AVOIDABLE SETS IN GROUPS
MIKE DEVELIN

ABSTRACT. In a set equipped with a binary operation, (S,-),
a subset U is defined to be avoidable if there exists a partition
{A, B} of S such that no element of U is the product of two
distinct elements of A or of two distinct elements of B. For
more than two decades, avoidable sets in the natural numbers
(under addition) have been studied by renowned mathemati-
cians such as Erdos, and a few families of sets have been shown
to be avoidable in that setting. In this paper we investigate
the generalized notion of an avoidable set and determine the
avoidable sets in several families of groups; previous work in
this field considered only the case (S, ) = (N,+).

1. INTRODUCTION

In a set equipped with a binary operation, (S,:), a subset U is
defined to be avoidable if there exists a partition {A, B} of S such
that no element of U is the product of two distinct elements of A or
of two distinct elements of B; the partition {4, B} is said to avoid
U.
Avoidable sets were first studied by Alladi, Erdés, and Hoggatt
([1]) in 1978. However, throughout the intervening decades, avoid-
able sets have been studied only in the case (S,:) = (N,+). All of
the relevant concepts in this particular case generalize in the context
of the definition presented above: the operation need not be commu-
tative or even associative. In the case of (N, +), only a few families
of sets ([2], [5], [3]) have been shown to be avoidable, and almost no
general facts are known about the nature of avoidable sets. In this
paper, we discuss avoidable sets in a different setting: namely, when
S is a group.
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2. ABELIAN GROUPS

Note: In this section, all groups will be written additively, and the
identity element will -be denoted by 0.

First, we present two basic definitions that will be used throughout
the paper. We say that U is saturated if U is maximal among the
collection of avoidable subsets of S. Also, for any subset U, we define
the associated graph, Gu, to be the graph whose vertices are the
elements of S, where two elements are connected by an edge if and
only if their sum is an element of U; then U is avoidable if and only
if Gy is 2-colorable.

Abelian groups present a particularly nice case to study: if |U| =
n, then each vertex z in Gy will have degree n or n — 1, depending
on whether 2z is in U or not. In this section we discuss the avoidable
sets in abelian groups, commencing with a complete categorization
of the avoidable sets in Z/nZ, and proceeding with a discussion on
the nature of avoidable sets in arbitrary finitely generated abelian
groups. Throughout this section, we will call an element b even if
there exists = such that 2z = b, and odd otherwise.

2.1. Saturated Sets in Z/nZ. In this section, all equalities, unless
stated otherwise, are in Z /nZ.

We first note that since all avoidable sets in Z/nZ are finite, to
categorize all avoidable sets we need merely categorize the saturated
sets. We present first two lemmas about unavoidable sets.

Lemma 1. No four-element set is avoidable in Z/nZ for n=2k, un-
less it is composed solely of odd numbers.

Proof. Consider a four-element set {a,b,c,d}, with a even. Two
of b, ¢, and d have the same parity, without loss of generality b
and ¢. But then if we pick representatives for the residue classes a,
b, and c in Z, “—"‘;’;c, "—’—gﬂ, and —‘%‘—c are all integers, and the
corresponding residue classes (distinct as a, b, and c are) form a
3-cycle in G(qp,c,d)- O

Lemma 2. In an arbitrary abelian group, {0,b,c} is not avoidable
unless either 2b = ¢, 2¢ = b, or 2b = 2c.

Proof. Unless one of these conditions holds, 0,b,c — b,b —c,cis a
5-cycle in Gygp,c}- Note that if one of these conditions holds, then
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two neighboring elements of this supposed 5-cycle are identical, and
so the 5-cycle does not exist. O

We now state the main theorem proven in this section.

Theorem 1. The saturated sets in Z/nZ are:

(a) ifn=2k+1, {a,b} witha #b

(b) if n =4k + 2, {a,a+ z,a+ 2z} with z odd, z # n/2, and a
even; {a,a+ n/2}; and {z|z=21+1,1<1<n/2} if k>0

(c) if n = 4k, {a,a + z,a + 2z} with x odd, a even; {a,a+ 4z}
with a even, z # n/4; and {z |z =21+1,1 <1 < n/2}

Proof. (a) In this case, as 2 and = are relatively prime, 2 has a
multiplicative inverse in Z/nZ. Denote this element by y.

