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Abstract

We make further progress towards the forbidden-induced-subgraph
characterization of the graphs with Hall number < 2. We solve sev-
eral problems posed in [4] and. in the process, describe all “partial
wheel” graphs with Hall number > 2 with every proper induced sub-
graph having Hall number < 2.

1 Introduction

Throughout, G will denote a finite simple graph and L will denote a list
assignment to the vertices of G, i.e., a function from V() into the collection
of finite subsets of C', an infinite set {of “colors™, or symbols). A proper
L-coloring of G is a selection ¢(v) € L{v) for each v € V'(G) such that if
u and v are adjacent in G, then p(u) # @(v). [This last can be restated:
for each ¢ € C,¢71(0) = {v € V(G); #(v) = o} is an independent set of
vertices in G.]

The study of list-colorings, started by Vizing [11] and independently by
Erdos, Rubin, and Taylor [2], departs from the question of when (under
what conditions on G and L) is there a proper L-coloring of G7 Interest
has fastened mainly on the choice number, or list-chromatic number: ¢(G)
is the smallest positive integer among those m such that there is a proper
L-coloring of G whenever |L(v)| > m for all v € V(G]. It is clear that
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¢(G) > x(G), the chromatic number of G, and it is known that ¢(G) can be
quite a bit larger than x(G); for instance, ¢(Kp,m) ~ log, m [9]. Curiosity
is drawn to the extremes: how much larger than x(G) can ¢(G) be (for
instance, can ¢(G)/(x(G)log|V(G)]) be arbitrarily large?) and, at the
other extreme, for which G is ¢(G) = x(G)?

Here is a necessary condition for a proper L-coloring which does not
directly refer to the size of the lists L(v), v € V(G). We say that G and L
satisfy Hall’s condition iff for each subgraph H of G,

IV(H) < > alo, L, H) (1)

oeC

where a(o, L, H) is the independence number of the subgraph of H induced
by {u € V(H);0 € L(u)}. Note that if you were trying to properly L-color
H, for each o € C (0o, L, H) is an upper bound on the number of vertices
of H that could be colored with ¢. This shows that Hall’s condition is
necessary for the existence of a proper L-coloring of G.

Removing edges from H will leave |V(H)| unchanged while the right
hand side of (1) cannot decrease. Therefore. for (¢ and L to satisfy Hall’s
condition it suffices that (1) hold for induced subgraphs H of G.

If H is a clique then «a(o, L, H) = 1 ifl o actually appears on the
lists on H: otherwise, (o, L, H) = 0. Therefore 3" .~ afo.L,H) =
| Usevary L(2)], in this case. [Hencefoward. we abbreviate U:evmn L(2)
by L(HY).] Noting that a proper L-coloring of a clique G is nothing but a se-
lection of distinct representatives from the “system” of sets L(v),v € V(G).
and that an induced subgraph of a clique is a clique, it is straightforward
to see that when G is a clique, Hall’s condition on G and L is the same as
the condition in Philip Hall’s famous theorem on systems of distinct repre-
sentatives [5]; that theorem, restated, says that Hall’s condition is sufficient
for the existence of a proper L-coloring of G. when G is a clique.

Hall’s condition is so called because of this ancestral connection with
Hall’s theorem. In [6] it is shown that Hall's condition is far from being suf-
ficient for a proper L-coloring; indeed. the graphs ¢ such that, for arbitrary
L, the satisfying of Hall's condition with G is sufficient for the existence of
a proper L-coloring, are precisely the “locally clique-like”™ graphs in which
every block {maximal 2-connected subgraph) is a clique.

As in (6] and [8] we define the Hall number A((7) of G to be the smallest
positive integer among those m such that there is necessarily a proper L-
coloring of G whenever

(i) G and L satisfy Hall’s condition and

(1) |L(#)] > m for all v € V(G).
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Thus, the result from [6] mentioned above is: h(G) = 1 if and only if every
block of G is a clique.

It is easy to see (although not completely trivial; see [8] for a proof)
that & is monotone with respect to taking induced subgraphs; that is, if H
is an induced subgraph of G, then A{H) < h(G). This is the only known
decent behavior of the parameter k. Removing an edge can cause the value
of h to leap up or down by large amounts (see [7] and [10]), and removing
a vertex, which always precipitates a drop in the value of &, can precipitate
an extraordinarily large such drop [7].

Indeed, although the parameter h is of indisputable interest from the
point of view of “systems of distinct representatives” theory, it would be
dismissed as contrived and capricious in the area of graph colorings, were it
not for its relation to ¢(G) and x(G) and the problem of when ¢(G) = x(G)-
This relation is detailed in [8]. Let it suffice here to note that ¢(G) = x(G)
if and only if A(G) < x{G); therefore, the problem of characterizing the
graphs G such that h(G) < k, k= 1.2...., becomes of definite interest in
the quest for the solutions of the equation ¢(G) = x(G). In particular, it is
immediate that ~A(G) < 2 implies that ¢(G) = \(G).

The monotonicity of h with respect to taking induced subgraphs insures
that the problem of characterizing G such that h(G) < k has a satisfactory
solution, for each k; the collection of graphs with Hall number < k& has a
“forbidden-induced-subgraph” characterization: if we define a graph H to
be Hall-k*-critical iff R(H) > k but h(H —v) < k for every v € V(H), then
h(G) < k if and only if G has no Hall-k*-critical induced subgraph.

