ON THE ANALYSIS OF AN ALGORITHM TO GENERATE
A RANDOM CYCLIC PERMUTATION

HELMUT PRODINGER

ABSTRACT. Sattolo has presented an algorithm to generate cyclic
permutations at random. In this note the two parameters “number
of moves” and “distance” are analyzed.

1. INTRODUCTION

Sattolo [1] generates a random cyclic permutation as follows: She starts
with 12...n, then a random integer between 1 and n — 1 is chosen, say ¢,
and the numbers in positions i and n are interchanged. Then a random
integer between 1 and n — 2 is chosen, say j, and the numbers in positions
j and n — 1 are interchanged, and so on. After n — 1 iterations, a random
cyclic permutation has been obtained.

Here is an example, with n = 5 and the random numbers 4,1, 2, 1:

12345
12354
52314
53214
35214

The result is the cyclic permutation1 23 —+2 3524 1.

In this note we are interested in the (average) number of times digit &
moves; in the example we obtain the numbers 1, 1,2, 1,3 for k=1,...,5.
Altogether that means 1+ 1+ 2 4+ 1 + 3 = 8 moves, which is clear, since
each iteration moves exactly 2 digits.

We are also considering the (average) distance digit k travels. In the
example we obtain the numbers 3,1,2,1,5for k=1,...,5.
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2. THE NUMBER OF MOVES

The probability generating functions ¢, (u) are defined as follows:

Pni(u) = Zan'k;zu’ e Z P{digit k¥ makes ! moves}u'.
1 1

The probability that position k is never chosen by the random number
generator, is given by

n—-2 n-3 .k—l _ k-1

n-1 n-2 k n-1
If position & is chosen by the random generator, digit k is moved once
(to the right) and never moves again. If position k is never chosen by

the random generator, it starts moving (to the left) when the positions
k+1,...,n have already been dealt with. This leads to the recursion

n—ku+k—1
n-—1 n—-1

On.k(u) = ok (u), 1<k<n.
It remains to discuss the instance & = n. The recursion is

u
[son—l.l(u) + on-12(u) + -+ ‘Pn—l,n—l(u)]: n>2,

Pn,n(u) = —

pr1(u) =1
To understand it, note that one move is made, and, according to the random
generator, each position 1,2,...,n — 1 might be chosen with probability
ﬁ. Then digit » is in position k, say, and the further moves are described
by @n—1,k(u).
Let us start with the numbers a, 1;;. It is easy to see that
n—k

Qnp,1;1 = 1, Qp,2;1 = 1, Qn k1 = -1

k>3, n>2 a,;=0.

The recursions tell us furthermore that

1
QA k2 = [ak—l,l;l +ap—121+--+ ak—l,k—l;l]-
n—1
Hence
1 k-1 1 ' .
Unjiz = —— [ 7 + Py 2], n>k23, anre =0 otherwise.

Similarly

Gnk3 = — 1 [ak-l,l;z + ag-122+ -+ ak—l.k—1;2]
and thus
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(k=1)(k—2)
g = —————————— | — —_— - >k >3
ki3 (n—l)(k—2)[ 4 + Hy 3]’ nzk23
We can also compute the next ones as
S S 1, E=-Dk=-2 1 2)
An k4 = (n_l)(k_2)[_Hk—3_4+ ) 2(Hk 3 H ) ’

(for n > k > 3), but it is clear the expressions become very messy.

The numbers H, = 3°"_, L and H{? = _7_, & are harmonic numbers
of the first and second order.

Now we proceed to the expected numbers of moves E, . = ¢}, .(1). The
recursions are

n—-k k-1
B =7t n oy Be
and
E,, _1+—[E_,11+E_12+ +E—ln—]

It is a simple task to find the answers

En,k = n—;y k 2 21 En,l =1, n2> 2) El,l =0

and prove them by induction. Since this can be done by Maple, it is omitted.
Note that

ZEM_HZ"J“% % —on-1),

pard n-—1

as it should.
The second factorial moments can be computed in a similar fashion;

@ (1) = —(8k 4Hy_, — 16)

for k > 2, otherwise 0.