First, we note that no three-element set is avoidable: G, ) con-
tains the 3-cycle (y(a + b — ¢),y(a — b+ ¢),y(—a + b + ¢)); these
elements are distinct, as @, b, and ¢ are. On the other hand, any
two-element set {a, b} is avoidable. To prove this, it suffices to show
that any set of the form {0,¢} is avoidable, for then we can construct
a partition {4, B} avoiding {0,b — a}, and add ya to each member
of the partition to obtain a partition avoiding {a, b}.

Consider G{g,¢}. Each vertex has degree at most 2, so its connected
components are simply paths and cycles. Then G{o,1} is 2-colorable
if and only if all of the cycles are even. Let us consider an arbitrary
cycle, (z,t — z,x —t,2t — z,...). Because this is a cycle, all of its
vertices have degree 2 and thus no two adjacent terms in this sequence
are identical. If the cycle had odd length, we would have z = It — z
for some | € Z; however, this implies either z — mt = mt — z, if
l=2m,orz—mt = (m+ 1)t —z,if |l = 2m 4+ 1. In either case,
two adjacent terms are identical, contrary to the assumption that
the terms are contained in a cycle.

(b) Note that in cases (b) and (c), the set of all odd numbers
is avoidable: simply consider the partition A = {2/ + 1}, B = {2{},
which obviously avoids the set of all odd numbers. Clearly this is also
the unique partition avoiding it, and for n > 2, this set is therefore
saturated.

Because of Lemma 1, all that remains is to determine when a
three-element set {a, b, ¢} is avoidable, where a is even. Asin (a), we
need only consider the case ¢ = 0, because the existence of a partition
avoiding {a, b, ¢} is equivalent to the existence of a partition avoiding
{0,b— a,c — a}. Also, note that if a + b + ¢ is even, then as before
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{a,b, ¢} cannot be avoidable. So we need only consider the case of
{0,b,c} where b is even and c is odd. Our strategy will be to fix b
and determine for what values of ¢ the set {0,b, c} is avoidable.

Denote by 2 3 the unique even element satisfying 2- = b. Then
G1op} has four vertices of degree 1: 0, & 3, 2k +1, and 2k + 1+ 2
Consequently, it is composed of two paths and some number of cycles.
Within a given connected component, all the elements have the same
parity, since both 0 and b are even. Therefore, the path starting at
0 must end at g This path consists of {0,b,~b,2b,...,lb = 5}
for some ! € Z. The last condition is equivalent to (21 -1)b =0,
meaning that the solution first encountered is when I = (1 - ﬁ)
where (n, b) is the greatest common divisor of n and b. Note that as
2 appears with multiplicity 1 in both » and b ' [ "b) is odd; therefore,
l is an integer. The length of the path is ( Ok It is not hard to see
that the other path is a translate of this path by 2k + 1.

Now let us consider the cycles: an arbitrary cycle is of the form
{z,b—z,2-b,2b—z,...,z—1b}. Solving for minimal [ yields | = ("b),
whence the length of the cycle is (n - So {0, b} is certainly avoidable.

We now apply Lemma 2. Since 2b = c is impossible (as ¢ is odd),
and 2b = 2¢ is impossible (for then ¢ = b+ (2k + 1), whence G g}
contains the proper 5-cycle %, —%, (2k+1)+ 32—b, (2k+1) - 52’-, (2k +
1)+ %), for {0, b, c} to be avoidable we need 2c = b. As c is odd, this
means ¢ = (2k + 1) + %

But now {0,b,c} is avoidable for this value of c. To prove this,
it suffices to construct a c-consistent 2-coloring of G4, i-e. a 2-
coloring of G g5y such that = and ¢ — & always have opposite colors.
Using the term c-complement of x to denote ¢ — z, we find that:

Fact 1. The c-complement of b — x is the 0-complement of ¢ — z,
and the c-complement of —x is the b-complement of ¢ — .

Fact 1, along with the fact that the c-complement of 0 is ¢, implies
that the c-complements of a'path in G(g 3} are completely contained
in the other path. We color one of the two paths arbitrarily; this
induces a consistent coloring on the other path. Similarly, the c-
complements of a given cycle in G4} lie completely in some cycle.
This second cycle is distinct from the first; if not, we would have
either 2 — lb=c— z or lb— z = ¢ — z, each impossible due to parity
considerations.
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As all cycles have the same length, these complements comprise
the entirety of the second cycle. We can then pair off the cycles into
pairs which are c-complements of each other and color one cycle of
each pair arbitrarily; this induces a consistent coloring on the other
cycle. Therefore, sets of the form {0, b,% + (2k + 1)} (or equiva-
lently, sets of the form {0, ¢, 2c} for ¢ odd and c # %) are avoidable,
and saturated by Lemma 1. The only two-element set containing 0
not contained in any of these sets is {0,2k + 1}, which is therefore
saturated.

