# Self-complementary Graphs with Minimum Degree Two

### Kiyoshi Ando

Department of Computer Science and Information Mathematics
The University of Electro-Communications
1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan

Atsuhiro Nakamoto
Department of Mathematics
Osaka Kyoiku University
4-698-1 Asahigaoka, Kashiwara, Osaka 852-8582, Japan

#### Abstract

In this paper, we shall classify the self-complementary graphs with minimum degree exactly 2.

### 1 Introduction

We consider only simple finite undirected graphs. We denote the vertex set and edge set of a graph G by V(G) and E(G), respectively. Let  $P_n$ ,  $C_n$  and  $K_n$  denote the path, the cycle and the complete graph with n vertices, respectively. A graph G is said to be *trivial* if G has just one vertex, and G is *empty* if G has no vertex. For a graph G and  $S \subset V(G)$ , let  $\langle S \rangle$  denote the subgraph of G induced by G. For two graphs G and G is said to be obtained from G and G is obtained by joining G and G is obtained by joining each vertex of G to all vertices of G.

For a graph G, the *complement*, denoted by  $\overline{G}$ , of G is defined by  $V(\overline{G}) = V(G)$  and  $E(\overline{G}) = \{uv : uv \notin E(G)\}$ . A graph G is said to be self-complementary if G and  $\overline{G}$  are isomorphic. There exists a self-complementary graph with precisely n vertices if and only if  $n \equiv 0, 1 \pmod{4}$ . Since a self-complementary graph G with n vertices satisfies  $|E(G)| = |E(\overline{G})|$  and  $|E(G)| + |E(\overline{G})| = \frac{n(n-1)}{2}$ , the number  $\frac{n(n-1)}{2}$  must be even, and hence we have  $n \equiv 0, 1 \pmod{4}$  [1]. Moreover, for every natural number  $n \equiv 0, 1 \pmod{4}$  with  $n \geq 4$ , we can construct self-complementary graphs

with precisely n vertices, as follows: Let H be a graph which is either empty, trivial, or self-complementary, and let  $P_4 = v_1 v_2 v_3 v_4$ . Join each of  $v_2$  and  $v_3$  to all vertices of H. The resulting graph  $\tilde{H}$  with |V(H)| + 4 vertices can easily be checked to be self-complementary. Thus, for each  $n \equiv 0, 1 \pmod{4}$  with  $n \geq 4$ , we can inductively construct self-complementary graphs with n vertices from a self-complementary graph with n - 4 vertices and  $P_4$ .

The self-complementary graphs constructed as above must have cut vertices. In every self-complementary graph G, it is easily checked that G has cut vertices if and only if G has vertices of degree 1. Surprisingly, every self-complementary graph with cut vertices have the above structure, as in the following theorem.

**THEOREM 1 (Kawarabayashi et al.** [2]) Let G be a self-complementary graph with cut vertices. Then, G can be obtained from a graph H and  $P_4 = v_1v_2v_3v_4$  by joining each of  $v_2$  and  $v_3$  to all vertices of H, where the graph H is either empty, trivial or self-complementary.

In this paper, we consider the self-complementary graphs with minimum degree exactly 2 and characterize them. Note that for the self-complementary graphs, the k-connectivity and the minimum degree k are not equivalent for any integer  $k \geq 2$ , as the examples constructed below show. Consider a self-complementary graph obtained from  $P_4 = v_1 v_2 v_3 v_4$  by the following procedures: Let B be any graph, and replace each of  $v_1$  and  $v_4$  by B, and each of  $v_2$  and  $v_3$  by  $\overline{B}$ , where two vertices  $v_i$  and  $v_j$  are adjacent in  $P_4$  if and only if the corresponding B's or  $\overline{B}$ 's to  $v_i$  and  $v_j$  are joined in the resulting graph. Putting  $B = K_2$ , we obtain the graph in Figure 1.