Theorem 1. The average number of moves of digit k in Sattolo’s algorithm
and the variance are given by

En,k = %j_‘:l_sa k Z 23 En,l = 1) n Z 2, El,l = 07
2(k - - 4H,,_
Vn,k = ( 2)(3n +1 Zk) k=2 k 2 2’ Vn,l =0. O

(n— 1)2 T n-1
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3. THE DISTANCE
It is not too hard to change things appropriately.
The recursions for the probability generating functions are now

utkF  pn -2

— Yn— <
mo1 o ogen 1.x(u), 1<k<mn,

Pnk(u) =

1 _ o
Onn(t) = —— |@n-11 (WU + Pno 2 (WU + - 4 opog e (W)uf,
n—1

n>2,
p11(u) =1
From this we get the expectation

n k(3k — 5)
= — — —_— > =
Epx=5-k+1+ 2Ty K22 Bn

and the second factorial moment

2 2
@ _n° 1 _ (k —2)(14k* + k — 21) >
E = 3 nk—3)+k(k-1)+ 18(n — 1) , k22,

M= 122 E?) =o.

Theorem 2. The average distance that digit k travels in Sattolo’s algorithm
and the variance are given by

k(3k —
E,,,k=ﬁ—k+1+'£5——5—)

n
> = - > =
2 2n=1) k>2, E,; 5 n>2, E,=0,
n(n—2) Tk*-34k+21 Kk%(3k—5)
= - >
Vo 12 9n-1) amn_1z F2%
n{n —2)
k) S
Vo 12

Averaging over all digits we find the average distance that a random
element travels:

1 < n+l 1
n 2 Bnk= =0
k=1
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1 Introduction

An orthogonal design of order n and type (s, s2,...,sy) (si > 0), denoted
OD(n;s), 82, .. .,84), on the commuting variables z,,z2,...,z, isann xn
matrix A with entries from {0, +z,, £zo,...,+z,} such that

u
AAT = (O s,
i=1
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Alternatively, the rows of A are formally orthogonal and each row has
precisely s; entries of the type +z;. In [2], where this was first defined, it
was mentioned that

u
ATA= (O sz,
i=1

and so our alternative description of A applies equally well to the columns
of A. It was also shown in [2] that u < p(n), where p(n) (Radon’s function)
is defined by p(n) = 8c+ 2%, when n = 2%, bodd,a =4c+d,0< d < 4.

A weighing matrix W = W (n, k) is a square matrix with entries 0, %1
having k non-zero entries per row and column and inner product of distinct
rows zero. Hence W satisfies WWT = kI,,, and W is equivalent to an
orthogonal design OD(n;k). The number k is called the weight of W.
If £ = n, that is, all the entries of W are £1 and WW7T = nI,, then
W is called an Hadamard matrix of order n. In this case n = 1,2 or
n = 0(mod 4).

Given the sequence A = {ai1,as,...,a,} of length n the non-periodic
autocorrelation function N 4(s) is defined as

n—s

NA(S)‘:Zaia'i-i-sa s=0,1,...,n—1, (1)

i=1

If A(z) = a1 +azz+...+a,2""! is the associated polynomial of the sequence
A, then

n

A(z)A(z™) ZZa,a]z’ = NA(O)+ZNA(3)(2 +27%),2 #0. (2)

i=1 j=1

Given A as above of length n the periodic autocorrelation function Pa(s) is
defined, reducing ¢ + s modulo n, as

n
PA(s)=Za,~ai+s, s=0,1,...,n—1. 3)

i=1

The following theorem which uses four circulant matrices in the Goethals-
Seidel array is very useful in our construction for orthogonal designs.