(c) The proof given for part (b) works when b = 2 (mod 4), with
the minor modification that now either value of z for which 2z = b
yields an avoidable set {0, b,z}. Meanwhile, if b6 = 0 (mod 4}, both
such values of z are even, and consequently there are no 3-element
avoidable sets containing {0, b}, so {0, b} is saturated.

This completes the proof of Theorem 1. O

2.2. Saturated Sets in Z. The case of Z is similar to that of Z/nZ;
the proof of Lemma 1 carries over, so that no four-element sets are
avoidable, and the set of all odd numbers is saturated as before. We
then have the following result.

Theorem 2. The saturated sets in Z are {z|z = 2l + 1,1 € Z};
{a,a+ z,a + 2z} with a even, z odd; and {a,a + 4z} with a even.

Proof. We assume that the set contains an even element; otherwise,
it is contained in the first set above. As before, we can reduce to
determining when {0, b, c} is avoidable where b is even and ¢ odd.
Due to Lemma 2 we need only consider the case ¢ = -g—. In this
case, we look at Ggp). There are no cycles: the paths containing
a vertex of degree 1 are 0,b,—b,2b,... and -g-, —-g-, %b, —%b, ..., which
contain every element of Z which is congruent to 0 or % (mod b).
The other paths are of the form ...,-b—z,z+ b,—z,z,b— 2,2 —
b,2b— z,2z —b, ..., and contain every element congruent to z or —z
(mod b). Fact 1 is still true, and because these paths contain every
element in a given residue class and its inverse, the c-complements
of one path still comprise the entirety of another path. Therefore,
we can c-consistently color the paths as in the proof of Theorem 1,
so that {0, b, ¢} is avoidable.

As before, all two-element sets are avoidable; the ones not con-
tained in any three-element avoidable set are of the form {a,a+ 4z}
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with a even, and these are consequently saturated. Thus, the proof
of the theorem is complete. O

2.3. Finitely Generated Abelian Groups. In the case of finitely
generated abelian groups, we have the following theorem.

Theorem 3. Let G be any finitely generated abelian group, and write
G as:

m) 7 mz 7 m3
G= = | ® —= & Z
(Gwim)e (82) (Bamm)o (@)
Then the mazimal size, m, of an avoidable set in G containing an
even number is:
a)142™7 ifmi=m3=r=0
b)2, ifmy=maz=r=0
c)2+2m"1 ifmz=r=0and my #0
d) 2+ 2™2 otherwise.

Proof. Because of previous reasoning, it suffices to find the maximum
size of an avoidable set containing 0; in what follows, all avoidable
sets mentioned are assumed to contain 0. We break the proof into
cases corresponding to the cases of the theorem.

(a) my = m3 = r = 0. In this case, G = (%Z)mz, and we want
to show that m = 1+ 2™2~1. Certainly m < 1+ 2m2-1 for in
any partition one of the partition’s sets must contain at least -—[

elements, producing at least —1 1 =2m2~1 _1 distinct sums, so at;
most |G| - (2™271 - 1) =1 + 2™2~1 sums are avoidable. However,
there is a set of cardinality 1+2™2~! which is avoidable, namely {0}u
{(1,z2,...,2m,)}; the partition is the latter set and its complement.

(b) mg = m3 = r = 0. This case is also simple. Here, G =
my

@(27,&'1)_2 and so 2 has a multiplicative inverse y; in each summand.
{Jsling the logic employed in Theorem 1, we conclude that all two-
element sets and no three-element sets are avoidable, so m = 2.

(c) m3 = r =0 and m3 # 0. Define Sy = {0,b} U {z | 22 = b}. By
Lemma 2, every avoidable set must be a subset of .S}, for some 6. We
seek to maximize the size of such a set. If b is odd, |Sy| = 2, which is
not of much help, so we assume b is even. Because of the following
lemma, we can assume b is in the set.
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Lemma 3. IfU is an avoidable subset of Sy with |U| > 2 and b ¢ U,
then U U {b} is also avoidable.

