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Abstract

In this paper, we shall classify the self-complementary graphs
with minimum degree exactly 2.

1 Introduction

We consider only simple finite undirected graphs. We denote the vertex
set and edge set of a graph G by V(G) and E(G), respectively. Let P,, C,
and K, denote the path, the cycle and the complete graph with n vertices,
respectively. A graph G is said to be trivial if G has just one vertex, and G
is empty if G has no vertex. For a graph G and S C V(G), let (S) denote
the subgraph of G induced by S. For two graphs H and K, a graph G is
said to be obtained from H and K by joining H and K if G is obtained by
joining each vertex of K to all vertices of H.

For a graph G, the complement, denoted by G, of G is defined by
V(G) = V(G) and E(G) = {uv : wv ¢ E(G)}. A graph G is said to
be self-complementary if G and G are isomorphic. There exists a self-
complementary graph with precisely n vertices if and only if n = 0,1 (mod
4). Since a self-complementary graph G with n vertices satisfies | E(G)| =
|E(G)| and |E(G)| + |E(G)| = "("_1) , the number ﬂ'-'z—lz must be even,
and hence we have n = 0,1 (mod 4) [1] Moreover, for every natural number
n=0,1 (mod 4) with n > 4, we can construct self-~complementary graphs
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with precisely n vertices, as follows: Let H be a graph which is either empty,
trivial, or self-complementary, and let Py = V1v2v3v4. Join each of v; and
v3 to all vertices of H. The resulting graph H with |V (H)|+4 vertices can
easily be checked to be self-complementary. Thus, for each n = 0,1 (mod
4) with n > 4, we can inductively construct self-complementary graphs
with n vertices from a self-complementary graph with n — 4 vertices and
P,. ’

The self-complementary graphs constructed as above must have cut
vertices. In every self-complementary graph G, it is easily checked that G
has cut vertices if and only if G has vertices of degree 1. Surprisingly, every
self-complementary graph with cut vertices have the above structure, as in
the following theorem.

THEOREM 1 (Kawarabayashi et al. [2]) Let G be a self-complementary
graph with cut vertices. Then, G can be obtained from a graph H and
Py = v1vav3v, by joining each of va and vz to all vertices of H, where the
graph H is either emply, trivial or self-complementary.

In this paper, we consider the self~complementary graphs with min-
imum degree exactly 2 and characterize them. Note that for the self-
complementary graphs, the k-connectivity and the minimum degree k are
not equivalent for any integer k > 2, as the examples constructed below
show. Consider a self~complementary graph obtained from Py = v,v2v3v4
by the following procedures: Let B be any graph, and replace each of v,
and v4 by B, and each of vy and vz by B, where two vertices v; and vj
are adjacent in Pj if and only if the corresponding B’s or B’s to v; and v;
are joined in the resulting graph. Putting B = K, we obtain the graph in
Figure 1.
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Figure 1: Self~complementary graph with connectivity 2 but no vertex of
degree 2

Our main theorem is as follows:

THEOREM 2 Let G be a self-complementary graph with minimum degree
ezactly 2. Then, G has one of the structures of Type I, I(a), I(b), Il and
IV: (See Figure 2)
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I G is obtained from H and Py = v1vav3vs by joining each of v; and
v4 to all vertices of H, where the graph H 1is either trivial or self-
complementary,

II(a) G has precisely 2 vertices of degree 2 and G is obtained from H and
Py = vyvav3v4 by joining vy, and v4 to 1 and 1y, respectively, joining
v to all vertices of H ezcept z] and joining vz to all vertices of H ex-
cepty;, where H is a self-complementary graph and z,,y1, ), are 4
distinct vertices lying on an induced Py in H such that Uy(x;) =z},
Y (1) = yi, Ya(z)) = 11 and Ty (y)) = 1 by some isomorphism
Yyy:H—->H B

I(b) G is obtained from H and P, = v vav3v, by joining each of v; and
v to v and joining each of vo and v3 to all vertices of H except v,
where H is e self-complementary graph and v is a vertex of H such
that ¥y (v) = v by some isomorphism ¥y : H — H,

I G is obtained from H by joining K4 with V(K,) = {v1,v2,v3,v4},
adding four new vertices x,z2,%3 and x4, and joining each z; to v;
and v;y, (subscripts are taken modulo 4), where the graph H is either
empty, trivial or self-complementary,

IV G is obtained from H by joining Ky with V(K,4) = {v1,v2,v3,v4},
adding four new vertices x,,T,%3 and x4, and joining each of x;
and 2 to vy and vy, and each of x3 and x4 to vz and vy, where the
graph H is either empty, trivial or self-complementary.

