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Abstract
[n this paper, we show that for every modular lattice L, if its size is at
least. three times of its excess. then each component of its direct product
decomposition is isomorphic to one of a Boolcan lattice of rank one B,
a chain of length two 3, a diamond M. and ALy, where M, is a modular
lattice of rank two which has exactly n atowms.

1 Introduction

Throughout the paper, all lattices are assumed to be finite. We use the ter-
minology on lattices in [22] and [23]. Let L be a lattice. An element 2 > 0
(x < 1) is join-irveducible (meet-irreducible) if for any y, z, yVz=x (yAz = x)
implies 2 = y or = z. respectively. We denote by J(L) (M(L)) the set of
join-irreducible (meet-irreducible) clements of L. A lattice L* is the dual of a
lattice L if both L and L® are equal as sets, but @ <z y in L if and only if
r >p. yin L” for all z,y. Therefore J(L) = M(L™) and M{L) = J{L") hold.
A lattice has a direct-product decomposition if it is isomorphic to the product of
two nontrivial lattices. We call a lattice indccomposable when it has no direct-
product decomposition. A lattice K is a component of L if L is isomorphic to
the product of K and some lattice K’ and K is indecomposable.

Suppose that L is nontrivial. A pair of elements (x,y) € J(L) x M(L) is
called mismatching if x £ y. Since every nontrivial lattice has at least one
mismatching pair, we can define excess of L as follows (1):

ex(L) = |L| = min{|V;] + |Iy] : (£, y) is mismatching},

where V, is the principal filter generated by «, that is, the set of all elements
which are greater than or equal to & and I, is the principal ideal generated by
y, that is, the set of all elements which are less than or equal to y. Here we
consider two problems relating to excess.

Global Excess Problem s there a constant C such that for every nontrivial
lattice with ex(L) > 0. |L] < Cex(L)?
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Local Excess Problem Let £ be a class of lallices. Then is thore a constant
Ce such that |L| < Cgex(L) forall I € € with ex(L) > 0 and at lcast one latlice
salisfies the equality? Moreover can we decide all mazimal configurations?

Up to the present, there are the following results:

. ex(L) = 0 if and only if L is Boolean [1]. Therefore every nonBoolean
lattice has positive excess.

2. Suppose that L is indecomposable and nonBoolean.
(a) If L is distributive, then |L] < 3ex(L), and equality holds if and only
if L is isomorphic to a chain of length two 3 [4].

(b) If L is relatively complemented, then |L| < 5ex(L), and equality
holds if and only if L is isomorphic to either a diamond M3 or the
face lattice of a square P [1].

The aim of this paper is to solve the local excess problem for the class of
modular lattices.

Theorem 1 Let L be a nontrivial lattice. If L is modular but not alomistic,
then
|L] < 3ex(L).

In addition, suppose that L is indccomposable. Then the following statements
are equivalent:

(a) |L| = 3ex(L);
(b} L is isomorphic to a chain of length two 3.

Theorem 2 For every indecomposable. atomistic, modular lattice L. if |L] <
3ex(L). then L is tsomorphic lo one of a Boolean lattice of rank one By, a
diamond Mz, and My, where AL, is a modular laltice of rank two which has
ezaclly n atoms. See Figure 1.

<P
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Figure 1.

From the theorems, we can classify modular lattices according to the relation
between size and excess.

310



Theorem 3 (Classification of Modular Lattices) For every nontrivial mod-
wlar lattice L, there are five cases:

(i) if ex(L) =0, then [ is Boolean;

(ii) if |L| = 5ex(L), then cvery component of L is isomorphic to either of B,
or M3 and at least one component is isomorphic to My;

(iii) if |L] = 3ex(L) and L is alomistic, then every component of L is isomor-
phic to one of By, Aly and My and at least one component ts 1somorphic
to My;

(iv) if |L| = 3ex(L) and L is not atomistic, then every component of L is
isomorphic to one of By, M3, Ma and 3 and at least one componenl is
isomorphic to 3;

(v} otherwise, |L| < 3ex(L).

Proof. Suppose that |L| > 3éx(L). Note that if A’} and A's are nontrivial
lattices, then

ex(Ky x Ka) > max{|Kz|ex(K),|K|ex(N2)}.

and equality holds if they are self-dual. If L is decomposable, then for each
component /', 3ex(K) < |]. By the induction on size, we see that L satisfies
one of the four cases. 1

We argue the relation between the global excess problem and a famous, open
problem, which is called Frankl’s conjecture or the union-closed sets conjecture.
Define

(L) = min{|Vz| : x € J(L)}.

