢, d))

yENg(v)

yENg(v)

v > (1<) (114)

Sel(G--v) \2€8 Y¢S

v (H) (de)+ > (H) (1;[1>

Sel, (G) \z¢S y¢S Sel_,(G) \z€8

= (0, ¢, d).
o

Theorem 2.2. If v is a leal’ adjacent to z in G, then i(G, ¢, d) = (¢ -
v, ¢, d’), where

Cedy, if 2=z

, Cz, if 2z # z,
¢, =

g - dy, ily #x,
de(dy +¢y), fy=uz.

Proof: Since (1:(G)N1 (G)U(I_(C)NI_-,(C)) = 1_,(C)and I (C)N
1,(G) = I,(C), we have
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(G —v,c,d)
=i, (C —v,,d)+i_(C-v,,d)

> ( (Hd') (1) (11+)
8¢ (G-v) \zCS y¢S SCI-(G—-v) \z€S yZS

Sel:(C-v) zCS‘z/:r chS
Sy (H)( 11 d;)d;
Sel_z(G-v) \z¢S yES.yFT

+ U)(H )( 11 dy) (dy +cv)

Sl (G- €S8 y¢ S y#T

-3 (H) I

Sl (C)NT_( 2¢8 yg¢S

+ > (HQ)II%

SCI_(C)NL,(G) \z€S v¢S
=1_y{C, ¢, d) + iy, (G, ¢, d)

= 1(G, ¢, d).

O

We first give a linear-time algorithm for computing (T, ¢, d) for a tree T.
Algorithm 2.3 Compute i(T, c,d) for a tree T.

GT;

for (G has more than one vertex) do
choose a leafl v adjacent to z in G;
Cr & Crdy;
dy — dz(dv + )
G— G-
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end do;
(T, ¢,d) — d, + ¢, where v is the only vertex in G.

We then have the following linear-time algorithm for computing i(//, ¢, d)
for a unicyclic graph H.

Algorithm 2.4 Compute i(/1, ¢,d) for a unicyclic graph H.

G — H,;
while (G is not a cycle) do
choose a leaf z adjacent to v in G;
Cp — Czdy;
d; — dz(d, + Cv);
C—G-uv;
end do;
choose a vertex z adjacent Lo y and z in
(H) — czdyd,i(C - {z,y,2},c,d) + di(C - z,¢,d).
/* apply Algorithin 2.3 to G — {z,y,2} and G —z. */

3 Maximum independent sets

This section gives linear-time algorithms for finding xi(T) for a tree T" and
xi(H) for a unicyclic graph H. As in Section 2, we consider a weighted
version of the problem as follows. In a graph ¢, supposc w is a function
from V(G) to the set Z of all integers, and ¢ and d are two functions
from V(G) to N. For any subset S of V(G), let w(S) = Y zes Wz The w-
stability number of G is (G, w) = maxse y(g) w(S). Denote by XI(C, w) the
set of all independent sets S with w(S) = a(G,w). For every vertex z, let
X (G, w) = {S € XI(G,w): z € S} and XI_,(C,w) = {S € XI(C,w): z &
S}. U wy =1 for any vertex v in G, then o(G,w) = o(G), XI(C,w) =
XI(G), XIz(G,w) = XI(C) and XI_z(G,w) = XI_,(G). Define

xi(G,w,c,d) = Z (H Cz) (H dy) )

SeXl(Caw) \zeS y¢S

Xig(G,w,cd) = ) (H c,) (]’[ ¢J) for z € V(C),

SeX(Gaw) \z€S8 yZs
xi o(Cow,cd)= Y (H c,) [[d) torzev().
SeXL (Gaw) \z€8 y¢ S
Itis clear that ifw, = ¢, = d,, = 1 for each vertex v in G, then xi(G,w, ¢, d) =

xi(G), xiz(G,w, ¢, d) = xiz(C) and xi_z(G,w, ¢,d) = xi_z(G) for any ver-
tex .

270



Similar to Theorem 2.1 we have
Theorem 3.1. For any vertex v, let G1 =G — Ng[v], Ge =G —v, oy =
a(Gh, w)+max{0,w,} and as = a(G2). Then oG, w) = max{a;, a2} and
¢ (Tlyenaw) do) Xi(C1,c,d), if oy > o,
xi(G, ¢,d) = < dyxi(G2, ¢, d), if oy < ag,
e (Tlyenow) d) Xi(C1,c,d) + duxi(Ca, c,d), if o1 = a.