Figure 1: Self-complementary graph with connectivity 2 but no vertex of degree 2

Our main theorem is as follows:

**THEOREM 2** Let G be a self-complementary graph with minimum degree exactly 2. Then, G has one of the structures of Type I, II(a), II(b), III and IV: (See Figure 2)

- I G is obtained from H and  $P_4 = v_1v_2v_3v_4$  by joining each of  $v_1$  and  $v_4$  to all vertices of H, where the graph H is either trivial or self-complementary,
- II(a) G has precisely 2 vertices of degree 2 and G is obtained from H and  $P_4 = v_1v_2v_3v_4$  by joining  $v_1$  and  $v_4$  to  $x_1$  and  $y_1$  respectively, joining  $v_2$  to all vertices of H except  $x_1'$  and joining  $v_3$  to all vertices of H except  $y_1'$ , where H is a self-complementary graph and  $x_1, y_1, x_1', y_1'$  are 4 distinct vertices lying on an induced  $P_4$  in H such that  $\Psi_H(x_1) = x_1'$ ,  $\Psi_H(y_1) = y_1'$ ,  $\Psi_H(x_1') = y_1$  and  $\Psi_H(y_1') = x_1$  by some isomorphism  $\psi_H: H \to \overline{H}$ ,
- II(b) G is obtained from H and  $P_4 = v_1v_2v_3v_4$  by joining each of  $v_1$  and  $v_4$  to v and joining each of  $v_2$  and  $v_3$  to all vertices of H except v, where H is a self-complementary graph and v is a vertex of H such that  $\Psi_H(v) = v$  by some isomorphism  $\psi_H : H \to \overline{H}$ ,
  - If G is obtained from H by joining  $K_4$  with  $V(K_4) = \{v_1, v_2, v_3, v_4\}$ , adding four new vertices  $x_1, x_2, x_3$  and  $x_4$ , and joining each  $x_i$  to  $v_i$  and  $v_{i+1}$  (subscripts are taken modulo 4), where the graph H is either empty, trivial or self-complementary,
  - IV G is obtained from H by joining  $K_4$  with  $V(K_4) = \{v_1, v_2, v_3, v_4\}$ , adding four new vertices  $x_1, x_2, x_3$  and  $x_4$ , and joining each of  $x_1$  and  $x_2$  to  $v_1$  and  $v_2$ , and each of  $x_3$  and  $x_4$  to  $v_3$  and  $v_4$ , where the graph H is either empty, trivial or self-complementary.

# 2 Proof of the Theorem

In this section, we prove our main theorem. Before proving it, we give several lemmas.

Let  $V_i$  and  $\overline{V_i}$  denote the sets of vertices of degree i in G and  $\overline{G}$ , respectively. For a graph T and disjoint subsets  $P,Q \subset V(T)$ , let  $e_T(P,Q)$  be the number of edges e of T such that one of endpoints of e belongs to P and the other to Q.

**LEMMA 3** There is just one self-complementary graph with 4 vertices, which is isomorphic to  $P_4$ . There are exactly two self-complementary graphs with 5 vertices, which are  $C_5$  and  $C_3^{++}$  shown in Figure 3.

**Proof.** Let G be a self-complementary graph with n vertices. If G has a cut vertex, then G is isomorphic to either  $P_4$  or  $C_3^{++}$ , by Theorem 1, when



Figure 2: Structures of G

n=4,5. It is easy to see that  $|E(G)|=\frac{1}{4}n(n-1)$ . Thus, the average degree  $\bar{d}(G)$  of G is

$$\bar{d}(G) = \frac{2|E(G)|}{n} = \frac{1}{2}(n-1).$$

Hence, if n = 4, then G must have a vertex of degree 1, and if n = 5, then either G has a vertex of degree 1 or it is 2-regular. In the latter case, G is isomorphic to  $C_5$ .

**LEMMA 4** Let G be a self-complementary graph and let  $\Psi: G \to \overline{G}$  be an isomorphism. If S is a subset of V(G) such that for each  $v \in S$ ,  $\Psi(v) \in S$ , then the subgraph  $\langle S \rangle$  in G induced by S is either empty, trivial or self-complementary, depending on |S| = 0, 1 and |S| > 1.