The conjecture says that if L is nontrivial then (L) < |L|/2. Several results
for the conjecture appeared in [1-6,8-17,19-22,24,25]. Since ex(L) < |L| -
(n(L) + (L")}, the global excess problem implies that

Cc-1

i L)yyy(L*)} < —I|L

min{n(L), 9(L) < S
whenever L is nonBoolean. A lattice is self-dual if it and its dual are isomorphic.
Corollary 4 Let L be a modular, nonBoolean, indecomposable lattice. If L is
self-dual, then y(L) < 2|L|/5, and equality holds if and only if L is isomorphic
to Ms. In addition. if L is not atomistic, then n(L) < |L|/3, and equality holds

if and only if L is isomorphic lo 3.

In sections 2 and 4, we prepare lammas to prove the theorems. Theorem 1

will be proved in Scction 3. Finally, Section 5 deals with the proof of Theorem
2.
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2 Preliminary Lemmas for Theorem 1

For an element & with 2 < 1 (z > 0), we denote by 2t (2,) the join of all covers
of x (the meet of all cocovers), respectively.

Lemma 5 Let L be a nontrivial lattice. Then there is a mismatching pair (x.y)
such that x £ 14 and 0% £ y.

Proof. Take any atom a. Then every maximal element y in L but not in
Ve is meet-irreducible. Fix such an element y. On the other hand. let b be a
coatom such that y < b. In similar, every minimal element x in L but not iu I,
is join-irreducible. 1t is clear that the pair (z, y) satisfies the conditions. 1

Next, we introduce the result of Herrmann [7]. The result is extended by
Reuter [18] from modular lattices to balanced lattices. See [23]. Although we
can easily generalize preliminary lemmas for the proof of Theorem | according
to Reuter’s result, we only deal with the case of modular lattices. In the rest of
the section, we assume that a lattice L is nontrivial and modular.

Lemma 6 These operators vy and &% are order-preserving.

Proof. Suppose that + < y < 1. If @ is a cover of &, then either ¢ < y or
aVy covers y. Hence ot < y+. A similar argument implies that x4 < yy for
all0 <z < y.

Lemma 7 Forall e >0 and y < 1, 24 = ((x) )y and yt = ((y7) )T hold.
Proof. By the above lemma, x4 < ((x4)%)4. Since the interval [z, (r4)*]
is gecometric, the statement holds.
Let S = S(L) be the set of all intervals [z4,(z4)*]. Define the ordering of
S as follows:
s (e4)*] <s [ (34)*] i and only if 2y < gy

Note that the latter condition is equivalent to (z4)* < (y4)*. Then S is a
lattice by Herremann’s result. In fact,

(4, () ¥ ] Vs [ye (94)F] = [04 Ve ye (24 Vi ye) ¥
and
(o4, ()T As [y, (v )] = [2F ALy ) 2t ALyt

It is casy to show that il [y, (y3)%) covers {wy, (x4)F] in S, then 24 < yy <

(£4)F < (y4)t.
Finally, we show useful lemmas.

Lemma 8 If an inferval [ry, (r)F) is join-trreducible in S, then it contains a
Join-irveducible element tin L. In particular, these join-irreducible elements an
aloms of the interval.
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Proof. Let [z4,(z4)F] be a unique cocover of the interval [e4.(r3)F)
Then x4 < (24)% < (x4)F. If a cover &y of xy is not join-irreducible,
then ((£1)4)% < (¢4)F, and so xy < ((#1)4)% < (z4)F. Since the interval
[£4,(x4)7] is geometric and 24 < (z4)F < (x4)F, we see that there is a cover
of x4 which is join-irreducible. |

Lemma 9 [f an interval (x4, (x4)F] is mect-irreducible in S, then #l contains
a meel-irreducible element in L. In particular, these mect-irreducible clemenls
are eoatoms of the interval.

Proof. To apply Lemmas 7 and 8 to the dual lattice L™, we see that the
statement. holds. 1

Lemma 10 ( [13]) If L is geometric, then for every atom a, |Vy| < |L/2.

Lemma 11 ( [2]) For every modular laltice L, n(L) < |L|/2, and equalily
holds if and only if L is Boolean.