The Hall-1*-critical graphs are known (see Theorem A). For any & > 3,
it is unlikely that a full classification of the Hall-k*-critical graphs will
ever be achieved. The purpose of this paper is to push on toward the full
classification of the Hall-2%-critical graphs. and thus a characterization of
the graphs with Hall number 2. This characterization seems to us to be one
of the two main, currently unsolved problems in the area of Hall's condition
and the Hall parameters. (For the other one. see [1].) The pursuit of this
characterization began in [8] and continued in [4], where two particular
graphs and two families of graphs were shown to have Hall number two,
and six particular graphs and eight families of graphs were shown to be
Hall-2%-critical. In a related work [3], the line graphs which have Hall
number < 2 have been completely characterized.

In the next section we give the results from [4] and [3] that are relevant
to the new results presented in section 3. Theorem 1 of section 3 answers a
question posed in [4] (in [4] the special case of Theorem | when n = 3 was
proved. with considerable difficulty). Theorem 2 solves two problems posed
in [4] and the special case of W (a. 1. 1). @ > 2. in Theorem 3 solves another
problem posed in [4]. Theorem 4 gives some more small Hall-2%-critical
graphs and answers an obvious question related to Theorem 3. Proofs are
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given in section 4.

In [4] it was opined that if the problems posed there were solved, as
they are here, then the Hall-number-two problem would be close to so-
lution. We feel that this opinion is correct, i.e., that the Hall-2t-critical
graphs described in [4], in [8], and here come close to forming a complete
catalog of Hall-2*-critical graphs, and that any strays that have not yet
been discovered will be rounded up in the process of trying to prove that
the catalog is complete. The straightforward way to start that proof is to
attempt to show that any graph G with none of the catalogued Hall-2*-
critical graphs as an induced subgraph must have Hall number < 2. We
recommend breaking into cases according to the greatest order of a clique
in G.

The forbidden-induced-subgraph characterization of the graphs with
Hall number 1 (see Theorem A) was greatly facilitated by the other char-
acterization, every-block-a-clique, which was discovered first. It is worth
noting that while the graphs with choice number < 2 have a forbidden-
induced-subgraph characterization, there is a more satisfying character-
ization of another sort, given in [2], from which the forbidden-induced-
subgraph characterization can be derived. Do the graphs with Hall number
< 2 have some sort of alternative characterization, analogous to those of
the other two classes of graphs mentioned? This is a vague question, since
we cannot specify the sort of characterization we are fishing for, before
it is found; but it would be very helpful to find such a characterization.
One last question, out of pure curiosity, before getting to work: does every
Hall-2*-critical graph necessarily have Hall number 3? Of course, a similar
question could be asked with 2 replaced by any positive integer &, and 3
replaced by &+ 1.

2 Old results

In this section we give the results from [4] and [8] that we need. together
with a few we do not need, for background.

Theorem A ([6] and [8]). The following are equivalent:
(¢} H(G)=1:
(b) every block of G is a clique;

(¢) G contains none of Cpn, n > 4, nor K4-minus-an-edge, as an induced
subgraph.

The graphs in (c) are the Hall-1*-critical graphs.
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If my,..., my are positive integers, at most one of them equal to 1, let
6(my, ..., m) be the graph constructed by joining two vertices by & inter-
nally disjoint paths of lengths m,, ..., my. [This notation was introduced
by Erdés, Rubin, and Taylor [2] for £ = 3; note the appearance of the
Greek letter theta.] Thus 8(m;, m2) = Cn 4m, and 8(2, 2, 1) = K4-minus-
an-edge.

Theorem B ([4] and [8]). The following have Hall number 2:
(a) Ca, n>4;
(b) 8(m,2,1), for all m > 2;
(c) 8(m,2,2), for all m > 2;
(d) 6(3,3,2),
(e) K4 with an “ear” of length 2,

Theorem C ([4] and [8]). The following are Hall-2%-critical:

(a) Two cycles, not both of length 3, joined by a path, possibly of length
zero.

(b) 8(my, ma, m3), m; > my > mga, provided my > 3 and (m;, ma, m3) #
(3.3.2);

(c) 8(m,2,2,1) and 8(m,2,2,2) for any m > 2;
(d) 6(3.3,2,2);

(e) any cycle together with two triangles based on incident edges of the
cycle;
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Comments:

() Theorems A and B imply that each Hall-1*-critical graph has Hall
number 2.

(#2) 6(3,3,2) has Hall number 2 (Theorem B(d)), yet #(3,3,1) is Hall-
2*-critical (Theorem C(b)). This is the sort of unnerving surprise one
encounters with systems-of-distinct-representatives results associated with
the Hall number.

Incidentally, letting G = (3, 3, 1), we have ¢(G) < 3 by Brooks’ theorem
for the choice number ([2] and [11]), whence 2 < A(G) < ¢(G) < 3 implies
that A(G) = ¢(G) = 3. Notice that x(G) = 2. In fact, G (also known
as K33 minus two independent edges) is the smallest graph whose choice
number is greater than its chromatic number.

(#47) Not wishing to swamp the reader’s attention, we have omitted most
of the results from [4] (although these will probably have to be looked up
by anyone attempting a full assault on the Hall-number-2 problem). Here
are two more, though, that may satisfy curiosity aroused by Theorem B(e):
both K5 with an ear of length 2, and K4 with an ear of any length greater
than 2, are Hall-2+-critical. Incidentally, it is then easy to see that these
graphs have Hall number 3, from the fact that Hall’s condition suffices for
a proper list-coloring of a clique.