Proof. Let {A, B} be a partition avoiding U. Suppose there are two
elements u and v in one of the sets, without loss of generality A,
whose sum is . Then since U contains some z for which 2z = b, we
know that z —u and z —v are both in B. But then (z—u)+(z-v) =
2z — (u + v) = 0, contradicting the fact that 0 is contained in U.
Therefore, {A, B} also avoids b, so that UU{b} is also avoidable. [

We show first that if & = 0, the maximal size of an avoidable
subset U of S is within the bound in question. In this case, we have
|So] = 2™2.

Take some z € U which is to be in our avoidable set along with
0, and consider the associated graph G ;). The induced subgraph
on Sp will consist of disjoint copies of K3, with 0 connected to z.
However, if y,z € So are connected by an edge in Gy, ¥ and
z cannot both be in U, as then 0,y,2 would be a 3-cycle in Gy.
Therefore, U has at most 1 4+ 2™2~1 elements.

Now, we consider the case where b # 0. In this case, the connected
components of G o3} are paths and cycles; the vertices of degree 1 are
{z|2z = b}U{z | 2z = 0}, a set with 2™2*! elements. Therefore, there
are 2™2 paths; the path starting at 0is 0,4, —b,2b, ..., kb= z, where
2z = 0 or 2z = b. In the first case, we have 2kb = 0; in the second,
2kb = b. Looking at each coordinate separately, we see that if k is a
minimal solution to the first equation, & must be odd (otherwise %
also satisfies the first equation), but then --’%—‘- satisfies the second
equation. So a solution to the second equation happens first, and
thus the path starting at 0 ends at a value of z for which 2z = b, and
also has an even number of edges as this solution is negative. All the
other paths are of the form y,b—y,y—56,2b—y,....kb—y=2 -y
where 2y = 0 (and consequently 2(z — y) = b).

Let us now pick another element ¢ € U, 2c = b, and consider the
resulting associated graph G (o). Because of Fact 1, the compo-
nents which contain the vertices of the paths in Go ) are now pairs
of entangled paths; Each path contains two values of  such that
2z = 0, and two values of y such that 2y = b. These values must
satisfy 1 + yo = z2 + y1 = ¢, where z; and y; are the endpoints
of a path in Gos) as are z; and y2. Therefore, z; and y; must be
colored identically (because the path has even length), and z; and
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y2 must be colored differently (because their sum is ¢), so y; and y»
must be colored differently, and hence must be in opposite sets of
any partition avoiding U. Consequently, at most one of y; and ¥
can be in U, so at most half of the 2™2 values of y with 2y = b can
be in our avoidable set. These values are in addition to 0 and b, so
our avoidable set can have at most 2+ 2™27! elements. To complete
the proof of case (c), it remains only to show that this bound can be
achieved. We prove this by induction on m; as follows.

In the base case, my = 1, we wish to find an avoidable set of size 3.
However, this is not hard: the set {(0,...,0),(1,...,1),(2,...,2)}is
easily seen to be avoidable as in Theorem 1 (b).

Now, assume that in some abelian group G we have an avoidable
set S of size 242" consisting of {0,6}UT where T is a set of elements
z such that 2z = b. We need only to show that there is an avoidable
set of size 2+ 2" in G’ = G ® £. Let {C, D} be a partition of G
avoiding S. Then we let:

Z
r_
C'={(c,s)|ceC,s€ 57

and z
D'= {(d,s)|de D,s€ 37
Then {C’, D'} is clearly a partition of G’ avoiding the 2 + 27+1-
element set S’ = {(0,0), (6,0)}U {(t,s) |t € T,s € Z}, as desired.
(d) The same construction as in part (c), with the base case re-
placed by m, = 0, ensures that there exists some avoidable set of
size 2+ 2™2, So we need only prove that 2 + 2™2 is an upper bound
on the size of an avoidable set in G. As in part (c), every avoidable
set U is a subset of S, for some b. Consider the set {z |2z = b}. No
two elements y and z which are equal in all 2—ZZ summands of G can
both be in U, as then we would have 0 + y + z even, impossible by
previous logic. There are precisely 2™2 possible values an element of
my

this set can take in @522’ so at most 2™2 of these elements can be

i=1
in U, and thus U can have a total of at most 2 4+ 2™2 elements in
all. a

We have found the maximum size of a saturated set containing 0
in an arbitrary finitely generated abelian group. Indeed, using the
methods of the proof of Theorem 3, we can readily compute all of
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these saturated sets; the details are left to the reader. The natural
complementary question concerns saturated sets not containing 0.
We can write G as:

m Z n
o= (Smtm)* (©n)
where the summands H; are copies of Z or %. Let the coordinates

of z corresponding to the H;’s be denoted by z;; the odd elements
of G are those with some z; odd. Then the solutions to:

Za;:c; =1 (mod 2)

form a saturated set, where the a;’s are each equal to 0 or 1, and
not all 0; the partition is simply this solution set (which has |G]|/2
elements) and its complement.