3 Proof of Theorem 1

Let S = S(L). Since L is not atomistic, S is not trivial. Define the mapping s
from L to S by sending z to [z, (24)¥]if 0 < x and (0) = [0,0F]. Clearly.  is
order-preserving. Applying Lemma 5 to the lattice S, we can take clements z. y
in L such that the pair (¢(x),(y)) is mismalching in S, and ¢(x) £s (1s)+,
and (0s)* £s (y). Using Lemma 8 and Lemma 9, we have a mismatching pair
(a,b) in L such that « is an atom of the interval [#4,(2x4)*] and b is a coatom
of the interval [yy, (v4)¥).

Claim 1 V| < Ve |/2 and || < [y, )+1/2.

Proof. It is cnough to show the first inequality. If p(x) is the maximum
element of S, then V; is geometric. Hence Lemma 10 implies that |15| < [Ve, /2.
Suppose that () is not maximum. Since p(x) €5 (1s)4, there is an element
2 € L such that ¢(z) is a coatom of S and (r) £s ¢(z). On the other
hand, p(x) <s (1) implies that x4 < 14 Ifa < 14, thena < 14 < (z4)*
because »(z) is covered by ¢(1). Hence ¢(z) = ¢(a) <5 ©(z). This is a
contradiction. Therefore we can take a coatom ¢ of L with @ £ ¢. Then two
intervals [a A ¢,c] = [r4,¢] and [a,a V ¢] = [a, 1] are isomorphic (Theorem 2.1.4
in {23]) and disjoint, and so |V,| < [V |/2. |

Since ay = x4y and b = (y4)F, neither @ < (y4)* nor x4 < b holds. Using
Claim 1, we have that

L] = (Val + 16]) max{|Ve, \ Val- g+ \ fol}

>
> max{[Vel {lel} 2 (IVal + [1u])/2
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or

Bex(L) 2 3(IL] = (IVal + 11u])) 2 |L].

Finally, suppose that L is indecomposable. We will show that two conditions
(a) and (b) are equivalent. It is enough to show that (a) implies (b). By the
above argument, each inequality in Claim | must be equality and L\ (Vo Ul) =
Vey \ Va = Ity )+ \ Ip. Hence L\ (Vo U ) = [24,(y4+)F]. On the other hand,
three intervals Vy, Iy, and [z, (y4)7] are isomorphic. Hence L is isomorphic
to 3 x I,,. In fact, we can define the isomorphism form {0,24,a} x I, to L by
sending (s,{) to sV {. From the assumption on L, the condition (b) holds. This
completes the proof.

4 Preliminary Lemmas for Theorem 2

A proper element s in a lattice L is central if it satisfies the following conditions:

1. s has a complement, that is, there is an element { such that sv{ =1 and
sAL=0;

2. foreachr € L,a = (xAs)V(zAL)
Jlorallz<sand y<t, (e Vy)As=2zand (xVy)ALl =y hold.

It is known that a lattice has a central element if and only if it is not indecom-
posable. Note that under modularity, the third condition is tmplied by the first
condition.

Now let L be a nontrivial lattice. We will define the bipartite graph G =
G(L) = (V, E) associated with L. Its vertex set V' is the disjoint union of .J(L)
and A/(L). When z is doubly irreducible element, that is, x € J(L)NA/(L), we
distinguish 2 as a join-irreducible element from x as a meet-irreducible element.
\We define that {2,y} € E if and only if either (&, y) or (y, x) is a mismatching
pair in L.

Lemma 12 The graph G = G(L) is connecled if and only if L is indecompos-
able.

Proof. It is enough to show the sufficiency. Suppose on the contrary that
G is not connected. Take a connected component C in G. Clearly C intersects
both J(L) and A(L). Let s be the join of all elements in C' N J(L) and let ¢
be the meet of all elements in C'N M (L). We will show that s is central. Note
that for all € J(L)\ C and y € M(L)\C, x <t and s < y because (' is a
connected component. Since 1" # C, 0<s < 1.

Suppose that s V1 < 1. Then there is a join-irreducible element & such that
r £ svi, and so 2 £ t. We have that {z,y} is an edge for some y € C". Hence
r < s. This is a contradiction. In similar, sA{ = 0.

Let z be an element in L. We will show that for any join-irreducible element
rwithr <z, 2 <(zAs)V(zAL). Ifz € C, then £ < 2 As. Otherwise, » < AL
Hence z = (z As) V(2 AL).
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Finally, take z < s and y < 1. Let b be a meet- irreducible element. with
r<b IfbeC, then ¢ < b Otherwise, s < b. Hence (xVy)As < b Since
(eVy)As >z, we have that (tVy)As = x A similar argument implies
(eVy)AL=y.