Theorem 1 [3, Theorem 4.49] Suppose there exist four circulant matrices
A, B, C, D of order n sati sfying

AAT + BBT + cCT + DDT = fI,
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Let R be the back diagonal matriz. Then

A BR CR DR
-BR A DTR -CTR
-CR -DTR A BTR
-DR CT™R -BTR A

GS =

is a W(4n, f) when A, B, C, D are (0,1, —1) matrices, and an orthogo-
nal design OD(4n; 51,52, ..,Sy) 0N T1,%2,...,Ty when A, B, C, D have
entries from {0, £z1,...,%z,} and f = Y5 (s;3). O

Corollary 1 If there are four sequences A, B, C, D of length n with en-
tries from {0, £z, +zo, £x3,£24} with zero periodic or non-periodic auto-
correlation function, then these sequences can be used as the first rows of
circulant matrices which can be used in the Goethals-Seidel array to form
an OD(4n; sy, 82, $3,54). We note that if their non-periodic autocorrelation
function is zero, then there are sequences of length n+m for allm > 0. O

This method for constructing orthogonal designs was used in [1, 6, 7).

Throughought this paper we will use the definition and notation of
Koukouvinos, Mitrouli, Seberry and Karabelas [6].

A pair of matrices A, B is said to be amicable (anti-amicable) if ABT -
BAT = 0 (ABT + BAT = 0). Following [5] a set {Ai, As,..., A2} of
square real matrices is said to be amicable if

n

Z (A”(ﬁ—l)Ag‘(Zi) - Aa(2i)A:(2i_1)) =0 4)

i=1

for some permutation o of the set {1,2,...,2n}. For simplicity, we will
always take (i) = i unless otherwise specified. So

n

Z (A2i-1 AT, — AniAT; ) =0. (5)

i=1

Clearly a set of mutually amicable matrices is amicable, but the converse is
not true in general. Throughout this paper R denotes the back diagonal
identity matrix of order k.

A set of matrices {41, Az,...,An} of order m with entries in {0, £z,,
+,...,+2,} is said to satisfy an additive property of type (s1,s2,...,54)
if

n u
S AAT = (siad) I (6)
i=1 i=1
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Let {A;}%_, be an amicable set of circulant matrices of order ¢, satisfying
the additive property for (s;, ss,...,sx). Then the Kharaghani array

Ay Ag AqR, Ag Ry Aghin AgRn AgRn A7Rn
—Ay Al A3Rn —AgRn AgRy - AgRn Aghn —AgRn
—A4Rn  —A3Rn Ay Ag -ATR, A}n,‘ AT Ry -A{}‘n
—~A3R,  A4Rn -Ag Ay Al R AL R -A;n,. "‘16 Rn
H=| _4gRn -AsRn  AJRn -Aik,. Ay Ag —-aATR, A;}'R,‘
—AsRn AgRn —A;R" —A18 R, —Ag ' Al Rn alm,
—AgRn -A7Rn —-ATRa Ain,‘ AT R —A;Rn Ay Ao
-A7Rn AgRn Al R, alrn -ATR.  -alRa —Ag Ay

is an OD(8t; 51, 82,.--,S8k).

The Kharaghani array which uses amicable sets of eight matrices is also
very useful in our constructions for orthogonal designs.

The following lemma applies a lemma given in Georgiou, Koukouvinos,
Mitrouli and Seberry [1] to determine the number of possible tuples to be

searched determining the size of search space for orthogonal designs in order
56. '

Lemma 1 Let n = 4mn = 56 be the order of an orthogonal design then the
number of cases which must be studied to determine whether all orthogonal
designs ezist is

(i) in® = 784 when 2—tuples are considered;
(i) 252(2n? + Tn + 6) = 5004 when 3-tuples are considered;

(iii) 5hs(n* +6n° — 2n® — 24n 4 64) = 18890 when 4—tuples are considered.