2 Proof of the Theorem

In this section, we prove our main theorem. Before proving it, we give
several lemmas.

Let V; and V; denote the sets of vertices of degree i in G and G, respec-
tively. For a graph T and disjoint subsets P,Q C V(T), let er(P,Q) be
the number of edges e of T such that one of endpoints of e belongs to P
and the other to Q.

LEMMA 3 There is just one self-complementary graph with 4 vertices,
which is isomorphic to Py. There are exzactly two self-complementary graphs
with 5 vertices, which are Cs and C§* shown in Figure 3.

Proof. Let G be a self~complementary graph with n vertices. If G has a
cut vertex, then G is isomorphic to either P4 or C§ *, by Theorem 1, when
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Figure 2: Structures of G

n = 4,5. It is easy to see that |E(G)| = in(n — 1). Thus, the average
degree d(G) of G is

d(G) = 2'E1EG)| = 2(n-1).

Hence, if n = 4, then G must have a vertex of degree 1, and if n = 5, then

either G has a vertex of degree 1 or it is 2-regular. In the latter case, G is
isomorphic to Cs. m

LEMMA 4 Let G be a self-complementary graph and let ¥ : G — G be an
isomorphism. If S is a subset of V(G) such that for eachv € S, ¥(v) € S,
then the subgraph (S) in G induced by S is either empty, trivial or self-
complementary, depending on |S|=0,1 and |S] > 1.

Proof. We may assume |S| > 2, since the lemma obviously holds when
|S] < 1. Clearly, we have that |S| = |[{¥(s) : s € S}|. By the assumption of
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the lemma, for any vertices z,y € S, we have ¥(z), ¥(y) € S, and moreover,
zy € E(G) if and only if ¥(z)¥(y) ¢ E(G), or zy ¢ E(G) if and only if
¥(z)¥(y) € E(G). Thus, we can define the isomorphism ¥(sy : {S) = (S).
(]

LEMMA 5 Let G be a self-complementary graph with n vertices. Then,
for a fized i, _

(i) IfVinV; #0, then n=2i+1, and

(i) If ;N V; = 0, then |V;| is even and |V;| < 2i, and moreover, if

[Vi| = 2i, then V; is independent in G and the neighbors of each
x € V; are included in V.

Proof. We first prove (i). If we let v € V; NV}, then i = degg(v) =
deggz(v) =n — 1 —i. Therefore, we have n.=2i + 1.

Secondly we prove (ii). We first show that |V;| is even. Since V;NV; =0,
we have

ea(Vi, Vi) +eg(Vi, Vi) = [Vil?. )

Since ec(Vi, Vi) = eg(Vi, Vi), |Vi|?> must be even. Thus, |V;| is even.

Now suppose that |V;| > 2i for contradictions. Let K be the bipartite
subgraph of G with partite sets V; and V; and E(K) = {uv: u € V;,v € Vi}.
By (1), we have

ex(Vi, Vi) = Z degg(v) = ‘thz

veV;

Hence there exists € V; such that

1 .
degg(z) > degg(z) > §|Vg| > i.
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This is contrary to the definition of z € V;. Therefore, we have |V;| < 2i.

In the above paragraph, if we put |V;| = 2i, then we must have that for
any x € V;, degg(z) = degg(z) = i. Therefore, V; satisfies the required
properties. m

Now we shall prove Theorem 2.

Proof of Theorem 2. Let G be a self-complementary graph with n
vertices and minimum degree 2. Let ¥ : G — G be an isomorphism.

By Lemma 5(i), we may suppose that V2 NV, = { unless n = 5. By
Lemma 3, there is only one self-complementary graph with at most 5 ver-
tices whose minimum degree is 2, which is Cs. Obviously, Cs belongs to
Type 1 in our classification.

By Lemma 5(ii), there are two possibilities for the size of V2. We con-
sider these two cases separately.

Case 1. |V2| =2.

Let V> = {z,y}, where z # y. Then we can put V2 = {z/,%'} and
suppose that ¥ maps x and y to &’ and ¥/, respectively. Let A =V (G) —
{z,z',y,¥'}.