Conjecture 1. The sets described above are the only saturated sets
containing no even numbers.

3. DENsITY REsuLTs IN N

Using the techniques developed in the previous section, we can at-
tack the classical case (S,-) = (N,+). As previously mentioned, few
families of avoidable subsets of N have been constructed. The Fi-
bonacci sequence ([1]) was the first sequence shown to be avoidable,
and other recursive sequences ([5], [3], [4]) have been analyzed in
the context of avoidable sets; also, Chow and Long [2] demonstrated
a remarkable connection between avoidable sets and continued frac-
tions. All of these sequences grow exponentially; following this lead,
we establish some results on the densities of avoidable sets in N. We
start with an observation.

Observation 1. Ifa<b<c¢,a+b> c, and a+ b+ c is even, then
no avoidable set can contain {a,b,c}.

This is due to the inability to partition {atp=c e=bte —aibte}jy
this case. We now proceed with a few apropos definitions of density.

For any set U, let U(n) be the number of elements of U less than
n. We define the arithmetic density of a set U, d(U), by d(U) =
l|m supﬂﬂl We also define d(U > N) = hm supﬂﬂ—ﬂﬂl We note

that d(U ) = d(U > N) (the proof is routine a,nd will be omitted). For
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a more pertinent measure of density, we define the even logarithmic
density, ELD(U), and logarithmic density, LD(U), as follows,
where, Uy(n) is the number of even elements of U less than n:

log
ELD(U) = Iimsupe-U_z(gT

n—00
LD(U) = limsup ¢~ Ut
n—co

Roughly speaking, LD(U) (resp. ELD(U)) is the number z for
which the size of the nt* element (resp. n** even element) of U grows

like (1)". For instance, ELD({2"}) = &, ELD({F,}) = (}4)"3,
where F, is the Fibonacci sequence, and FLD ({ (g) }) =1.

Given our past experience, as well as the existence of several sat-
urated sets containing only finitely many even numbers (such as
{2,4}U {z |z =3 (mod 8)}), it is natural to consider avoidable sets
with infinitely many even numbers, or to investigate the even num-
bers in a given avoidable set. In this vein, we have the following two
results.

Theorem 4. Every avoidable set U containing infinitely many even
numbers has arithmetic density 0.

Proof. We want to prove d(U) < ¢ for all € > 0. Because d(U) =
d(U > N), it suffices to find an N for which d(U > N) < e. Let
N be an even integer in U greater than %, and consider the set
Sp={kN+1,...,(k+1)N} for k > 1. No two elements of U with
the same parity can be in Sk, due to Observation 1. Therefore, at
most 2 elements of Sy, can be in U. This clearly implies d(U > N) <
2< % =€, as desired. m]
Theorem 5. For any avoidable set U, ELD(U) < 3@

Proof. Let z and y be the two smallest even elements of U. List the
even elements of U in increasing order: {z,y, a1, az,...}. Because of
Observation 1, we have a; > z+y, az > a1+y, and ax > ag_1+ak—2
for k > 3. By induction, this implies ax > Fyx 4+ Fry1y (using the
convention Fy = F; = 1.) Therefore, there are at most k + 1 even
elements of U less than Frz+ Fi41y. So we have, if Fi_1z+ Fry < n,
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log 3 S log(Fi—12 + Fry) — log 2
Us(n) — k+1
Therefore, we have

o logZ . log(Fk-12 + Fyy) —log?2
>
(1) liminf 7y 2 lim inf F+1

The right-hand limit can be el\c/aluated: As k — oo, it is a well-
known fact that Fj, — r (1_4_-235) ; this implies that that the right-

hand limit of (1) is equal to log 1—"‘5‘5 and consequently that

.. log2 1+5
i > .
llnnl)lcgf o) = log 5
Plugging this into the definition yields ELD(U) = V5oL as de-
sired. a

This naturally suggests the following conjecture.

Conjecture 2. IfU is an avoidable set with infinitely many even
numbers, LD(U) < 3@

The case of N illustrates how categorizing avoidable sets becomes
significantly more difficult when one does not have inverses in S. In
the next section, we discuss another possible difficulty: namely, when
the group operation - is not commutative.

4. FAMILIES OF NON-ABELIAN GROUPS

Note: In this section, all groups will be written multiplicatively,
and the identity element will be denoted by e.

