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Abstract

A graphical partition of the even integer n is a partition of n
where each part of the partition is the degree of a vertex in a simple
graph and the degree sum of the graph is . In this note, we consider
the problem of enumerating a subset of these partitions, known as
graphical forest partitions, graphical partitions whose parts are
the degrees of the vertices of forests (disjoint unions of trees). We
shall prove that

9f(2k) = p(0) +p(1) +p(2) +... + p(k - 1)

where gf(2k) is the number of graphical forest partitions of 2k and
p(j) is the ordinary partition function which counts the number of
integer partitions of j.
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1 Introduction

A partition of a positive integer n is a sequence of positive integers, in no
particular order, whose sum is n. For example, 5+3+2+2+1+1+1
is a partition of 15. Each number in a partition is called a part of that
partition. The partition function p(n) counts the number of partitions of
the integer n.

In this note we will consider only those partitions of n that are graph-
ical sequences (and denote the number of these partitions by g(n)). A
graphical sequence is a sequence whose terms represent the degrees of
the vertices in a simpie graph, a graph that can be drawn without any
multiple edges or loops.

Finding a closed formula for g(n) has proven difficult. Indeed, even the
asymptotics of g(n) are still unknown. However, several results regarding
g(n) are known. For instance, a lower bound for this function has been
found. This lower bound is p(n) — p(n — 1), which is also the number of
partitions of n with all successive ranks negative [4]. Moreover, it is also
known (7] that an upper bound for g(n) is (.25 + o(1))p(n). Finally, Pittel
[6] has shown that

M -0 as n — o0.

p(n)
The interested reader may also wish to see [2] and [5] for additional discus-
sion regarding g(n).

Because of the difficulty in finding a closed formula for g(n), we chose
to restrict g(n) even further by considering only those graphical partitions
of n which correspond to forests, with the hope that a closed form might
become apparent. (Here we use the term forest to mean a union of trees.)
We denote the number of graphical forest partitions of n by gf(n).

The goal of this note is to prove that, for all £ > 1,

9f(2k) =p(0) + p(1) +p(2) + ... +p(k - 1).

2 The Results

First off, we let gf(n,t) be the number of graphical forest partitions of n
into exactly ¢ parts. Our first goal is to prove the following result.
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Theorem 2.1. Fors> 1, gf(2k,k+s) =gf(2k—2,k+s5—2).

Proof. If a forest realizes a sequence counted by gf(2k, k + s), at least two
of its vertices in different components must have degree 1. Deleting these
two and joining their neighbors by an edge gives a forest realization of a
sequence counted by gf(2k — 2,k + s — 2). Conversely, adding two new
vertices joined by an edge to a forest realization of a sequence counted in
9f(2k — 2,k + s — 2) creates a new sequence counted by gf(2k,k+s). O

We turn now to our main theorem.
Theorem 2.2. For all k > 2, gf(2k) = p(0) + p(1) + ...+ p(k —1).

Proof. 1t is known [8, Problem 2.1.12] that Ay > X3 > --- > A1 > 0
is the degree sequence of a tree if and only if Ay + A2 + -+ + Apq1 = 2k.
Letting p(n,t) denote the number of partitions of n with exactly ¢ parts,
then the number of graphical tree partitions of 2k is p(2k, k + 1) which
equals p(k — 1).

Thus, gf(2k,k + 1) = p(k — 1) and

k
9f(2k) = gf(2k,k + 5).
s=1
Finally, from Theorem 2.1 above, we know gf(2k, k+s) = gf(2k—2, k+s—2)
and the result follows. O

3 On Computing gf(2k)

Thanks to the results above, we see that finding the number of graphical
forest partitions of 2k simply involves finding the values of the ordinary
partition function p(n),0 <n < k- 1.
A quick word on asymptotics is worth noting here. It is known (3,
Section 3] that
V6n
p(0) + -+ +p(n — 1) ~ p(n)=——,
which means
V6k
9f(2k) ~ P(k)T-
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Moreover, we know [1, p. 70] that

p(k) ~ 4k\/-exp[ (%)1/2],

e e (2)"]

Next, we mention two ways to determine exact values of gf(2k). First,
we can utilize the generating function for p(n) and Euler’s Pentagonal Num-

which implies

ber Theorem to develop the following recurrence for p(n) :
p(n) = p(n—1)+p(n—-2) - p(n—5) —p(n—7) +p(n — 12) + p(n - 15) -

where the values being subtracted in the arguments on the right-hand side
are the pentagonal numbers %mz
should see [1, p. 11].

Alternatively, we can compute the values of gf(2k) by developing a
generating function for gf(2k) and expanding it using a computer algebra
system. Since the generating function for p(n) is given by

Zp(kq —Hl

n>1

- %m for integers m. The interested reader

we see that the coefficient of ¢* in

A,
= I h

is p(0) + p(1) + ...+ p(k — 1). Thus,

> L]
9f(2k)¢* = ——
k=0 l_anII_
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