3 New results
Theorem 1. Suppose that h(G) = 2, v, € V(G). and. for each integer

m > 0, G(m) is obtained by tethering a clique to G at v,, by a path of
length m. If h(G(0)) = 2, then h(G(m)) = 2 for each m > 0.

path of length m

Figure 1: G(m)
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As mentioned in the Introduction, this result was proven in [4] only for
the special case when the clique being attached is K3. For that case, a
converse is proven in [4], which also holds here: if A(G(m)) = 2 for some
m > 0 then A(G(0)) = 2 (and thus A(G(m)) = 2 for all m > 0). However,
since we do not foresee making any use of this converse, we will not bother
to state and prove it formally.

Theorem 2. The following have Hall number 2:

(a}) any graph obtained by tethering a clique to one of the vertices of degree
2 in 6(2,2,1), by a path, possibly of length 0;

(b) any graph obtained by tethering a clique to the unique vertex of degree
2 in K4 with an ear of length 2, by a path, possibly of length 0.

T

Figure 2

It is shown in [4] that 8(2,2.1), in Theorem 2(a), cannot be replaced
by 6(m,2,1) for any m > 3. If 6(2,2.1) is replaced by any such 8(m.2,1),
and the order of the tethered clique is three, then the resulting graph is
Hall-2*-critical.

For integers k¥ > 2 and ay,...,ax > 1 (where, for k = 2, a1 + a2 > 3),
we define the partial wheel graph W (a,, ..., ax) to be the graph obtained
by making a vertex outside the cycle Crp, m = Zf:laj, adjacent to k
vertices on the cycle in such a way that the lengths of the paths around the
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cycle between the vertices of degree 3, in one orientation of the cycle, are
ay,...,ax. Thus, W(ai,...,ax) = W(ak,...,a1) = W(ax,a1,..-,-1)
and, when k = 2, W(a;,az) = 6(a1,as,2). Notice also that W(1,1,1) =
K4, and W(1,1,1,1) is the graph in Theorem C(f).

Theorem 3. The partial wheel graphs which are Hall-2% -critical are:
(a) W(a1,a2), ay > 4, a2 > 3;
(b) W(a1,a2,1) for any (a1, az) ezcept (1,1); and
(c) W(1,1,1,1).

The partial wheel graphs W (ay, a2, a3), a1 > a2 > az > 2, and W(ay,...,ax),
k > 4, all have Hall number greater than 2, but only W(1,1,1,1), among
these, is Hall-2% -critical.

Forintegersk > 2,7,...,rx,a1,....ax > 1, let WL(ry,...,ria1,...,a1)
denote the “partial-wheel-like” graph obtainable from W (ay, ..., ax) by re-
placing the “radial” edge that strikes between the arcs of lengths a;_;, a;
(subtraction is mod k) by a path of length r;,7 =1,...,k. Thus
WL(,...,1;ay,...,ax) = W(ay,...,ax).

Theorem 4. The following are Hall-2% -critical (all a;,r; are understood
to be positive integers):

(a) WL(ry,72,73;1,1,1),7 2> 2;

(b) WL(r,1,1;a1,1,a3),7 > 2,a1 + a3 > 3;

(c) WL(r.1,1;1,a,1),7r>2,a>2:

(d) WL(2,2,151,2,2);

(e) (f)
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The graphs in (e)-(h), above, are obtained by fastening an “ear” of
length two in various ways to 8(3,3.2). In each case, if a longer ear were
attached, the resulting graph would have Hall number > 2, but would not
be Hall-2*-critical, since it would have as a proper induced subgraph one
of the other Hall-2%-critical theta graphs. See Theorem C(b). The only
thing these graphs have to do with the partial-wheel-like graphs is that we
stumbled upon them while struggling with the latter.

There are three other graphs obtainable by attaching an ear of length 2
to 6(3,3,2). Of these, two have proper Hall-2%-critical induced subgraphs,
and the third is 6(3, 3,2, 2), already known to be Hall-2*-critical (Theorem
C(d)).

For k > x(G), the restricted Hall number hy(G) is defined as the Hall
number is defined, except that the lists are formed from a stock of only &
colors. It is straightforward to see that hg(G) < M43 (G) < A(G), and that
hi(G) < k. There is a good deal of information in [8] about the restricted
Hall numbers, especially of the theta graphs. We mention the restricted Hall
numbers here to alert those interested to the fact that the proof of Theorem
3 shows that hs(W (a1, a2, 1)) > 2 if (a1,a2) # (1,1) or (2,1) or (1,2), and,
therefore, that ha(W(ay, as2,1)) = 3 = h(W(ay, a2,1)) = ¢(W(ay,aa, 1)) in
these cases (by Brooks’ theorem, again). The case of (2,1, 1) is singular;

“we will see that he(W(2,1,1)) > 2, and brute force checking shows that

h3(W(2,1,1)) = 2. Meanwhile, the proof in [4] that A(W(1,1,1,1)) > 2
shows that he(I¥(1,1,1,1)) > 2. Again, brute force checking shows that
ha(W(1,1,1,1)) = 2.