In general, the non-abelian case is more difficult due to the lack of
a convenient description of the group. In the case where the group
has a presentation with few generators and relations, however, we
can compute all of the saturated sets. In this section, we present an
example of such a computation in the case of the dihedral group Dy,
and the results of similar computations for other families of groups;
the details of these latter computations are left to the reader, being
quite similar to those of D,,. We note that by the definition presented
in the introduction, if z and y are in the same set of a partition
avoiding U C G, we must have both zy and yz not in U.
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4.1. Dihedral Groups. Note: In this section, all equalities and
variables are in Z/nZ (or Z/(2nZ) when we are investigating D2,)
unless noted otherwise, and we use (a,b) to represent the greatest
common divisor of a and b.

Definition : The n** dihedral group, D,, is defined for n >3 to
be the group of order 2n with generators r and f satisfying relations
r*=f2=1and fr=r"1f. It is also the group of symmetries of a
regular n-gon, where r represents a rotation by 27" and f represents
a reflection across some axis of symmetry.

We can express elements in D, uniquely as either r® or fr®. We
then compute the product law of D, from the relations between the
generators to be:

re 'T‘b — ra+n

r® . frb fré=¢ or frbte
fre-frb = po=bop pb-e

We will occasionally exploit the definition of D, as the group of
symmetries of a regular n-gon by labeling an arbitrary element of
order 2 f, instead of starting with a fixed element labeled f. Our
strategy will be to prove a series of partial results, which will coalesce
together into a characterization of all saturated sets in D,.

Proposition 1. In D,, the saturated sets U containing the identity
element are {e,r*}, where (n—"ky is even.

Proof. First of all, we note that no reflection (element of order 2) can
be in an avoidable set containing e. Indeed, label this reflection £
then r,r~1, fris easily seen to be a 3-cycle in G{e,f}- So our avoidable
set U must consist solely of powers of r. The connected components
of Gy are therefore all either contained in {0,r,..., r®~1} or disjoint
from it. We show next that no three-element set {e, r*, r'} is avoid-
able. Now, 2-coloring the components contained in {0,r,...,r""1}
is the same as 2-coloring G(oky in Z/nZ; for this to be possible,
from Theorem 1 we know that we must have 2k = I. But then
f, fr*, fr** is a 3-cycle in Gy, so U is not avoidable. All that
remains is to discern when a two-element set {e,r*} is avoidable.
From Theorem 1, we know that we can 2-color the components in
{0,7,...,7""1}. The other components are easily seen to be cycles
(as fr®- fr® =e, fr® in Gy has no edges corresponding to €) of the
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form fre, frotk frat2k | fre—k which have length "5 SoUis

avoidable if and only if this length is even, as desired. . O
Corollary 1. There are no avoidable sets containing r* if (71"7) is
odd.

Armed with Proposition 1, and the fact that {f, fr,..., fr*~1}
is saturated (the partition being the set and its complement), we
conclude the following.

Proposition 2. In Dyny1, the saturated sets are ezactly {e} and

{fi fryo frot)

We now restrict our attention to Day,. As in the case of Dypoy,
{f, fr,..., fr*"1} is saturated. Other saturated sets with n elements
(in each case, the partition consists of the set and its complement)
are AUB, AUC, and BUC, where

A = {r r3, 7‘5, .. .,7‘2"—1}
B = {f1fr21fr41"'!frn_2}
C = {frafrsyfrsa"'afrn_l}

Proposition 3. In Dy, the only saturated sets containing only odd
powers of r are the three sets described above.

Proof. We need only show that no two reflections differing by an odd
power of r can be in an avoidable set U which contains some r2¥+1,
Label one reflection f, whence the other is fr2+1l Then these two
reflections cannot both be in U, for if they were, r¥=f pl+5+1  fpl=k
would be a 3-cycle in Gy. |

So the only uncharacterized avoidable sets are those containing
even powers of 7, and not containing e. We have the following propo-
sition.

Proposition 4. The only saturated sets containing even powers of
r and not e are {r?*,r%} where (23—% and (2121%,) are even, and 2
appears with the same multiplicity in 2k and 2I.