For any family F of sets and any element z, 7 +z denotes {SU{z}: S €
F}.
Theorem 3.2. If v is a leaf adjacent to = in G, then o(G,w) = a(G —
v,w’) + max{0, w,} and xi(G,w,c,d) = xi(G - v,w’,c’,d’), where

, Wa, ifz#zx,
w, =

wy —max{0,wy}, ifz=uz;

Py T ifz # x,
2T Y egdy, ifz=x;
d‘yx iry¢x)
d = dyd,, ify=z and w, <0,
v dzcy, ify=z and W, >0,

de(cy, +dy), ify=z andw, =0.

Proof: We first prove the following three facts.
(1) a(G, w) = a(G ~ v,w’') + max{0, w,}.
(2) XI (G, w) = XIz(G — v, ).
XI_2(G - v,w"), if w, <0,
(3) XI_z(G,w) = { XI_(G — v,w') +v, il wy >0,
XI_z(G —v,w") U (XI_ (G —v,w') +v), ilw,=0.
Choose two sets S € Xl (G,w) and S’ € X[ (G — v,w’). Note that
S’ € I(G) and S € I(G — v). Therefore,

a(G —v,w') =w'(9') = w'(S - {z}) + wl
=w(S’ — {z}) + wr — max{0,w,} = w(S’') — max{0, w,}
< Q(G, 'UJ) - max{O,wu} = ’U)(S) - ma.x{O, wv}
=w'(S - {z}) + vl = w'(S) < (G — v,v').
Thus, all inequalities are equalities. Hence, (1) holds. Also, w'(S) = a(G —

v,w') and w(S") = «(C,w) imply S € XIz(G — v,w’) and S’ € XI.(C, w).
So, (2) holds.
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Next, choose S € XI1_(C,w) and S’ € XI_(G —v,w’). Note that S’ €
I(G). Tor the case in which w, < 0,v & S and so S € I(G — v); otherwise,
v € § would imply (G, w) = w(S) < w(S — {v}), a contradiction. Then

oG, w) = w(8) =w'(9) < a(G —v,w') =w'(S) = w(S) < oC,w).
Thus, all inequalities are equalities, which implies that (1) and (3) hold. If
wy, >0, v € Sand so S — {v} € I(G — v); otherwise, v € S would imply
a(G,w) = w(S) < w(SU {v}), a contradiction. Then

a(G,w) =w(S) =w'(S - {v}) +wy, < (G —v,w') + u,

=w' (8"} + wy, = w(S' U {v}) < a(C,w).

Again, all inequalitics are equalities, which implies that (1) and (3) hold.
For the case in which w, = 0, cither v € S or v € S. Exactly the same
arguments for the above two cases imply (1) and (3).

We then have:
ScXI(G w,w’') \zES y¢S

> aleal 4

SEX(G-vw') \2€8,24% y¢s
¢y | cedy de

SeXIz(G—u,w') \zES,z#x Y¢S

Z H ¢, | ez H d, | d,
SeX1z(G—v,w) \z€S,z#x Y¢S, yfv

> (0e)(me
SEXIL(Gw) \z€8 vesS

= Xi. (G, w, ¢, d).

Xig(C — v, ', ¢, d)
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Xi-z(G - v,w', ¢, d")

% (1) (L5

I

SeXl. 2 (G~v,w’) \z€S v€Sy#z
Esem_,(c—u.w') (Hzes cz) qus,y;ez dy ) dzdy, if wy, <0,
= ZSC—X]-,(G—V,W') (HzES “‘) Hyes.y¢x dy ) dzcv, if wy >0,

| Esexi_, 0w ([lees &) ([lygsyne dv ) de(eo + o), ifwn =0,

.
ZSEXI_,(G,w)ﬁXL‘,(G.w) (Hzes Cz) Hyﬁ's,y;éz,y;év dy) dzdy, ilwy <0,

ESGXI_,(C,w)nXl.,(C.w) Hzes.z¢uc= G Hygs,y;ezdz dz, ilwy, >0,

osexi_o@mnxin(@w) ([ees,az ) & (T gs.yrs dv d=+‘

\ZSGXI-Z(G.wWXI_u(c.w) (Mees ) [lygs.yaypn @y ) dadv,  ifwy =0,

W () (1)

= Xi.-z (G, w,¢,d).

i

Therelore, xi(C,w,c,d) = xiz(G,w,c,d) + xi...(G,w,¢,d) = xi(C -
v,w',c,d')+xi (G —v,w',c,d')=xi(C-v,uw',,d). O
We first present a linear-time algorithm for finding xi(T', w, ¢, d) for a tree
T.
Algorithm 3.3 Compute oT,w) and xi(T,w, c,d) for a tree T.