Therefore L is not indecomposable. |

Lemuna 13 If an atomistic. modular lattice L is indecomposable. then for all
atoms a and coatoms b, V', and I, are isomorphic. Thercfore y(L) = n(L*) and
ex(L) = |L] - 2n(L).

Proof. For all mismatching pair (a,b), the modularity implies that V, =
[@,aVb) and I, = [a Ab,b] are isomorphic. Since G(L) is connected, we see that
the statement holds. |

5 Proof of Theorem 2

Suppose that L is isomorphic to neither By nor Als. We have already seen that
3ex(L) < |L] < 5ex(L). By Lemma 13, this is equivalent to that ex(L) <
(L) < 2e\( ). Let (a,b) be a mismatching pair and let Z = L\ (Vo U /). Note
that ZNJ(L) and Z N M (L) arc nonempty. We may assume that [Z N J(L)] <€
|Z 0 M(L)|. Suppose that |Z N M(L)| = 1. Then therc are an atom ¢ and a
coatom rl such that Z = [c,d]. Since intervals [0,b A d), [c,d], and [c¢ V a,1] are
isotorphic, Lemma 10 implies that

[L] = |To] + |Val +12] > 21[0.b A dl| + 2l[c Ve, 1] + |Z] > 5|Z| = 5ex(L).

I'his is a contradiction. Hence |Z N M(L)| > 2.

Next suppose that I, is not indecomposable. Let s be a central element of I,
and let { be a complement of s in [,. Note that ¢ is also central. Set. s’ =sVa
and / =1V a. Since V, is isomorphic to Iy, both s’ and # are central in V5.

Claim 2 There is an element d € Z N M(L) such that s < d.

Proof. Suppose on the contrary that there is no clement d € ZN M (L) with
s <d. Thent < dforallde ZnM(L). We will show that ¢ is central in L.
First we have s’ Vi =sVaVt=bVa=1and s’ At = s AtAb=sAt =0. Next
take an element z in L. If : < b, then z = (2 As) V(s Al). Since :As' =z As,
we have that z = (z/\s’)V( At). If z>a, Lhen =AYV (z /\!) The
modularity implies that z As’ = (zAs)Va. Since a < : Al', z = (:As') V(2 AL)
holds. If z € Z, then there is a coatom d € Z such that. z <d. SinceaAd=0,

z={(:Va)Ad (((zVa)AS)YV((zVa) AN Ad
(A YV (zAYVa)Ad
((zAS)V(zAU))Ad

(:AS)V(zAUAd) = (2 AS)V (2 AL).

Henee tis central in L. This is a contradiction. |

315



Here we may assume that [0,4] is indecomposable. In addition, we may
assume that n(h) = |[0, s}|»([0,4]). Then Claim 2 implies that s < d for some
de ZAaM(L), and so |I,N 14 = 5(Ip). On the other hand, applying Claim 2 to
the dual lattice L=, we have an element ¢ € Z N.J(L) such that ¢ < s’. Suppose
that ¢ < d. Since s’ covers s and (a,d) is mismatching, d A s’ = 5. However,
this implies ¢ < dA s’ = s < b, a contradiction. Therefore (¢, d) is mismatching.
We have that

ol 2121 2 Ha \ Tl + Ve \ Val 2 11u] = u(le) + 11el/2,

and so n(ly) > |14|/2. By Lemma 11, I, is Boolean. Since I, is not indecom-
posable, its rank is at least two, and so the rank of L is at least three. On the
other hand, since L is modular but not Boolean, there is an interval [z, y] of
length two which contains M3 as a sublattice (see Corollary 7.2.18 in [23]). By
Lemma 13, I, is not Boolean. This is a contradiction.

Suppose that [/, is indecomposable. If the rauk of L is two, then L is iso-
morphic to Afy. Otherwise. take two elements dy.d>» € Z N AM(L). Then

ol 2121 > [ay \ Tol + [1a; \ o] = (12, N 1a,) \ 1ol 2> 2([16] = 0(16)) = 0(s),

and so
3ex(ly) < |l

By induction, we have that [y is isomorphic to cither Ay or My. We consider
the former case. Then the set f, U Iy, U 14, U V, contains at least seven atoms.
Here we use Dilworth’s covering theorem for modular lattices (see Theorem
6.1.9 in [23]): the number of atoms equals the number of coatoms. We have
that |L| > 247 x 2 = 16. However, |[Ip] =5 < 6 < |L] = (|{s| + |Va]) = ex(L).
In similar, the latter case also does not take place. This completes the proof.
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