**Proof.** We may assume  $|S| \geq 2$ , since the lemma obviously holds when  $|S| \leq 1$ . Clearly, we have that  $|S| = |\{\Psi(s) : s \in S\}|$ . By the assumption of



Figure 3:  $C_5$  and  $C_3^{++}$ 

the lemma, for any vertices  $x,y\in S$ , we have  $\Psi(x),\Psi(y)\in S$ , and moreover,  $xy\in E(G)$  if and only if  $\Psi(x)\Psi(y)\notin E(G)$ , or  $xy\notin E(G)$  if and only if  $\Psi(x)\Psi(y)\in E(G)$ . Thus, we can define the isomorphism  $\Psi_{\langle S\rangle}:\langle S\rangle\to\overline{\langle S\rangle}$ .

**LEMMA 5** Let G be a self-complementary graph with n vertices. Then, for a fixed i,

- (i) If  $V_i \cap \overline{V_i} \neq \emptyset$ , then n = 2i + 1, and
- (ii) If  $V_i \cap \overline{V_i} = \emptyset$ , then  $|V_i|$  is even and  $|V_i| \leq 2i$ , and moreover, if  $|V_i| = 2i$ , then  $V_i$  is independent in G and the neighbors of each  $x \in V_i$  are included in  $\overline{V_i}$ .

**Proof.** We first prove (i). If we let  $v \in V_i \cap \overline{V_i}$ , then  $i = \deg_G(v) = \deg_{\overline{G}}(v) = n - 1 - i$ . Therefore, we have n = 2i + 1.

Secondly we prove (ii). We first show that  $|V_i|$  is even. Since  $V_i \cap \overline{V_i} = \emptyset$ , we have

$$e_G(V_i, \overline{V_i}) + e_{\overline{G}}(V_i, \overline{V_i}) = |V_i|^2. \tag{1}$$

Since  $e_G(V_i, \overline{V_i}) = e_{\overline{G}}(V_i, \overline{V_i}), |V_i|^2$  must be even. Thus,  $|V_i|$  is even.

Now suppose that  $|V_i| > 2i$  for contradictions. Let K be the bipartite subgraph of G with partite sets  $V_i$  and  $\overline{V_i}$  and  $E(K) = \{uv : u \in V_i, v \in \overline{V_i}\}$ . By (1), we have

$$e_K(V_i, \overline{V_i}) = \sum_{v \in V_i} \deg_K(v) = \frac{1}{2}|V_i|^2.$$

Hence there exists  $x \in V_i$  such that

$$\deg_G(x) \geq \deg_K(x) \geq \frac{1}{2}|V_i| > i.$$

This is contrary to the definition of  $x \in V_i$ . Therefore, we have  $|V_i| \le 2i$ .

In the above paragraph, if we put  $|V_i| = 2i$ , then we must have that for any  $x \in V_i$ ,  $\deg_G(x) = \deg_K(x) = i$ . Therefore,  $V_i$  satisfies the required properties.

Now we shall prove Theorem 2.

**Proof of Theorem 2.** Let G be a self-complementary graph with n vertices and minimum degree 2. Let  $\Psi: G \to \overline{G}$  be an isomorphism.

By Lemma 5(i), we may suppose that  $V_2 \cap \overline{V_2} = \emptyset$  unless n = 5. By Lemma 3, there is only one self-complementary graph with at most 5 vertices whose minimum degree is 2, which is  $C_5$ . Obviously,  $C_5$  belongs to Type I in our classification.

By Lemma 5(ii), there are two possibilities for the size of  $V_2$ . We consider these two cases separately.

Case 1.  $|V_2| = 2$ .

Let  $V_2 = \{x, y\}$ , where  $x \neq y$ . Then we can put  $\overline{V_2} = \{x', y'\}$  and suppose that  $\Psi$  maps x and y to x' and y', respectively. Let  $A = V(G) - \{x, x', y, y'\}$ .

Subcase I.  $xy \in E(G)$ .

Since  $\deg_G(x') = \deg_G(y') = n - 3$  and  $x'y' \notin E(G)$ , both x' and y' are adjacent to all vertices  $v \in A$ . Since  $\deg_G(x'), \deg_G(y') \geq 2$ , we have  $A \neq \emptyset$ . Thus, by Lemma 4, the graph  $\langle A \rangle = H$  is either trivial or self-complementary. Therefore, we can find the structure described in I.