2 New full orthogonal designs from smaller
orders

Theorem 2 There are O0D(56; s, 1,56 — 51,56 —s1) constructed using the
full OD(28; 51,28 — s1) given in [2, 6, 7] for:

(1,1,27,27)  (5,5,23,23) (9,9,19,19)
(2,2,26,26)  (6,6,22,22)  (10,10,18,18)
(3,3,25,25)  (7,7,21,21)  (11,11,17,17)
(4,4,24,24)  (8,8,20,20)  (12,12,16,16)

(13,13, 15, 15)
(14,14, 14, 14)

b

Proof. We use the amicable orthogonal designs of type AOD(2;(1,1),(1,1))
in order two with the two variable designs in order 28 to obtain the desired
designs in order 56. ]
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(1,1,2,52)
(1,1,4,50)
(1,1,6,48)
(1,1,12, 42)
(1,1,16,38)
(1,1,18, 36)
(1,1, 26, 28)
(1,2,2,51)
(1,2,3,50)
(1,2,16,37)
(1,2,17, 36)
(1,2,26,27)
(1,3,16, 36)
(1, 3,26, 26)
(1,6,12,37)
(1,6, 13, 36)
(1,7,12, 36)
(1,18, 18,19)
(2,2,2, 50)
(2,2,8,44)

(2,2,13,39)
(2,2, 14, 38)
(2,2, 16, 36)
(2,2,18, 34)
(2,2,25,27)
(2,2,26,26)

(2,3,3,48)
(2,3,12, 39)
(2,3, 15, 36)
(2,4,25,25)

(2,6,6,42)
(2,6,12,36)
(2,6,18,30)
(2,6,24, 24)

(2,8,8,38)
(2,8, 10, 36)

(2,9,9,36)
(2,9,18,27)
(2,12,18,24)
(2,12,21,21)

(2,13,13,28)
(2,13, 15, 26)
(2,14, 14, 26)
(2,16, 18, 20)
(2,16,19, 19)
(2,18,18,18)
(3,3,12,38)
(3,3, 14, 36)
(3,3, 20, 30)
(3,5,12, 36)
(4,4,4,44)
(4,4,8,40)
(4,4,12, 36)
(4, 4,16, 32)
(4,4,20,28)
(4,7,7,38)
(4,8,8,36)
(4,8,12,32)
(4,8,18, 26)
(4,8, 20, 24)

(4,8,22,22)
(4,9,9,34)
(4,12, 20, 20)
(4,13,13, 26)
(4,14, 19, 19)
(4,16,18,18)
(4,17,17,18)
(5,5, 10, 36)
(5,5,18,28)
(5,10, 18, 23)
(5,15,18,18)
(6,6,6,38)
(6,6,8,36)
(6,7,7,36)
(6,10, 10, 30)
(6,12, 18, 20)
(6,12,19, 19)
(6,14, 18,18)
(6,15, 15, 20)
(7,7,14, 28)

(7,14,14,21)
(8,8,8,32)
(8,8, 10, 30)
(8,8,16,24)
(8,8,18,22)
(8,8, 20, 20)
(8,10, 10, 28)
(8,10, 18, 20)
(8,12,18,18)
(8,14, 14, 20)
(8,16, 16, 16)
(9,9, 10, 28)
(9,9,18,20)
(9,10, 10, 27)
(9,10,18,19)
(9,11, 18,18)
(10,10, 16, 20)
(10,10, 18, 18)
(10, 14, 14, 18)
(14,14, 14,14)

Table 1: Full 4-variable OD(56; s1, s2, 53, 56 —s; — 2 — 83) constructed from
full three and four variable designs in order 28.

Theorem 3 There are full OD(56; 51, S2, 83,56 — 81 — 52 — 83) constructed

using the full OD(28;s1, 52,28 — 81 — s2) and OD(28; 51, 52,53,28 — 81 —
sy — s3) designs in order 28 for the 4-tuples given in Table 2.

Theorem 4 There are OD(56; s, 51,282, 283,56 — 2s; — 259 — 2s3) con-
structed using the Multiplication Theorem [3, Lemma 4.11] with the full
OD(28;s),52,53,28 — 51 — 82 — s3) given in [2, 6, 7] for the values given

in Table 2.