Of the Hall-2*-critical graphs G listed in Theorem 4, all have h3(G) > 2
except G = WL(2,1,1;1,1,1). For this G we have h4(G) > 2 and brute
force checking shows that hg(G) = 2.
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4 Proofs and intermediate results

Lemma 1. Suppose that h(G,) = m and that G is obtained by attaching
a clique of order m to a vertex of G,. Then h(G) =m.

Proof: Since G, is an induced subgraph of G, m = h(G,) < k(G).

Now suppose that L is a list assignment satisfying Hall’s condition with
G, and |L(z){ > m for all = € V(G). Let v be the vertex of G, at which the
clique K = K, is attached. Since h(G,) = m, there is a proper L-coloring
¢ of G,. Each of the lists L'(z) = L(z) \ {¢(v)}, z € V(K) \ {v}, has at
least m — 1 elements; since the choice number of the (m — 1)-clique K —v is
m—1, K — v has a proper L'-coloring. Putting this together with ¢ results
in a proper L-coloring of G. Thus h(G) < m. 0

Corollary 1. Attaching a pendant vertex to a graph with Hall number 2
results in a graph with Hall number 2. .

Corollary 2. Attaching a tree at one verter of a graph with Hall number
2 results in a graph with Hall number 2.

Definition: A subgraph H of G is L-tight if and only if the inequality
(1) is an equality, i.e. |V(H)| = Y ,¢c a(0. L, H). Observe that if H is
L-tight, then in every proper L-coloring of H, each ¢ € C appears as a
color exactly a(eo, L, H) times on the vertices of H.

We will use < > or < >¢ to stand for “the subgraph induced (in G) by
..."” The following is a special case of a lemma from [1].

Lemma 2. Suppose that G and L satisfy Hall’s condition, K is a clique in
G, r € L(K), and removing T from every L(v), v € K, on which il appears
results in a new list assignment which does not satisfy Hall’s condition
with G. Then there is an L-tight induced subgraph H of G such that each
mazimum independent set of vertices in < {u € V(H); 7 € L(u)} >n
contains a verter of .

Proof: Let L' denote the new list assignment, i.e. L' = L on V(G)\ V(&)
and L'(v) = L(v) \ {7} for each v € V(K). Let H be an induced subgraph
of G such that 3~ .~ a(0, L', H) < |V(H)|—1. That H fulfills the claims of
the Lemma follows from the observations that |V(H)| < 3 ,¢c (o, L, H),
that a(o, L. H) = a(o, L', H) for all ¢ € C \ {7}, and that o(r, L. H) <
a(r, L', H) + 1, with equality only if each maximum independent set of
vertices among those vertices of A with 7 on their L-lists contains a vertex
of K. 0
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Lemma 3. Suppose that G is a clique, G and L satisfy Hall’s condition,
and H, K are L-tight subcliques of G. Then HN K and < HU K >g are
L-tight.

Remark: in case H and K have no vertices in common, the conclusion
applies only to < HU K >¢.

Proof: Recall that for a clique K, 3 c¢ (o, L, K) = [L(K)| = |Uyev(k)
L(v)|. We have, by the assumed L-tightness of H and K, and the assump-
tion that G and L satisfy Hall’s condition,

[V(H) UV(K)|+ |[V(H) nV(K)| =|V(H)| + [V(K)|
=|L(H)| + |L(K)]
=|L(H)U L(K)| + |L(H) n L(K)]|
>|L(< HU K >)|+|L(HnK)|
>V(H)UV(K)| +|V(H)NV(K)],

which implies equality throughout, and, in particular, equality in each of
the inequalities |L(< H UK >)| > |V(H) U V(K)| and |[L(H N K)| >
[V(H) N V(K)|, which are special cases of (1). 0

The proof of Lemma 3 proves more, namely that L(H)NL(K) = L(HN
K), under the hypotheses of the Lemma. That is, any symbol appearing
on a list on H, and also on a list of K, must appear on a list on a common
vertex of H and K. However, we shall make no use of this extra conclusion
here.

Suppose that P is a path with vertices v,,...,vm, m > 1, in order along
the path; suppose L is a list assighment to P, and o, € L(v,), 0m € L(vm).
We will say that o, at v, forces o, at vy, along P if and only if there is
a proper L-coloring of P with v, colored o,, and for every such coloring,
v is colored a,,. The following lemma. easily provable by induction on m,
also appears in [4] and in [8].

Lemmad4. Let P, v,,...,Um, L, 0o € L(v,), and oy € L(vm) e as above,
and suppose that |L(v)| > 2, i=1,...,m. Then o, at v, forces om at vy
along P if and only if there exist 01, . ..,0m—1 such that L(v;) = {oi-1, i},
i=1,...,m.

Corollary 3. IfP, vo....,m. L. 0, € L(v,), and o, € L(vm) are as
above, if |L(vi)| > 2, i=1,....m, and if 0, at v, forces om at vm along
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P, then no o), € L(v,) different from o, forces oy at vm along P.

Lemma 5. Suppose that G and L satisfy Hall’s condition, and L' is
obtained by replacing some particular 3 € C on some of the L-lists on G in
which it appears by another symbol r € C\ L(G). Then G and L' satisfy
Hall’s condition.