Subcase I.  $xy \notin E(G)$ .

 $xy \notin E(G)$  implies  $x'y' \in E(G)$ . Since  $\{x,x',y,y'\}$  induces a self-complementary graph by Lemma 4, the graph induced by  $\{x,x'y,y'\}$  must be isomorphic to  $K_4$ , in which we may put  $xx',yy' \in E(G)$  without loss of generality. Then we have  $\Psi(x') = y$  and  $\Psi(y') = x$ . Let  $x_1$  and  $y_1$  be the unique neighbors of x and y in A, respectively. Thus, we have  $A \neq \emptyset$ .

Let  $x_1' = \Psi(x_1)$  and  $y_1' = \Psi(y_1)$ . Then we have  $\Psi(x_1') = y_1$  and  $\Psi(y_1') = x_1$ . If we let  $V = \{x_1, y_1, x_1', y_1'\}$ , then V satisfies the assumption of Lemma 4, and hence the graph  $\langle V \rangle$  is self-complementary. Since we must have  $|V| \equiv 0,1 \pmod{4}$ , the size of V is either 4 or 1. In the former case,  $x_1, y_1, x_1', y_1'$  are distinct vertices lying on an induced  $P_4$  in H, by Lemma 3, and the latter case is that  $x_1 = y_1 = x_1' = y_1'$ . These two cases are described in Type II(a) and II(b), respectively.

Case 2.  $|V_2| = 4$ .

In this case, by Lemma 5(ii),  $V_2$  is independent in G, and hence  $\overline{V_2}$  induces  $K_4$  in G. Moreover, all neighbors of each  $x \in V_2$  are contained in  $\overline{V_2}$ .

Let  $V_2 = \{x_1, x_2, x_3, x_4\}$  and  $\overline{V_2} = \{v_1, v_2, v_3, v_4\}$ . Each  $x_i$  is adjacent to exactly two vertices in  $\overline{V_2}$ , and hence each  $v_i$  is adjacent to exactly two vertices in  $V_2$ . Since  $\overline{V_2}$  induces  $K_4$ , we can define a map  $\rho: V_2 \to E(K_4)$  such that for each  $i = 1, 2, 3, 4, x_i$  is adjacent to the two endpoints of  $\rho(x_i) \in E(K_4)$ . Note that for each  $v \in \overline{V_2}$ , exactly two  $x_i, x_j$  of  $V_2$  are mapped to edges incident to v. Hence there exist essentially two possibilities of  $\rho$ ;

- (a)  $E = {\rho(x_i) : i = 1, 2, 3, 4}$  forms a cycle of length 4 in  $K_4$ ,
- (b)  $E = {\rho(x_i) : i = 1, 2, 3, 4}$  are independent in  $K_4$  (that is, exactly two vertices of  $V_2$  are mapped to one edge e in  $K_4$ , and the other two in  $V_2$  are mapped to the edge e' in  $K_4$  which is independent of e).

If we let  $A = V(G) - (V_2 \cup \overline{V_2})$ , then  $\langle A \rangle$  is either empty, trivial or self-complementary, by Lemma 4. Moreover, since each  $p \in \overline{V_2}$  has n-3 neighbors in G, p is adjacent to all vertices in A. Therefore, we can find the structure of Type II and IV in these two cases (a) and (b), respectively.

#### 3 Observation

In this section, we shall enumerate self-complementary graphs with minimum degree 2 of Type I, II and IV, and construct all self-complementary graphs of Type I(a) and I(b) with 8 and 9 vertices.

Let  $\mathcal{N}(n)$  denote the number of the self-complementary graphs with exactly n vertices, and in particular, let  $\mathcal{N}(k,n)$  denote the number of such graphs with minimum degree exactly k. The number  $\mathcal{N}(n)$  has been determined for all possible integers n as in Table 1 [3]:

|   | n                | 4 | 5 | 8  | 9  | 12  | 13   | 16     | 17       |
|---|------------------|---|---|----|----|-----|------|--------|----------|
| Γ | $\mathcal{N}(n)$ | 1 | 2 | 10 | 36 | 720 | 5600 | 703760 | 11220000 |

Table 1: The number of self-complementary graphs

Clarifying the structure of self-complementary graphs with vertices of degree 1, the following result has been obtained.

