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Abstract

Using algebraic curves it will be proven that large partial unitals
can be embedded into unitals and large (k, n)-arcs into maximal arcs.

1 Introduction

A (k,n)-arc in a projective plane of order q is a set of k points no n + 1
on a line. (k,2)-arcs are simply called k-arcs. If the order of the plane is
q, where q is a square, a unital Y is defined to be a (¢,/d+1,/3+ 1)-arc
meeting all lines in 1 or \/g+ 1 points. A partial unitalis a (k, /7 + 1)-arc
X such that each point of X lies on a 1-secant. With respect to a set A
in a projective plane a line is called an i-secant, if it meets A in exactly
i points. Here we only present a very brief introduction, for more details,
see [1], [2), [8].

Barlotti [4] proved that for a (k,n)-arc k < gn—gq+n,ifl <n<q+1,
and equality can only occur when n divides q. For g even, Denniston [6]
constructed (k,n)-arcs with k = ng — g+ n in PG(2, ) for every divisor of
g. Sometimes these arcs are called mazimal arcs. Recently Ball, Blokhuis
and Mazzocca [3] proved the long-standing conjecture that in PG(2,9), ¢
odd, there are no maximal arcs. It is then natural to ask whether a (k, n)-
arc with k > gn — g+ n — € points can be embedded in a maximal arc or
not. The first result in this direction is due to Thas [9] for € = 1. Using
purely combinatorial arguments he showed that a (gn — ¢ +n — 1,n)-arc
can always be embedded in a maximal arc. For € = 2 Wilson [10] obtained
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some nice results, but the complete solution was not known. Using algebraic
techniques Ball and Blokhuis [2] proved the following:

Let K be a (k,n)-arc in PG(2,q), nlq withk > gn—q+n—e. Ife <n/2
for g/n > 3 ore < 0.476n if n = q/3, or € < 0.381n for n = q/2, then
there is a mazimal arc containing K.

There is a similar result in [8], where the same conclusion was obtained
forg=p", n=p, and e = [va/2].

The situation is analogous for partial unitals; an casy counting argument
gives that k < ¢,/g + 1, and Ball [1] proved that a partial unital X in
PG(2,q) with ¢\/g+1~,/g < |X| < ¢,/g+1 can be extended to a unital.

The aim of this paper is to give a proof of Ball’s theorem for the embed-
ding of partial unitals (Theorem 4.1), and to prove a slight improvement of
the Ball-Blokhuis theorem for embedding large (k, n)-arcs (Theorem 3.1).
Our proof uses the Rédei polynomial of a set and is motivated by algebraic
curves, although curves are explicitly used in only one step of the proof.
We believe that the use of the Rédei polynomial makes the proof more
transparent. Besides this, the counting argument of Ball and Blokhuis is
improved.

2 Preliminaries

Throughout this paper ¢ = p*, p prime, and = is a divisor of q. We shall
work on the plane PG(2, q) coordinatized by the finite field GF(q). The
line at infinity will be denoted by £, and AG(2, q) will denote the affine
plane PG(2, ¢) \ leo.

To recall the definition of the Rédei polynomial let S be our set, S its
affine part, that is S\ £oo. Let § := {(ai,b;) :i=1,..., N}. The line at
infinity will be denoted by £,,. The Rédei polynomial of S is defined as
follows:

N
HX,Y):=[[(X+a¥ —b)= X"+ (V)X "'+ . +hn (V). (1)

13

Note that for all j = 1,..., N: deg(h;) < j. H(X,Y) is often considered for
a fixed Y = y as a polynomial of X; then we write H(X,y). For properties
of the Rédei polynomial, see [7].

From the combinatorial properties of unitals and maximal arcs we know
what their Rédei polynomials, H*{X,Y) look like.
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Remark 2.1 1) Let H*(X,Y) be the Rédei polynomial of a mazimal arc
A. Then for any infinite point (y) ¢ A, H*(X,y) is an n-th power, and
since n divides q, it only contains exponents of X that are divisible by n.

2) Let H*(X,Y) be the Rédei polynomial of a unital UThen for any
infinite point (y) ¢ U, H*(X,y) = (X? — X)H(X,y), where H is a /g-th
power. Again the exponents of X that are larger than U |-UNEs|—q+1
are divisible by n.

If some points are deleted from a maximal arc or a unital, then the
deleted linear factors in the Rédei polynomial give a polynomial a(X,Y) of
degree & with the property that H(X,Y)a(X,Y) = H*(X, Y). We wish to
find such an a(X,Y) without knowing that the set is a maximal arc or a
unital, minus & points. The consequence is that the above equality for the
Rédei polynomials will not hold automatically for every ().