Proof: The fact that 7 did not formerly appear on any list before the
replacement implies that for any subgraph H of G, a(r,L,H) = 0 and
a(f,L,H) = (B, L,H) + a(r,L,H) < a(B,L',H) + a(r, L', H). Mean-
while, for any ¢ € C\ {B8,7}, a(o,L,H) = a(o,L’, H). The conclusion
follows. 0

Proof of Theorem 1. We proceed by induction on the order n of the
clique being tethered to G. Corollary 2 implies that for n = 1 or 2 there
is nothing to prove, so assume n > 3, h(G(0)) = 2. and m > 1. Suppose
L is a list assignment to G(m) satisfying Hall’s condition with G(m) and
|L(2)] > 2 for all = € V(G(m)). We suppose that there is no proper L-
coloring of G(m). Let the vertices of the tethering path P be v,,...,vm,
going along P from G out to the clique K. Let K = K, — vy, an (n —1)-
clique.

By Corollary 2, G(m) — K is properly L-colorable. Let ¢ be any proper
L-coloring of G(m) — K, and let # = ¢(vp,). Let L' be the list assignment
to K obtained by removing 3 from all lists on which it appears. Since G(m)
is not properly L-colorable, it must be that A is not properly L’-colorable.
Since K is a clique. it must be that K" and L’ do not satisfy Hall’s condition.
Since K and L do satisfy Hall’s condition, by Lemma 2 there is an L-tight
subclique H(B) of K with # appearing somewhere on its lists.

By Lemuna 3 the subclique /i’ of K’ induced by the union of the L-tight
subcliques H((vm)), over all proper L-colorings ¢ of G(m) — K, is L-tight
itself. Suppose there is a vertex u € V(K)\V(K'). G(m)—u is not properly
L-colorable, since a proper L-coloring ¢ of G(m)—u would properly L-color
G(m) — K, and R’, and yet the color (v, ) must also appear somewhere
as a color on the L-tight clique H(¢(vm)); thus ¢ could not be proper.

But G(0) — u has Hall number 2, being an induced subgraph of G(0)
with G as an induced subgraph of it. By the induction hypothesis on n,
G(m) — u ought to have Hall number 2, and thus a proper L-coloring.

We conclude that there is no v € V(K)\ V(K’), that is, that K = K’.
So K itself is L-tight.
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Let A = L(K) N L(vm). Since K, and L satisfy Hall’s condition, and
K = K, — vy, is L-tight, there must be some color 7 € L(v,) \ 4. In fact,
there is exactly one such color: if there were two, then we could follow a
proper L-coloring of G(m)— K, with a proper L-coloring of K, and put one
of two colors in L{vm) not in L(K) on vm, to obtain a proper L-coloring of
G(m).
So L(vm) = {T}UA (the dot indicates disjoint union), and it must be
that for every proper L-coloring ¢ of G, ¢(v,) at v, forces T at vm-1 along
the path P —v,,. [In case m = 1, this means that ¢(v,) = 7.] By Corollary
3 and Lemma 4, there is a color o9 € L(v,) such that ¢(v,) = oo for
every proper L-coloring ¢ of G 0o = 7if m = 1 and, if m > 1, there
exist 0y,...,0m-1 € C such that L(v;) = {oi-1,0i}, i =1,....m—1,
and o;m-; = 7. By Lemma 5, or really by its proof, we may assume that
00, . ..,0m—1 are distinct, and that L(K) and L(G(m) — Kp,) are disjoint:
After renaming oo, . . ., 0m—2 so that they are distinct and not in L(K)U{r}
(we already have g;_1 # 0, i = 1,...,m — 1, since |L(v;)| > 2), rename
oo throughout G with its new name at v,, and then rename any o € L(K)
that appears in L(G) with a new name, throughout G. After all this, we
still have that in every proper L-coloring of G, v, is colored o9, and o at
v, forces ¢m—1 = T at vm_; along P — vy; by Lemma 5, G(m) and L still
satisfy Hall’s condition, yet G(m) is not properly L-colorable.

Since |L(v,)| > 2, L(v,) contains a color other than go. We claim that
L(v,) contains only one such color. Otherwise, let L’ be the list assignment
to G obtained by removing gg from L(v,) and leaving all other L-lists as
they are. Then we have |L'(z)] > 2 for all - € V(G) (assuming L(v,)
contains at least two colors other than og), and G is not properly L’-
colorable (since a proper L’-coloring would be a proper L-coloring with a
color other than o on v,). Since G has Hall number 2, it follows that G
and L' do not satisfv Hall’s condition. By Lemma 2 there is an L-tight
induced subgraph_H of G such that v, is in every maximum independent
set of vertices of H, among those with o on their L-lists.

Let H =< HUPU K, >. Since 0o,...,0m-; are distinct and not in
L(K), and v, is in every maximum independent set of vertices in H, among
those with ¢o on their L-lists, we have that a(go, L, H) = a(oq, L, H); to
see this, observe that < {u € V(H);00 € L(u)} > is obtainable from <
{u€ V(H):.00 € L(u)} > by adding the pendant vertex v;, attached by an
edge to v,, and the fact that every maximum independent set of vertices in
the smaller graph contains v, implies that the vertex independence numbers
of the two graphs are equal.
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By the tightness of A and K we have that

> afo,L,H) = > a(o,L,H)+ Y afo,L,H)

o€eC oeL(G(m)—K,) g€L(K)
=> alo, L, H) +m -1+ |V(K)|
g

= |V(H)|+ |[V(K)|+m -1
< [V(E)|+ [V(E)| +m = |V(H)|.