**PROPOSITION 6** ([2])  $\mathcal{N}(1,4) = \mathcal{N}(1,5) = 1$ . For all  $n \ge 8$ ,  $\mathcal{N}(1,n) = \mathcal{N}(n-4)$ .

We extend this result with respect to the minimum degree. Let  $\mathcal{N}(2,n)$  denote the number of the self-complementary graphs of Type · with n vertices and minimum degree 2.

**PROPOSITION 7**  $\mathcal{N}_{I}(2,4) = 0, \mathcal{N}_{I}(2,5) = 1.$  For all  $n \geq 8$ ,  $\mathcal{N}_{I}(2,n) = \mathcal{N}(n-4)$ .

**Proof.** By the property of Type I, G includes the self-complementary subgraph H obtained by removing a  $P_4$ . Clearly, we have |V(H)| = |V(G)| - 4. It is easy to see that from m distinct self-complementary graphs as H, we can construct m distinct self-complementary graphs of Type I. Thus, for all  $n \geq 8$ ,  $\mathcal{N}_{I}(2, n) = \mathcal{N}(n - 4)$ .

**PROPOSITION 8** For all positive integers n,  $\mathcal{N}_{III}(2,n) = \mathcal{N}_{IV}(2,n)$ . Moreover,  $\mathcal{N}_{III}(2,8) = 0$ ,  $\mathcal{N}_{III}(2,9) = 1$ . For all  $n \ge 12$ ,  $\mathcal{N}_{III}(2,n) = \mathcal{N}(2,n-8)$ .

#### **Proof.** Similar to Proposition 7.

By Propositions 6, 7 and 8, we can obtain Table 2.

| n                                 | 4 | 5 | 8  | 9  | 12  | 13   | 16     | 17       |
|-----------------------------------|---|---|----|----|-----|------|--------|----------|
| $\mathcal{N}(n)$                  | 1 | 2 | 10 | 36 | 720 | 5600 | 703760 | 11220000 |
| $\mathcal{N}(1,n)$                | 1 | 1 | 1  | 2  | 10  | 36   | 720    | 5600     |
| $\mathcal{N}_{\mathrm{I}}(2,n)$   | 1 | 1 | 1  | 2  | 10  | 36   | 720    | 5600     |
| $\mathcal{N}_{\mathrm{III}}(2,n)$ | 0 | 0 | 1  | 1  | 1   | 2    | 10     | 36       |
| $\mathcal{N}_{\mathrm{IV}}(2,n)$  | 0 | 0 | 1  | 1  | 1   | 2    | 10     | 36       |

Table 2: The numbers of various self-complementary graphs

Now we construct self-complementary graphs of Type II(a) and III(b) with 8 and 9 vertices, respectively.

**PROPOSITION 9** There exist precisely 2 self-complementary graphs of Type II(a) with 8 vertices (See Figure 4). There exists no self-complementary graphs of Type II(b) with 8 vertices.

**Proof.** By the property of Type II, a self-complementary graph G considered here can be constructed from  $P_4 = v_1v_2v_3v_4$  and H by connecting suitably. Note that since  $P_4$  is a unique self-complementary graph with 4 vertices, H is also  $P_4 = u_1u_2u_3u_4$  in this case. Since any isomorphism between  $P_4$  and  $\overline{P_4}$  fixes no vertex, there exists no self-complementary graphs of Type II(b). Thus, it suffices to choose distinct vertices  $x_1, x_1', y_1, y_1'$  in





Figure 4: Self-complementary graphs of Type II with 8 vertices

 $P_4 = u_1 u_2 u_3 u_4$  so that  $\Psi(x_1) = x_1'$ ,  $\Psi(y_1) = y_1'$ ,  $\Psi(x_1') = y_1$  and  $\Psi(y_1') = x_1$  by some isomorphism  $\Psi_H : H \to \overline{H}$ .

Since  $\Psi_H: H \to \overline{H}$  is an isomorphism, there are essentially two possibilities; (A)  $\{x_1, y_1\} = \{u_1, u_4\}$ , (B)  $\{x_1, y_1\} = \{u_2, u_3\}$ .