Definition 2.2 1) Let A be a (k,n)-arc. If there are t;(P) (n — i)-secants
through P, then the index of P is defined by i(P) = Y1y i t:(P).

2) Let X be a partial unital. If there are t;(P) (/@+1—1)-secants through
P, then the index of P is defined by i(P) = t gr1(P) + T i+ t:(P).

Note that for a point P € A or X, i(P) = €. The following lemma is
immediate.

Lemma 2.3 1) Let A be a (k,n)-arc. If there are q/n—£ 0-secants through

a point P ¢ A with € > 0, then the indez of P is fn+e. [ |
2) Let X be a partial unital. If there are \/q— £ 0- or 1-secants through
a point P ¢ X with € > 0, then the indez of P is £,/q + €. 1

Proposition 2.4 Let S be a (k,n)-arc or o partial unital, and H (X,Y)

be its Rédei polynomial. Let (y) be any infinite point of index i((y)) = €.

Suppose that €o, is an (n — j)-secant or a (\/g+ 1 — j)-secant. Let i'=j
(mod n) (or \/g), with 0 < j' <n (or <\/q). Then:

(1) There is a unique polynomial a(X,y), such that H(X,y)a(X,y) =

H*(X,y), where H*(X,y) is of the form described in Remark 2.1,

(2) The degree of a(X,Y) as a polynomial in two variables is L toe — ',

(3) a(X,y) has only linear factors, if (y) has indez e.

Proof: Suppose that (y) has index €, and consider H(X,Y). If (X — a)
is a factor corresponding to an (n — i)-secant or a (/g + 1 — i)-secant, and
we multiply H(X,Y) by (X —a) [or (X —a) if i = \/g+1 in case of
partial unitals], then we obtain a polynomial H*, which is an n-th power
or (X9 — X) times a ,/g-th power. So [J(X - a)! = a(X,y) satisfies
H(X,y) a(X,y) = H*(X,y) and the degree of a(X,Y) in X is e -7,
since the contribution of €, to i(y) is 5. If a(X,y) = ;o a:(v) X247,
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then the coefficients of a can be found uniquely, since H* (X,Y’) contains
a lot of 0 coefficients on the top. A comparison of the coefficients gives
a(y) = —hl(y), az(y) = —h2(y) — a1(y)h1(y), and in general a;(y) =
—h;(y) - 2k_ ax(y)hi(y). This system of linear equations can be solved
uniquely, and the degree of a;(y) is at most 1. 1

3 Embedding (k,n)—arcs

In this section our main result for embedding large (k, n)-arcs in maximal
arcs will be proven.

Theorem 3.1 An (gn—q+n—¢,n)—arc can be embedded into a mazimal
arc, provided that € < c-n, c is a constant salisfying 0 < c < 2/3, n divides
q, and K = q/n is large enough. More precisely, K > 2, when0 < ¢ <1/3,

K >3, when0 < c <0449, K > 4, when 0449 < ¢ < 1/2, K > (1 +
2c)(1-c)/(1—c—c?), when1/2 < c < 3/5 and K > (1+2c)(4—5c)/(4—6c),

when 3/5 < ¢ < 2/3.

Lemma 8.2 Let T; denole the total number of (n—i)-secants of a (k,n)-arc
A, satisfi Jzng the conditions in Theorem 3.1. Then

(1) 2T = ZPee i(P), if € is a 0- or n-secant, 3 1y iT; =
Y pee., UP) — 74, if boo is an (n — j)-secant for 0 < j < n.

(2) There are 0-secants.

Proof: (1) is immediate. If there were no 0-secants, then points would
have index € or g + &. Since |Ale = 23—1 (n=33T; 2 (n-e)Y jT; =
(n— €)Y pes., i(P) =ne+(qg+1—n)(qg+¢), this gives a contradiction.g

Remark. With the parameter j’ introduced in Proposition 2.4, (1) of 3.2
means that Z;~1 T =Y pi(P)-j'g.

Lemma 3.3 Let £, be a 0-secant. If there are s points with index more
than € on l, then for their indez i(y) > g+ 1 — s — € holds true.