[Remark: L(vm) = {om-1}UA, A C L(K), implies that L(G) = L(G(m) —
K,)U L(K).] That is, Hall’s condition is not satisfied.

We conclude that L(v,) = {00, 3} for some # € C. Let us define the list
assignment Lo on G(0) by Lo = L on V(G(0)) \ {v,} and Lo(v,) = AU{B}.
Then |Lo(z)] > 2 for all z € V(G(0)). (Note that # ¢ A C L(K) because
arrangements were made so that L{K) and L(G(m) — K,) are disjoint;
furthermore, L(vpm) = {T}UA implies |A] > 1).

If G(0) were properly Lg-colorable with v, colored 3, then G would
be properly L-colorable with v, colored g, which is not the case. On the
other hand, every proper L-coloring of K uses every color in L{K), so no
color of A could be used on v, in a proper Lg-coloring of G(0). Therefore,
G(0) is not properly Lo-colorable. Since G(0) has Hall number 2, by hy-
pothesis, it follows that there is an induced subgraph Hg of G(0) such that
Yoec alo, Lo, Ho) < |V(Ho)|. If v, & V(Ho), then Ho can be thought of as
a subgraph of G(m), with the same list assignment, namely L. Therefore,
v, € V(Ho), because G(m) and L satisfy Hall’s condition.

Define H =< V(Ho) U V(P) >g(m). Then |V(H)| = |[V(Ho)| + m,
and ) ccalo,L,H) = Y, ccalo, Lo, Ho) + m. (The occurrences of
oo, . --,0m-1 = T along the path add m to the “a-sum”, and, since arrange-
ments have been made in the original assignment so that L{K)N L(G) = @,
the colors of A in L(v,,) contribute no more to the a-sum than they did
as elements of Ly(v,).) Thus }_ - a(o, L. H) < |V(H)|, so G(m) and L
do not satisfy Hall’s condition, after all. This contradiction establishes the
result. 8]

The preceding proof nowhere uses the assumption that the lists on K =
K, — vy, have cardinality > 2. The slightly stronger resuit actually proven
is awkward to state, and does not advance our current project, so we will
not bother the reader with it, bevond this note.

Proof of Theorem 2 By Theorem 1, it suffices to prove that the graph
has Hall number 2 when the tethering path has length zero. We will consider
both cases together, with the graphs as in Figure 3.
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Figure 3: t =1 or 2

Let G be one of the graphs depicted in Figure 3 and suppose that L
is a list assignment to G satisfying Hall’s condition, and |L(z)| > 2 for all
z € V(G). Suppose that there is no proper L-coloring of G.

Let K = K, — u, a clique of order n — 1. Going by induction on n,
as in the first part of the proof of Theorem 1, we can assume that n > 3
and, further, deduce that K is L-tight. We also have that in every proper
L-coloring of G — K, u is colored with some element of L(K).

Because K is L-tight, for (1) to hold with H = K, =< KU {u} >, it
must be that L(u)\ L(K) is non-empty. We claim that |L(u) \ L(K)| = 1.
If not, then L/(u) = L(u) \ L(K) has at least two elements. Define L' = L
on G — K, and we have a list assignment L’ to G — K satisfying |L'(z)| > 2
for all z € V(G — K), such that there is no proper L’-coloring of G — K.
(If there were such a coloring, it would constitute a proper L’-coloring of
G — K with u colored with a symbol not in L(K).) Since G — K has Hall
number 2, by Theorem B, (b) and (e), it must be that G — K and L’ do
not satisfy Hall’s condition. Let H’ be an induced subgraph of G — K
such that 3, .. a(o, L', H') < [V(H')|. Let H =< H'UK >g. Observe
that for ¢ € C \ L(K). a(o,L.H) = a(o.L’,H’), and for 0 € L(K),
a(o,L,H)=a(o,L',H') + 1. Therefore,

SaeL.H)= Y. alel' H)Y+ )Y ao, L' H)+|L(R)

a€eC geC\L(K) g€L(K)
=Y oo, L' H) + |V(K)] (K is L-tight)
ceC

< |V(H) + [V(K)| = [V(H)|,
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contradicting the assumption that G and L satisfy Hall’s condition.

Thus L(u)\ L(K) = {r}, for some 7 € C. Since u can never be colored
with 7 in any proper L-coloring of G — K, it must be that in any proper
L-coloring of the clique G — K,, (which is either K3 or K4), T must appear
as a color on either v cr w. Therefore, if we modify the list assignment to
G- K, by removing r from L(v) and L(w), G— K, is not properly colorable
from the new lists. Since G — K, is a clique, it follows that G — K, and
the new list assignment fail to satisfy Hall’s condition. By Lemma 2, there
is an L-tight subclique A of G — K, such that no vertex in V(H) \{v w}
has 7 on its L-list; and, certainly, 7 € L(AN < v,w >).

Let H =< HUI\,, >. Then for ¢ € C\ (L(K) U {7}), a(o,L,H) =
a(o, L, H) o(r,L,H) = o(r,L,H), and, for ¢ € L(K), a(o,L, H) =

a(o, L, H) + 1. Thus

doaleLH)= Y oloLH)+ > alo,L H)+|L(K)

oeC g€C\L(K) geL(K)
=Y afo, L H) +|V(K)|
oeC

= V(#| + V(K]
= V(A + V(K - 1 = [V(H)| - 1,

contradicting the assumption that G and L satisfy Hall’s condition. This
contradiction descends from the assumption that G has no proper L-coloring,
and establishes the result. 1]

As in Theorem 1, something more has been proven than was stated.
With K as in the proof, for the existence of a proper L-coloring it suffices
that Hall’s condition be satisfied, and that all the lists on G — K have
cardinality at least two.