Subcase 1. zy € E(G).

Since degg(z') = dege(y’) = n— 3 and 'y’ ¢ E(G), both =’ and
y' are adjacent to all vertices v € A. Since degg(z'),degg(y’') > 2, we
have A # (. Thus, by Lemma 4, the graph {(A) = H is either trivial or
self-complementary. Therefore, we can find the structure described in I.

Subcase 1. zy ¢ E(G).

zy ¢ E(G) implies 'y’ € E(G). Since {z,2',y,y'} induces a self-
complementary graph by Lemma 4, the graph induced by {z,z'y,y'} must
be isomorphic to K4, in which we may put zz',yy’ € E(G) without loss of
generality. Then we have ¥(z') = y and ¥(y’) = z. Let z, and y; be the
unique neighbors of z and y in A, respectively. Thus, we have A # @.

Let z; = ¥(z,) and y; = ¥(y1). Then we have ¥(z}]) = 3 and
¥(y;) = z1. If we let V = {z1,y1,2},y,}, then V satisfies the assumption
of Lemma 4, and hence the graph (V') is self-complementary. Since we must
have |V| = 0,1 (mod 4), the size of V is either 4 or 1. In the former case,
Z1,%1,%}, Y] are distinct vertices lying on an induced P; in H, by Lemma
3, and the latter case is that &; = y1, = x] = y;. These two cases are
described in Type II(a) and II(b), respectively.

Case 2. |Va2| = 4.
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In this case, by Lemma 5(ii), V2 is independent in G, and hence V3
induces K in G. Moreover, all neighbors of each z € V; are contained in
Va.

Let Vo = {z1,%2,%3,74} and V3 = {v1,v2,v3,v4}. Each z; is adjacent
to exactly two vertices in V3, and hence each v; is adjacent to exactly two
vertices in V5. Since V2 induces K, we can define a map p: V2 — E(Ky)
such that for each i = 1,2, 3, 4, z; is adjacent to the two endpoints of p(z;) €
E(K,). Note that for each v € V2, exactly two z;,z; of V2 are mapped to
edges incident to v. Hence there exist essentially two possibilities of p;

(a) E={p(z;):i=1,2,3,4} forms a cycle of length 4 in Ky,

(b) B = {p(z;) : i = 1,2,3,4} are independent in K, (that is, exactly
two vertices of V5 are mapped to one edge e in K, and the other two
in V, are mapped to the edge €’ in K4 which is independent of e).

If we let A = V(G) — (V2 UV3), then (A) is either empty, trivial or
self-complementary, by Lemma 4. Moreover, since each p € V2 has n — 3
neighbors in G, p is adjacent to all vertices in A. Therefore, we can find
the structure of Type Il and IV in these two cases (a) and (b), respectively.
n

3 Observation

In this section, we shall enumerate self-complementary graphs with mini-
mum degree 2 of Type I, I and IV, and construct all sef-complementary
graphs of Type I(a) and I(b) with 8 and 9 vertices.

Let N(n) denote the number of the self-complementary graphs with
exactly n vertices, and in particular, let N(k,n) denote the number of
such graphs with minimum degree exactly k. The number A(n) has been
determined for all possible integers n as in Table 1 [3]:

8 9 12 13 16 17
10 36 720 5600 703760 11220000

4 5
1 2

N,Zn)

Table 1: The number of self-complementary graphs

Clarifying the structure of self-complementary graphs with vertices of
degree 1, the following result has been obtained.

PROPOSITION 6 ([2]) N (1,4) =N(1,5) = 1. For alln > 8, N(1,n) =
N(n—4). ’
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We extend this result with respect to the minimum degree. Let NV.(2,7)
denote the number of the self-complementary graphs of Type - with n
vertices and minimum degree 2.

PROPOSITION 7 Ni(2,4) = 0,M(2,5) = 1. For alln > 8, M(2,n) =
N(n—4).

Proof. By the property of Type I, G includes the self-complementary sub-
graph H obtained by removing a P;. Clearly, we have |V (H)| = |V(G)|-4.
It is easy to see that from m distinct self-complementary graphs as H, we
can construct m distinct self-complementary graphs of Type 1. Thus, for
alln>8,M(2,n)=N(n—4). m

PROPOSITION 8 For all positive integers n, Nin(2,n) = Nv(2,n). More-
over, Nit(2,8) = 0, Mux(2,9) = 1. For alln > 12, Nin(2,n) = N'(2,n—8).