Proof. We assume U contains an even power of r, say r2*. U cannot
contain any element of the form r2+1 for then Gy would contain
the (2k + 2! + 1)-cycle

f, fr%, . .’fr(zk)(zl)’fr(zk)(21+1), fr(2k—1)(21+1)’ . .,frgl"'l.
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Furthermore, U cannot contain a reflection f, for then Gy contains
the 3-cycle frntk, fpn—k pn=k Qo if U is to have any other ele-
ments, they must be even powers of . There cannot be two other
even powers of r, because then the set would not even be avoidable
in the subgroup Z/(2nZ) by Theorem 1. Consequently, we only need
to discern when U = {r?*, 7%} is avoidable. We know from Corol-
lary 1 that ﬁ)- and @21—”‘2—15 must be even, and we know that the

components of Gy contained in {e,r,r2,...,r?"~1} are 2-colorable
from Theorem 1. So we need only color the component containing
an arbitrary reflection f.

Looking at the associated graph, we can easily see using the prod-
uct laws for D, that the elements in the connected component of
f are those of the form fre(2K)+52) with this point being an odd
distance from f if and only if ¢ + b is odd. So Gy will contain an
odd cycle if and only if the equation

) a(2k) +b(21) =0 (mod 2n)

has any solutions with ¢ + b odd. Note that as 2k and 2/ are both
nonzero, and (272:7;1:) and (22”21) are even, this equation has no trivial

solutions (i.e. with one of a, b equal to 0.)

Claim 1. Equation (2) has solutions with a+b odd if and only if 2k
and 2l have different multiplicities of 2.

Proof. Suppose 2k and 2! have different multiplicities of 2. Then
exactly one of @zzkrﬂ) and -fm(h20) §¢ 644, Letting these equal a
and b, respectively, yields the desired solution.

Conversely, suppose 2k and 2/ have equal multiplicities of 2, say
s. Then 2 appears with multiplicity ¢ > s in 2n, because (23—"2,5 is
even. But now consider a(2k) + b(2[) for a + b odd. Without loss of
generality, a is odd and b is even. But then 2°+! divides 6(2[) but
not a(2k); consequently, it does not divide their sum. However, 2°%!
divides 2!, which divides 2n, so a(2k) + 5(2() cannot be equal to 0
(mod 2n) for a + b odd. This proves the claim.

Therefore, since the existence of solutions to equation (2) with a+b
odd is equivalent to the unavoidability of {r?*, r#}, Proposition 4 is
proven. a

We now have enough information to characterize all avoidable sets

in D,.
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Theorem 6. The saturated sets in Dy are:

(a) if n is odd, {e} and {f, fr,..., fr"*~'}

(b) if n is even, {e,rk} where (':,_k) is even; {r
and ﬁ are even and 2 appears with equal multiplicity in 2k and
21; and the three n-element sets AUB, AU C and BUC, where A
is the set {r,r3,...,r""1}, B is the set {f, fr?,.. . fri72}, and C
is the set {fr, fr3,..., fr*~'}.

2k 21 n
, 74} where 5

4.2. Semi-Dihedral Groups. Closely related to dihedral groups
are semi-dihedral groups. We define for m > 3 SDn, the mt* semi-
dihedral group, to be the group with generators z, y satisfying
relations 22" = y? = e and yz = z¥y where k = -1 42772
Noting that k2 = 1, and writing all elements as z* or yz?, we can
easily derive the multiplication law for semi-dihedral groups to be:

z% . :l}b — xa-&-b
z% . ya:b — yxa+b or yxa.-}-kb
yma . y:cb xka+b or mkb—}-a.

By methods similar to those employed in Section 4.1, we arrive at
the following theorem for semi-dihedral groups.

Theorem 7. The saturated sets in SDy, are {e,:z:zm-z}; {z?,z"},
where 2n,r # 0,2™"% and 2n and r have the same divisibility by 2;
and AUB, AUC, BUC where A = {a:,w3,.,.,m2m_l‘1}, B =
{y,yz?,...,y2*" "' "2}, and C = {yz, ya3, ..., yz?" 1.

4.3. Generalized Quaternion Groups. In the same category as
the dihedral and semi-dihedral groups are the generalized quaternion
groups. We define @, the m'* generalized quaternion group, to
be the group defined with generators a, b and relations a¥m =b? =1,
a®™ = b?, and ba = a~1b. As before, we can represent each element
as a® or ba®, whence the multiplication law for @y, is as follows:

a-a? = a*t¥
ba®-a? = ba®t¥ or ba®*Y
ba® -ba? = a?™tEY op @?mHYTT,
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Again using the methods exhibited in Section 4.1, we can compute
all saturated subsets of Q,,.