Proof of Theorem 3. The claim in (a) follows from Theorem B, (b),
(c), and (d), Theorem C (b), and the remark that W(ay, a2) = 8(ay, a»,2).

That W (1,1, 1,1) is Hall-2%-critical is the claim of Theorem C (f). Ev-
ery other W(ay,...,ax), k > 4, contains a proper induced subgraph of one
of the following forms:

(i) 6(my,ma,1), m; > ma > 3, which is Hall-2%*-critical according to
Theorem C (b); or

(ii) one of the graphs described in Theorem C (e) (the cycle on which the
triangles are based may be a triangle itself).

The partial wheel graphs W(a,, as, as), (a1, as.a3) # (1,1, 1). remain to
be classified. If a; > a2 > a3 > 2 then [V{ay, a1, a3) has induced subgraphs

54



of the form 6(my, ma,1), m; > my > 3; thus W(a,, as, as) has Hall number
greater than 2, but is not Hall-2*-critical.

To show that G = W(ay,as,1), (a1,a2) # (1,1), is Hall-2%+-critical, it
suffices to show that the Hall number of the graph is greater than 2, since
by Corollary 2, Theorem A, and Theorem B, (a) and (b), removing any
vertex from G results in a graph with Hall number < 2. We shall show
that A(G) > 2 in each case by describing a list assignment L satisfying
|L(z)| > 2 for all z € V(G), such that G and L satisfy Hall’s condition,
yet there is no proper L-coloring of G. We shall leave to the reader the
verification of Hall’s condition, and of the non-colorability of G, in each
case. The non-colorability will be obvious, but verifying Hall’s condition
will be a chore. In each case, however, the task of checking (1) for every
induced subgraph H of G can be accomplished by verifying that G — v is
properly L-colorable for each v € V(G), and then verifying that (1) holds
when H = G.

The assignments to W (2, 1,1) and W(2,2, 1) are given in Figure 4, with
numbers representing colors, and lists given in “word”, rather than “set”,
form.

Figure 4: W(2,1,1) and W(2,2,1)

A propos the remarks on the restricted Hall numbers at the end of
section 3, observe that the list assignment to 1W(2, 1, 1) used 4 colors, while
the assignment to W (2,2,1) uses 3. The remaining assignments in this
proof will use only 3 colors.
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Jat v
forces
1 at w,
along P

P
Figure 5: W(a,1,1),a> 3

In Figure 5, dealing with the cases W(a, 1,1), a > 3, the path P from ¢
to w has length ¢, and an assignment is to be made to the internal vertices
of P so that 3 at v forces 1 at w, along P, and so that Hall’s condition is
satisfied. If a is odd, let 23 be assigned to the internal vertices of P. If
a is even, a > 4, let the next vertex after v along P be assigned 23, the
next vertex after that 12, and then the remaining internal vertices of P are
assigned 13.

P, length a3 P, length a;

Figure 6: W(l,as,a3).2<ax<a3,3<az

Figure 6 depicts the remaining cases. W (1, as,asz), 2 < as < az, 3 < as.
The plan here is to assign lists of length 2 to the internal vertices of the
paths P;, of lengths «;, i = 2,3, so that Hall’s condition is satisfied and 3
at u forces 1 at v, along P, and 1 at v forces 2 at w, along Ps.

If a» is odd, assign 13 to each internal vertex of P, except the last hefore
v. to which 12 is assigned. (Note a» > 3.) If as is even. assign 23 to the
next vertex of P> after u. and then 12 to the remaining internal vertices of
P, if any (i.e.. if az > 4).
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If a3 is odd, a3 > 3, assign 13 to each of the two vertices of P; immedi-
ately following v, and then 12 to the remainder of Ps. If a3 is even, az > 4,
assign 13 to the next vertex of P after v, then 23 to the vertex after that,
and then 12 to the remaining internal vertices of Ps. 0

Proof of Theorem 4. We leave it to the reader to verify that removing
any vertex from any of the graphs claimed to be Hall-2*-critical results in
a graph with Hall number < 2. Apply Theorems A and B, and Corollary
2.

To prove Hall-2t-criticality, therefore, it suffices to supply list assign-
ments, with lists of “length” > 2, satisfying Hall’s condition, from which no
proper coloring is possible. As in the proof of Theorem 3, we shall supply
the list assignments and leave the verification of the satisfaction of Hall’s
condition, and of non-colorability, to the reader. The remarks in the proof
of Theorem 3 on the former verification are applicable here.

For case (a), we may as well suppose that 7y > ra > r3,r; > 2. This
case breaks into several subcases.

14

12 12
Figure 7: WL{2,1,1;1,1,1)

The list assignment in Figure 7 uses four symbols. As claimed earlier,
four is the smallest number of symbols permitting such a list assignment.
From here on. all list assignments will use only three symbols.
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Figure 8: WL(rm,1,1;1,1,1),r >3

With reference to Figure 8: if 7, is odd, put 23 at every internal vertex
of P; otherwise, if r; > 4 is even, let the internal vertices of P, from u to
v, be assigned 13, then 12, then all 23.