(1,1,2,2,50) (2,2,8,8,36) (2,9,9,18,18)
(1,1,2,16,36) (2,2,13,13,26) (4,4,4,8,36)
(1,1,2,26,26) (2,2,16,18,18) (4,4,8,8,32)
(1,1,6,12,36) (2,3,3,12,36) (4,4,8,20,20)

(1,1,18,18,18) (2,6,6,6,36) (4,8,8,18,18)

(2,2,2,25,25)

Table 2: Full 5-variable designs in order 56 from full 4-variable designs in

order 28.

(2,6,12,18, 18)
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In table 3 we present the new amicable sets of eight matrices which can
be used in the Kharaghani array to construct some new full orthogonal
designs in order 56. In this table we use the symbol Z; to denote —z;.

A As
Type Az Ay ZERO
As A6
A7 Ag
(1,1,25,29) | (a,d,d,d,d,d,d) | (b,bbbbbb) | PAF
(b,d,d,d,d,d,d) | (bd,ddddd) | n=7
(d,d,d,d,d,d,d) | (¢c,b,bbb0bb)
( b,b,b,b,b,6,6) | (b,b,bbbbb)
(1,2,3,25,25) | (a,d,d,d,d,d,d) | (a,d,d,d,d,d,d) | PAF
(a,d,d,d,d,d,d) | (h,h,h,h,h,h,h) | n=T7
(d,d,d,d,d,d,d) | (g,h,h,h,hR}R)
(e h,h,hh,hR) | (e h,hhhhh)
(1,2,845) | (@b,b,a,b,a,a) | (b,b,b,bbbb) | PAF
(a,b,b,a,b,3,a) | (b,b,55b5b) | n=7
(d,b,b,b,b,bb) | (d,b,bbbbb)
(¢, b,b,b,b,b,b) ( b,b,b,b,b,b,b)
(1,2,13,40) ( @b,b,a,b,a,a) | (a,a,a,d,a,a,a) | PAF
( b,a,a,b,a,b,b) | (a,a,4a,8,a,a,a) n=7
(¢a,a,8,0,8,8) | (c,0a,0,8,0,8,a)
(d,b,b,b,b,b,b) | (8,a,0a,08,a,a,a)
(1,2,14,39) | (a,b,b,b,b,0,6) | (d,a,a,8,0,3,a) | PAF
(dsb>b:53b,5,8) (b,b,b,E,b,E,l-z) n=7
(C,b,b,B,b,S,E) (&bvbsbab’b)b)
( b,a,a,b,a,b,b) | (ab,b,e,ba,a)
(1,2,19,34) (a,b,b,a,b,a,a) | (a,bb,a,b,a,a) PAF
(¢,b,b,b,b,0,0) | (a,a,a,8,0,3,a) | n=7
(d,b,b,b,b,b,d) | (&,a,a,0,a,a,0)
( b,a,0,8,0,8,6) | (c,0,0,8,a,8,a)