Proof. Similar to Proposition 7. m

By Propositions 6, 7 and 8, we can obtain Table 2.

n 4 5 8 9 12 13 16 17
Nm) |1 2 10 36 720 5600 703760 11220000
Nin)y |1 1 1 2 10 36 720 5600
M@2mn) [T 1 1 2 10 36 720 5600
NMn(2,n) [0 0 1 1 1 2 10 36
Nv@mn) [0 0 1 1 1 2 10 36

Table 2: The numbers of various self-complementary graphs

Now we construct self-complementary graphs of Type I(a) and II(b)
with 8 and 9 vertices, respectively.

PROPOSITION 9 There exist precisely 2 self-complementary graphs of
Type HO(a) with 8 vertices (See Figure4). There exists no self-complementary
graphs of Type I(b) with 8 vertices.

Proof. By the property of Type II, a self-complementary graph G con-
sidered here can be constructed from Py = v1v2v3v4 and H by connecting
suitably. Note that since Py is a unique self~complementary graph with 4
vertices, H is also Py = ujususu, in this case. Since any isomorphism be-
tween P, and P; fixes no vertex, there exists no self-complementary graphs
of Type I(b). Thus, it suffices to choose distinct vertices z1,z},%1,¥; in
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Figure 4: Self-complementary graphs of Type II with 8 vertices

Py = uyupuguy so that ¥(z,;) = x’l,_ V() =y, ¥(z) =y and ¥(y)) =z,
by some isomorphism ¥y : H — H.

Since ¥y : H — H is an isomorphism, there are essentially two possi-
bilities; (A) {xlayl} = {u11u4}: (B) {xla yl} = {‘llz,’us}.

In case (A), we have {z1,y1} = {w1,u4} and {z},y]} = {ug, us}. With-
out loss of generality, we may suppose £; = u; and y; = u4. Now we have
two choices (1) ] = uy and y] = ug, and (2) =} = u3 and y; = uz. From
(1) and (2), we can obtain two required graphs, respectively, as in Figure
4.

In case (B), both u; and u4 have degree 2, and hence the graphs con-
structed here have 4 vertices of degree 2. They are of Type Il or IV. m

PROPOSITION 10 There exist precisely 6 self-complementary graphs of
Type HI(a) with 9 vertices. There exist precisely 2 self-complementary graphs
of Type H(b) with 9 vertices. See Figure 5.

Proof. We proceed similarly to the above proof of Proposition 9. Note that
for a candidate for the graph H, there are two self-complementary graphs
with 5 vertices, which are Cs and C; * in Figure 3, by Lemma 3. Suppose
that Cs and CF 7 are labeled as in Figure 3. We first specify 4 distinct
vertices 1,1, 7}, Y, in H so that ] = ¥(z,), ¥} = ¥(v1), 1 = ¥(y]) and
1 = ¥(z}) by some isomorphism ¥ : H — H. In the following argument,
we neglect the symmetry of H.

We first consider Type I(a). From Cs, there are essentially two choices
of 2, and y;, depending on whether they are adjacent in Cs, or not. In
the former case, there are two possibilities; (1) £, = u;, y1 = u2, T} = us
and y; = us, and (2) T3 = uy, Y1 = U2, T} = us and y; = uz. In the
latter case, there are two possibilities; (3) z; = u;, y1 = us, } = u4 and
Y, = us, and (4) ; = u, Y1 = us, T, = us and ¥, = us. From C{ ™, there
are essentially two choices of z; and y;, depending on the adjacency of z;
and y;. When z; and y; are not adjacent, we have two possibilities; (5)
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Figure 5: Self-complementary graphs of Type II(a) and H(b)

Ty =uy, Y1 = U4, T} = uz and y; = u3, and (6) z1 = uy, Y1 = Uy, T) =ug
and y; = u. However, in the case when z, and y, are adjacent, the graph
constructed has 4 vertices of degree 2. Hence this belongs to Type Il or IV.

Now we consider Type II(b). From Cs, there is essentially one way to
choose v in Cs such that ¥(v) = v. This is Case (7). In Cf™*, no vertex
other than ug is fixed by any isomorphism between Cj* and C+*, and
hence the only possibility is that v = ug. This is Case (8). m
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