In case (A), we have  $\{x_1, y_1\} = \{u_1, u_4\}$  and  $\{x'_1, y'_1\} = \{u_2, u_3\}$ . Without loss of generality, we may suppose  $x_1 = u_1$  and  $y_1 = u_4$ . Now we have two choices (1)  $x'_1 = u_2$  and  $y'_1 = u_3$ , and (2)  $x'_1 = u_3$  and  $y'_1 = u_2$ . From (1) and (2), we can obtain two required graphs, respectively, as in Figure 4.

In case (B), both  $u_1$  and  $u_4$  have degree 2, and hence the graphs constructed here have 4 vertices of degree 2. They are of Type II or IV.

**PROPOSITION 10** There exist precisely 6 self-complementary graphs of Type II(a) with 9 vertices. There exist precisely 2 self-complementary graphs of Type II(b) with 9 vertices. See Figure 5.

**Proof.** We proceed similarly to the above proof of Proposition 9. Note that for a candidate for the graph H, there are two self-complementary graphs with 5 vertices, which are  $C_5$  and  $C_3^{++}$  in Figure 3, by Lemma 3. Suppose that  $C_5$  and  $C_3^{++}$  are labeled as in Figure 3. We first specify 4 distinct vertices  $x_1, y_1, x_1', y_1'$  in H so that  $x_1' = \Psi(x_1), y_1' = \Psi(y_1), x_1 = \Psi(y_1')$  and  $y_1 = \Psi(x_1')$  by some isomorphism  $\Psi: H \to \overline{H}$ . In the following argument, we neglect the symmetry of H.

We first consider Type II(a). From  $C_5$ , there are essentially two choices of  $x_1$  and  $y_1$ , depending on whether they are adjacent in  $C_5$ , or not. In the former case, there are two possibilities; (1)  $x_1 = u_1$ ,  $y_1 = u_2$ ,  $x'_1 = u_3$  and  $y'_1 = u_5$ , and (2)  $x_1 = u_1$ ,  $y_1 = u_2$ ,  $x'_1 = u_5$  and  $y'_1 = u_3$ . In the latter case, there are two possibilities; (3)  $x_1 = u_1$ ,  $y_1 = u_3$ ,  $x'_1 = u_4$  and  $y'_1 = u_5$ , and (4)  $x_1 = u_1$ ,  $y_1 = u_3$ ,  $x'_1 = u_5$  and  $y'_1 = u_4$ . From  $C_3^{++}$ , there are essentially two choices of  $x_1$  and  $y_1$ , depending on the adjacency of  $x_1$  and  $y_1$ . When  $x_1$  and  $y_1$  are not adjacent, we have two possibilities; (5)



Figure 5: Self-complementary graphs of Type II(a) and II(b)

 $x_1 = u_1$ ,  $y_1 = u_4$ ,  $x'_1 = u_2$  and  $y'_1 = u_3$ , and (6)  $x_1 = u_1$ ,  $y_1 = u_4$ ,  $x'_1 = u_3$  and  $y'_1 = u_2$ . However, in the case when  $x_1$  and  $y_1$  are adjacent, the graph constructed has 4 vertices of degree 2. Hence this belongs to Type III or IV.

Now we consider Type II(b). From  $C_5$ , there is essentially one way to choose v in  $C_5$  such that  $\Psi(v) = v$ . This is Case (7). In  $C_3^{++}$ , no vertex other than  $u_0$  is fixed by any isomorphism between  $C_3^{++}$  and  $\overline{C_3^{++}}$ , and hence the only possibility is that  $v = u_0$ . This is Case (8).

## References

- [1] F. Harary and E.M. Palmer, Enumeration of locally restricted digraphs, Canad. J. Math. 18 (1966), 853-860.
- [2] K. Kawarabayashi, A. Nakamoto, Y. Oda, K. Ota, S. Tazawa and M. Watanabe, Enumeration of separable self-complementary graphs, to appear in *Discrete Math*.
- [3] R.C. Read, On the number of self-complementary graphs and digraphs, Journal of London Math. Soc. 38 (1963), 99-104.