Theorem 8. The saturated sets in Q,, are:

o {a?™, 2”} where 2r and 2m have different multiplicities of 2,
or 2r =0 (mod 4m)

o {a®™ ba"}

o {e,a?} where (Z—-n":’h—) is even

e {a®,a?} where 2r,2s # 0,2m (mod 4m); 2r and 2s have
the same multiplicity of 2; and this multiplicity is different
from that of 2m

e AUB, AUC, and BUC, where:

A = {a,d...,a"™ 1}
B = {bbd%...,0a"""?}
C = {ba,bd® ... ,ba"™"}.

4.4. Non-abelian Groups of Order pq. Another family for which
we can readily compute the saturated sets is the class of non-abelian
groups of order pg. The only nonabelian groups of order pq, where p
and ¢ are prime and p > ¢, occur when p =1 (mod ¢). In this case,
there exists a unique group given by the presentation G, generated
by a,b with relations a? = b» = e and ba = ab®, where s # 1 and
s? = 1; we assume p,q are odd because if ¢ = 2, G is simply the
dihedral group D,. We represent all elements of the group as a*b¥
with 2 €z and y € Z . Furthermore, we denote by the element

z such that 2z =k in %Z We present the product Iaw.
akbl .a™b" = ak+mbls’"+n or ak+mbl+ns".

In this case, the algebra is somewhat more subtle than that of D,,.
To give a flavor of the methods used, we present the proof of the
following main lemma.

Lemma 4. For k # 0, the set {a*b!,a™b"} is not avoidable unless
a™ht = (akbl)r.

Proof. Consider the set {a.%b”, agby m"bz} This set is a 3-cycle in
the associated graph of this set if and only if  # y and the elements
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z,y, and z of the finite field F, satisfy either:

x+s§y = 1
sm"y+z = n
x+s2z = n
or
s§x+y = 1
s”"‘gy-i-z
:c+s§z =

Now, the system of equations Av = ¢ has a solutlon if det A # 0.
For the first set of equations, det A = s™ + sz for the second set,
det A = s™+5+1. But these cannot both be 0; if the second equation
is, we obtain s™ = —s~ whereupon the determmant associated to
the first set of equatlons is equal to s* —s~3. This quantity is then
nonzero as s3 = s~ -3 implies s¥ = 1, which is impossible as k # 0.
Therefore, one set of equations must have a solution; we need to show
that this solution has z # y. If z =y and (2, y, 2) satisfies either set
of equations, we obtain, substituting into either set of equations:

a:(1+s§) = 1
s"‘"x+z = n
x+s2z =

Multiplying the second equation by s% and subtracting the third
yields

(s - 1)z = n(sg -1).
Now, we multiply on both sides by (1 + s'%) to get

(3) (s™ - 1)l = n(s* - 1).
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However, let 2t be the number (mod ¢) which when multiplied by k
(mod g¢) yields m; we then have:

((Lkbl)% = qmpiHisttetsmk

sM—1

= a"‘bl( sk—1

a™b

by substitution from equation (3), so a™b® = (a*b!)" for r = T
Consequently, unless this condition holds, we can find a bona fide
3-cycle in G grpt gmyny, 50 Lemma 4 is proven. O

This lemma is then the main step in the proof of the following
surprisingly simple theorem categorizing all saturated sets in a non-
abelian group of order pq.

Theorem 9. The saturated sets in a non-abelian group of order pq
are all sets of the form {z,z"}.

5. CONCLUSION

In general, the case of non-abelian groups is harder than the case
of abelian groups, because the group may not have a simple, easy-
to-manipulate, presentation. There are some recurring themes, how-
ever: all of the saturated sets in the cases of both abelian and non-
abelian groups are either small relative to the order of the group (in
the families we have discussed, constant with respect to the order
of the group) or the nontrivial coset of a subgroup of order 2. It is
in general true that the nontrivial coset of a subgroup of order 2 is
avoidable {(and saturated unless all elements of the subgroup have
order 2); an interesting open question is whether or not all other
avoidable sets are small relative to the size of the group.

Other desirable results would include linking the avoidable sets
in a group to the avoidable sets in a subgroup or quotient group.
In the first case, the problem with passing to a subgroup is that
saturated sets entirely contained in the subgroup will of course still
be avoidable, but may not be saturated; for example, in the group
Diny1, the subset {e} is saturated, but it is certainly not saturated
in the subgroup ﬁ:}i In the second case, we would like to lift
avoidable sets in the quotient group to avoidable sets in the larger
group simply by lifting the partition; however, two distinct lifts of a
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