Proof: For points (y) of index e, H(X,y)a(X,y) is an n-th power. For
other points, there is a maximal e > 0, such that (Ha)(X,y) is a polynomial
in XP°. 1f p® > n for a (y), then the index of (y) would be &; whence p® < n.
Define W(U,y) by replacing X?° in (Ha)(X,y) by U. If e = 0, then W
is just (Ha). If (U — ¢) is a factor of W, such that U —c = (X - T)F%),
and X — ¢ is a root of (Ha)(X,y) with multiplicity n, then U — ¢ has
multiplicity n/p® as a root of X(U,y), hence U — ¢ will have the same
multiplicity in W;. Thus the degree of W, will differ from the degree of
W, if there is a factor U — b of W with multiplicity not divisible by p. For
such a factor put U — b = (X — b)?". Then X —b will have multiplicity

302



at most n — p°, or at least n + p° as a root of (Ha)(X,y). If X —bis
a factor of H(X,y), and we are in the first case, then there could be at
most i((y))/p® such points, since i((y)) > P _peti- I X — bis not a
factor of H(X,y) or its multiplicity in (Ha)(X,y) is at least n + p®, then
X —b has a muitiplicity at least p¢ in a(X,y), hence there are at most ¢/p®
such points (y). Thus degy(W{,) = (gn — ¢+ n — i(y) —€)/p°. On the
other hand, for points of index e, (Ha)(X,y) contains only terms whose
exponent is divisible by n. Thus h;(y) = 0, for points of index ¢ if n does
not divide . Since there are ¢+ 1 — s points of index ¢, k;(y) is identically
zero, if i is not divisible by n and i < ¢+ 1 — 5. Using p® < n we get
degy(W}) < (gn — g+n— (g+1— s))/p®, from which the Lemma follows.

|

The next lemma is the cornerstone of our proof. The cases ¢ < 3/5
and 3/5 < c < 2/3 will be distinguished. In both cases first we show, using
purely combinatorial methods, that a positive percentage of the points have
index . Then, using Lemma 3.3, we show that there are only three possible
indices that are larger than e.

Lemma 3.4 For q/n > 5 the only possible indices are €, g—2n-+€, g—n+e€
and q+¢€, forg/n=4 or 3, onlye, q—n+¢€ and g+ ¢€ are possible.

Proof: Case 1: 0 < ¢ < 3/5.
Let £,, be a O-secant. Count the incident (point, short line) pairs. On
one hand, we get |Ale, on the other hand Z;:ll (n—3)3T;, which is at least

(n—¢) Z;.:ll iTj, hence

Z i(P)S(qn—q-i-n—e)e. @)

n-—E&
Pé€loo

If there are s points of index at least n+e¢, then, by (2), s < g¢?/(1—c).
By Lemma 3.3 these indices are larger than g+1— gc?/(1—c) —¢, which is
larger than n +¢, because K > (1+2¢)(1 —¢)/(1—c— ¢?). With this newly
obtained bound for the indices we can proceed and use (2) and Lemma 3.3
repeatedly to prove the Lemma.

For K = 3, n + € is the only index to eliminate, for that c has to be
less than 0.449. Provided that K = 4 and ¢ < 0.5, n+¢€ and 2n + € can
eliminated.

In general it is enough to prove, that if the “high” indices are at least
mn +¢ and m < g/n — 2, then by applying (2) and Lemma 3.3, the newly
obtained bound for the indices has to be more than mn + €, showing that
this situation is impossible. Consequently, it is enough to show, that for
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g/n>5

_a ¢ —e2>2mn+te, for m=1...K-3 (3)
-7 "€2 , =1... .
OZmz—m(K—2c)+lK—czc, for m=1...K-3. (4)

Since this is a quadratic expression in m, it is satisfied for any m, if it is
true for m =1 and for m = K — 3. m = 1 is already dealt with. Now, for
m = K —3, K has to be larger than (9 — 6c)(1 — c)/(3 — 5¢+ ¢2), which is
precisely the constant appearing in the Theorem.

Case 2: 3/5 <c<2/3.
In this case we need a simple Lemma.

Lemma 3.5 If3/5 < ¢ < 2/3, for a point P of indez nl +¢,

3" G-/ 45(P) < 2L 2y, ©

j=e/2

Proof: The goal is to find the maximum of the sum ¥, (z; — 1/2) z;, if
2i%i < (nl+¢€) /e and for all i, 1/2 < z; < 1. It is easy to see that the
maximum is achieved when as many z;’s are 1 as possible, and there might
be one more term if {l/c+1} > 1/2.