C—T;

a—0;

while (G has more than one vertex) do
choose a leaf v adjacent to z in G;
wy — wy —max{0,wy};
Cp — Cxdy;
if w, < 0 then d, — d.d,;
if w, > 0 then d; « dzcy;
if wy,, = 0 then d; «— d(c, + dy);
@ «— o+ max{0,w,};
G—G-uv;

end do;

assume v is the only vertex of G;
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a(T,w) — a+ max{0,w,};

if w, < 0 then xi(T,w,c,d) « d,;

if wy, > 0 then xi(T, w, ¢, d) — cy;

if w, = 0 then xi(T,w, ¢, d) — ¢, + d,.

Next we give a linear-time algorithm for finding xi{(H,w, ¢, d) for a uni-
cyclic graph H.
Algorithm 3.4 Compute oG, w) and xi(H,w, c,d) for a unicyclic graph
H.

G —H,;
a«— 0;
while (G is not a cycle) do
choose a leaf v adjacent to z in G;
wy — wy — max{0,w,};
Cp — czdv;
if w, < 0 then d, — d.d,;
if w, > 0 then d; «— d;cy;
if w, = 0 then d; « dz(c, + dy);
@ — o+ max{0,wy};
C—GC-v;
end do;
choose a vertex z adjacent to y and z in G;
Gl — G - {-’B,y,z};
G2 — G - x,
a) — oG, w) + max{0,w,}; /* apply Algorithm 3.3 to G; */
ay — a(Ga,w); /* apply Algorithm 3.3 to G, */
if ay > a3 then xi(H,w, ¢, d) — czdyd,xi(G1,w, ¢, d);
if @y < ag then xi(H,w,c,d) — dxi(G2, w, c, d);
if &y = a9 then xi(H,w, ¢,d) — czdyd xi(G,w, ¢,d) + dexi(G2,w, ¢, d).

4 Maximal independent sets

This section gives linear-time algorithms for counting the numbers of maxi-
mal in dependent sets of a tree and of a unicyclic graph by using a dynamic
programming approach.

The following theorem is easy to see. We use mig,(G) for mi(G — v).

Theorem 4.1. Suppose z is a vertex in graph G, and v is a vertex in
graph Gy. If G is the graph obtained from the disjoint union of G, and
G9 by adding a new edge zv, then

(1) miz(CG) = mi(G)mig,(G2);
(2) mi_g(C) = mi_z(G)mi_y,(G2) + mio-(G1)mi,(Gy);
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(3) mioz(G) = mioz(G1)(miy(G2) + mi_y(Ga).

Based on this theorem, we have the following linear-time algorithm for
computing mi(7T') for a tree T
Algorithm 4.2 Compute mi(T) for a tree T.

for (any vertex v in T') do
mi, < 1,; mi_, « 0; mig, «— 1;

end do;

G~T,

while (G has more than one vertex) do
choose a leaf v adjacent to z in G;
Mi, «— Mi,Migy,;
mi_, < mi__.mi_, + mig,mi,;
Migz — mig,(mi, + mi_,);
G—G-v;

end do;

mi(T") — mi, + mi _,, where v is the only vertex in G.

We then have the following linear-time algorithm for computing mi(/)
for a unicyclic graph H.
Algorithm 4.3 Compute mi(H) for a unicyclic graph H.

for (any vertex v in H) do
mi, « 1; mi_, « 0; mig, «~ 1;
end do;
G~ H;
while (G is not a cycle) do
choose a leaf v adjacent to z in G;
miy; «— MizMmig,;
mi_z — mi_zmi_, + migzmi,;
mipz — Mige(miy, + mi_y);
Ge—(G-—-u;
end do;
Suppose G is the cycle ..., 2"y, z,y, 2, ...;
GG~ {.’II,'I :y’};
Gy — G- {‘Ery’z}i
G3 —G- {J:)y,a zl};
G4 — G- {.’L‘, Y, yl'; 2, Z'};
mi(H) — mizmig,mig, mi(Cy) + miozmiymio,mi(Gy)+
Mig iy Mig, mi(Gy) — Migzmiymiy mip,mip, mi(Gy).
/¥ Apply Algorithm 4.2 wo graphs Gy, Gy, Ga, G4. */
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