12 13
Figure 9: WL(ry,72,73;1,1,1),71 > 72 > 13,72 > 2.

With reference to Figure 9, assign 12 to the internal vertices of Ps, if
any. If r3 is odd, then assign to the internal vertices of P;, i = 1,2, in order
along the path from wu, either 12 and then all 23, if r; is odd (r; > 3), or,
if r; 1s even, 13 and then all 23.

If r3 is even, then assign to the internal vertices. of P;, i = 1,2, in order
along the path from u, either 12, 13, and then all, 23, if r; is odd, or, if r;

is even, all 23.
The proof of (b) also breaks into cases. We may as well assume that

ay > ag and therefore that a; > 2.
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lgth P=r2>2
lgth A; = a;,i=1,3,
0,122

Figure 10: WL(r,1,1;a1,1,a3),7 > 2,a1 > ag,a; > 2,a3 odd

With reference to Figure 10, assuming a3 is odd, put 12 on the internal
vertices of Ag, if any (i.e., if azg > 3). Lists are assigned to the internal
vertices of P, and A; as follows. If r is even, put 23 on the internal vertices
of P; if r is odd, put 13, 12, and then all 23, on the internal vertices of P,
going from u to v. If a; is even, put 13 on the internal vertices of A,; if
a; is odd, put 23, 12, and then all 13 on the internal vertices of A,, going
from w to v.

lgth P=r>2
lgth A; = a;,i=1,3
ay >az>?2

13 12
Figure 11: WL(r,1,1;a1,1,a3),7 > 2,a1 > az > 2,a3 even

With reference to Figure 11, assuming a3 is even, put 13 on the internal
vertices of A3. Lists are assigned to the internal vertices of P and of A,
as follows. If r is even, assign 13 to the internal vertices of P; if r is odd,
r > 3, then, going from v to u, assign 23 and then all 12 to the internal
vertices of P. Assign lists to the internal vertices of A; by the same rules,
with a; replacing r, w replacing u, and A; replacing P in the directions.
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lgth P=r2>2
lgth A=a>2

Figure 12: WL(r,1,1;1,a,1),r,a > 2, r,a not both odd

We prove (c) with reference to Figures 12 and 13. If = is even, assign
13 to each internal vertex of P. If » is odd, assign 12 to the first vertex
along P coming from v, and then 23 to the rest. If a is even, assign 13 to
the internal vertices of A. If a is odd, assign 23 to the first vertex along A
coming from z, and then 12 to the rest.

The assignment described does not satisfy Hall’s condition when r and
a are both odd. For that case alone, with reference to Figure 13, assign 13
to the internal vertices of P and 23 to the internal vertices of A.

12

(s

lgth P=r
Igth A=a

Figure 13: WL(r,1,1;1,a,1),7,a > 3, both odd

We prove (d)-(h) of Theorem 4 with diagrams alone.



23 12

&
23
Figure 14: WL(2,2,1;1,2,2)

12 S

Figure 15: Theorem 4(e)



23

12

12

23

Figure 16: Theorem 4(f)

23 13

13

23
Figure 17: Theorem 4(g)
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12 12

23 13
Figure 18: Theorem 4(h)

All that remains is the verification of the last assertion, that the graphs
WL(ry,...,r;a1,...,a), k > 3, 7y > 2, all have Hall number greater than
2, but that only those mentioned in (a)-(d) are Hall-2+-critical.

First, suppose that & = 3. Since r; > 2, we can remove vertices from
the path with length r, to obtain 8(a; + a3, r2 + r3,as) = H as an induced
subgraph of G = WL(ry,rs,73;01,a2,a3). By Theorems B and C, H is
Hall-2+-critical unless H is one of #(m.2, 1), 8(m,2,2), for some m > 2,
or 6(3,3,2). Thus, unless (a; + as, ra + r3, a2) is some reordering of one
of (m,2,1), (m,2,2), for some m > 2, or (3,3,2), G has a proper Hall-2*-
critical induced subgraph, and so has Hall number greater than 2, but is
not Hall-2*-critical itself.

Now, the analysis of these possibilities is sort of fun, but rather lengthy;
we will leave it to the reader to verify that the only W L(ry, ra, 73; a1, a2, a3),
71 2 2, that do not have a proper Hall-2%-critical induced subgraph are
the graphs in (a)-(d) of Theorem 4. (In carrying out this verification, keep
in mind that if any of rq,73,a1,82,a3 is > 2, you can remove vertices to
destroy a path in G, and obtain another proper induced #-subgraph.)

Suppose now that k = 4 and G = WL(ry, rs, r3, 74: a1, a2, a3, a4), 1y >
2. Removing the radial path of length r;, we see that G has
W L(ra,72,74; a2, a3, ay+a4) as a proper induced subgraph. If max(ra, 73, r4)
> 1, this has Hall number > 2 by the k¥ = 3 case. Otherwise, because
a, + a4 > 2, it has Hall number > 2 by Theorem 3.

Now suppose that & > 5, and we proceed by induction on %. Since

r1 > 1 we see that the graph WL(ry,...,7;0a1,...,a) has
W(rs,...,rtias,...,ak-1,a1 + ax) as a proper induced subgraph. If
max(ra,...,7) > 1, this has Hall number > 2 by the induction hypothesis.
Otherwise. it has Hall number > 2 by Theorem 3. ]
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