Actually, the fraction (5¢2 — 5c + 2)/2¢? only appears for [ = 1. For
1 > 11it can be omitted. (Note that this fraction is at least 1, if ¢ < 2/3) 1

Now for 3/5 < ¢ < 2/3 (2) is slightly modified. Let ¢, be a O-secant
again. Those secants, that intersect A in less than n — ¢/2 points are
separated, because at most one secant like that can go through a point of

A

n—

1 €
Y iTi= Y (5 —€/2)iT;. (6)

n—1
Y (n—3)iT; 2 (n —e/2)
j=1

Suppose that the number of points of index ni + ¢ is s; on ¢, and that

the smallest index bigger than ¢ is nl + . Note that ng;_l si=q+1.

q/n-1 2 q/n-1
5¢ —5¢c+2

| Ale > (n—e/2)(s0e+ s,-(ni+e))—c—2c:—+- siie?
i=1 i=1
q/n—1 2 q/n—1

] 5¢° —5¢c+2 .

(g+1ne > (n—€/2)((g+1)e+n E zsi)—c—wc—-'- ;162

i=1 i=1
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2 2 9/n—1
€ 2 5¢* —5c+2 4 .
(g + 1)—2 > (n®—en/2 a2 €%) i§=1 is;

q/n—1

(g+1)c )
4—5c > ‘Z;zs,

Since ¢/(4 — 5¢) < 1, a positive percentage of points has index e.

If the smallest index that is higher than € is mn + ¢, then from the es-
timate for )_ is;, we get that s < 9%1 +—5.- Repeating the same arguments
as before, all that remained to show, is that

[

q-i —e>mn+¢e, for m=1...K-3. )
m4 — 5¢c
2 KC

0>m —m(K—ZC)-Fm, for m=1...K-3. (8)

(Here g + 1 was replaced by g, which can be done, since 1 - Lt >0)
For m = 1, K has to be larger than (1+2c¢)(4 —5c¢)/(4—6c), for m = K -3,
K has to be larger than (9 — 6c)(4 — 5¢)/(12 — 24c + 10c?), which is less

than (1 + 2c)(4 — 5¢c)/(4 — 6c¢) for all values of ¢, 3/5 < c < 2/3. 1

Proof of Theorem 3.1: On a 0-secant there are only points of index ¢,
q—2n+e¢ and index ¢ —n+e¢. If there are only points of index ¢, then the
0O-secants to A form a maximal (k, g/n)-arc. Its dual will be a maximal arc
containing A, so we are done in this case.

Suppose that there are s > 1 points of index g —2n+eorg—n+e€on
£oo. Then the total number of 0-secants is between 1+ (g+1—s)(g/n—1)
and 1+(g+1—5)(g/n—1)+s. The total number of points of index g—2n+e¢
or ¢ — n+¢ is then at least (1 + (¢ + 1 — s)(g/n —1))s/2. Points lying on
no O-secants have index q + ¢, by Lemma 2.3 (1). Let us try to estimate
how many points of index different from € there can be on an (n — i)-
secant £. Counting the 0-secants intersecting ¢ we see (n — 1) points of A,
and z further points with at most two 0-secant through them, and finally
¢+ 1—n+1i—z points with g/n O-secants. Counting the total number of
O-secants gives z < (s(g/n — 1) + ig/n)/(g/n — 2). Now look at the lines
through a point. Counting the points of indices different from e along the
lines through a point of index € we get (s(g/n—1)(g+1)+eq/n)/(q/n—2),
which is much smaller than (14 (g+ 1 — s)(g/n —1))s/2, if ¢/n > 4. This
contradiction shows that s > 1 is not possible.

Since for g/n = 3 or 4 the only possible indices are ¢, ¢ — n + ¢, and
g + €, in these cases the above estimate reduces to s(g + 1) + e##’_‘—l >
s+ (g+1 — s)(g/n — 1)s, from which s = 0 follows. For g/n = 2, the
theorem follows immediately from (2) and Lemma 3.3. i
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Remarks. 1) ¢ = 2/3 is a natural boundary of our method. If we consider
just one line, then it may happen that through almost all points of this line
there are two lines of index & and one line of index /2.

2) For g/n = 2, we obtain € < n/3, for g/n = 3, ¢ < 0.449n, and for
n = q/4, e =nf2. For q¢/n = 2,3 our constants are worse than the ones of
Ball, Blokhuis, for ¢/n = 4 we get exactly the same constant. The method
of this paper (slightly) improves Ball and Blokhuis’s results, when ¢/n is
at least 5. Already for g¢/n > 7 we get ¢ = 0.556. For example, for c = 3/5
K has to be larger than 22, for ¢ = 0.66 K > 41 is enough.

4 Embedding partial unitals

In this section we will prove Ball’s theorem on embedding partial unitals
into unitals.

Theorem 4.1 (Ball [1]) If a partial unital contains at least q./g+1—(,/G—
1) points, then it is embeddable into a unital.

Let us denote our partial unital by X, and put |¥|=q,/g+1 —e.

Lemma 4.2 If ¢y, is a j-secant with j = 0,1, then there are at least ¢ —
€+ (7 — 1)(/g — 2) infinite points having indez €.

Proof: The total number of 1-secants is at least q,/3+1—¢, and through
each point there are at most /g + 1 0- or 1-secants. [ ]

First of all define a(X,Y) according to Proposition 2.4. In order to
repeat the argument of the previous section, we need that X9 — X divides
H(X,y)a(X,y) for any point that has index e. We shall consider a(X,Y)
as a curve and use different lines at infinity.

Proposition 4.3 Let £ be a 0-secant of X. Then there is a point P(a,b) €
¢ such that (X + aY — b) divides a(X,Y).

Lemma 4.4 Let € be a 0- or 1-secant and let h(X,Y) be an irreducible
component of a(X,Y), with h'y # 0Then deg(h) = 1, and the multiplicity
of his 1.

Proof: By Lemma 4.2 there are at least ¢ — € + (j — 1)(,/g — 2) points
(y) of index € — j on £o. For these y-s, a(X,y), and hence h(X,y) have
only linear factors over GF(g). So the number of GF(g)-rational points on
h, counted with multiplicity, is at least (g — &+ (5 — 1)(,/g — 2)) deg(k). To
get the number, say N, of points without multiplicity, we have to subtract
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the number of affine intersections of k and k', see [5]. Bézout’s theorem
gives (g — € + (4 — 1)(y/g — 2)) deg(h) — deg(h)(deg(h) — 1) < N. From
above, Weil’s estimate gives N < g+ 1 + (deg(h) — 1)(deg(h) — 2)/3.
Using deg(k) < deg(a) =€ —j < /§— 1 — j, we indeed get deg(h) = 1. If
h = X +aY —b, then through P(a, b) there are at least g—e+(j —1)(y/g—2)
short lines, namely the lines joining P to a point of £ having index € — j7;
hence h has to be simple, otherwise the index of P would be at least
2Aq-e+ (G —-1)(v3-2)- ]
Proof of Proposition 4.3: Take our O-secant £ as the line at infinity and
write the curve af corresponding to it. By Lemma 4.4 it will have s linear
components for some s = e—1 (mod p), since the partial derivative of the
non-linear components with respect to X is zero, and hence their degree is
divisible by p. These components correspond to s points P; that have at
least ¢ — & + (§ — 1)(,/g — 2) short lines passing though them. Choose the
line at infinity £*, as a 1-secant not containing any P;. By Bézout’s theorem
the linear components corresponding to P; are all components of at". The
curve a®” must have ¢ = ¢ (mod p) linear components, so the number
of components is at least one more. It cannot contain linear components
corresponding to a point P* ¢ ¢, since through P* there were at least
q— e short lines, and by Bézout’s theorem, P* would correspond to a linear
component of af. Hence P* must be a point of £. [

Proof of Theorem 4.1: Since there is a point on each 0-secant such that
the linear factor corresponding to it divides a(X,Y’), we have that X7 — X
divides (Ha)(X,y) for every point (y) that has index e.

Lemma 4.5 If there are s points with index more than € on £, then for
their indez i(y) > ¢+ 1 — s — € holds.

Proof of Lemma 4.5 After dividing (Ha)(X,Y) by X9 — X, the proof
of Lemma 3.3 can be copied. [}

Let us fix £o, to be a 1-secant. Then by Lemma 4.2 there are at most
e points of £o, having index larger than €, and their index is at least q —
2,/q + ¢, by Lemma 4.5. This means that through these points there are
at most two O- or 1-secants. If there are s of these points, then counting
the 1-secants implies that

25+ (g—5s)v/329/9+1—¢.

iFrom this, s is either 0, or s =1 and € = /g — 1. If there is one point of
high index, then this index has to be at least ¢ — /g + & by Lemmas 4.5
and 2.2. In the latter case the proof of Theorem 3.1 can be copied to show,
that s = 1 provides a contradiction, if ¢ > 4.
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