Table 3: New full orthogonal designs in order 56 constructed from new
amicable sets of eight matrices.
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Al A2
Type As Ay ZERO
As As
A7 Ag
(1,3,8,19,25) b,a,b,a,a) | (e h,h,hh,hh) | PAF
b,a,b,a,a) | (ehhhhh k)| n=7
h,h,hhh) | (5,5,5,5,6,5,5)
b,5,b,0,b) | (h,h,h,h,h,h, k)
(1,3,13,14,25) d,d,d,d,d) | (&f, fe fee) | PAF
ef.ef,f)| (adddddd) | n=7
LE6fF) | (adddddd)
dydsd)d,d) (g:e7esé’e)éaé)
(1,10,18,27) d,d,d,d,d) | (d,bb,bbbb) | PAF
(a,d,d,d,d,d,d) | (d,bb0bbbb) | n=7
,d,d,d,d) | (d,dddddd)
,a,b,a,a) (a,b,b,c‘z,b,&,ﬁ)
(1,14,14,27) d,d,d,d,d) | (d,a,a,a,a,a,a) | PAF
,d,d,d,d) | (dbbbdbbb) | n=7
,d,d,d,d) | (d,d,d,dddd)
ﬁ,&,b,ﬁ,b,b) (a)b7b7a’b)a’)a)
(1,20,35) ,a,a,a,a) | (d,a,a,d,a,a,6) | PAF
va'aaydsa) (('z,b,b,a,b,a,a) n=7
,a,b,a,a) | (a,a,a,d,a,a,a)
( b,b,b,b,b,b,b) (b,b,b,b,b,b,b)
(2’2,818718118) va7baa’a‘ ) ( év f7 f7 €, f’e)e ) PAF
a,b,b,a,b,&,ﬁ) (e,f,f,é,f,é,é) n=7
d,b,b,b,b,5,6) | (d,,b,b,b,5,b)
(haf)fr )f7 1f) (h’f)f:fwf’faf)
(2,4,22,28) | ( @,a,0,a,8,a,a) | ( f,h,h,h,h,h,h) | PAF
Jh,h,h,h, k) | (a,a,a,8,8,a,a) | n=7
(a,8,0,a,0,8,a) | ( f,&h,h,h,hh)
)ava)aaa:aaa) (f)hvi_lﬁh:}‘l’h"h)

Table 3 (cont.)
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Type

ZERO

(3,22,31)

(4,4,4,4,10,10,10,10)

(4,6,46)

(4,7,21,24)

(7)777?7’7’7’7’7)

(7,7,18,24)

(8,11,37)
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PAF
n=7

NPAF
n=7

PAF
n="7

NPAF
n="7

NPAF

n=

NPAF

n=7

PAF
n=7

Table 3 (cont.)




A As
Type A3 A4 ZERO
As As
A7 Asg
(11,14,31) | (&,b,b,a,b,a,a) | ( b,a,a,b,ab,b) | PAF
(¢a,a,8,0,8,a) | (a,bbbbdb)| n=7
(&b,b,c,bc,e) | (¢,b,b,b,b,b,b)
(¢b,6,6,b,6E) | (c,b,b,b,b,b,5)

Table 3 (cont.)

Remark 1 We note that amicable sets of eight matrices of type (4,4,4,4,
10,10, 10,10) and (7,7,7,7,7,7,7,7) which are used for constructing OD’s
in order 56 are also found in [4].

(1,2, 3,50)
(1,2,25,28)
(1,3,8,44)
(1,3,13,39)
(1,3, 14, 38)
(1,3,19,33)

25,25)
9,28)
2,25)

N =

(1,13,14,28)
(1,13,17,25)
(1,14, 16,25)
(2,2,8,44)
(2,2,16, 36)

(2,2,18,34)
(2,2, 26,26)
(2,3,25,26)
(2,4,25,25)
(2,8,8,38)
(2, 8,10, 36)
(2,8,18,28)
(2,8,20,26)
(2,10, 18, 26)
(2,16, 18, 20)
(2,18,18,18)
(3,3,25,25)
(3,8, 19, 26)
(3,8, 20, 25)
(3,9,19,25)
(3,13, 14, 26)

(3,13,15,25)
(3,14, 14, 25)
(4,4,4,44)
(4,4,8,40)
(4,4,10, 38)
(4,4, 14, 34)
(4,4,18,30)
(4,4, 20,28)
(4,4,24,24)
(4,8,8,36)
(4,8,10,34)
(4,8, 14, 30)
(4,8,18,26)
(4,8,19,25)
(4,8,20,24)

(4,10,10, 32)
(4,10,12, 30)
(4,10, 14, 28)
(4,10, 18, 24)
(4,10,20,22)
(4,12, 20, 20)
(4,13,14, 25)
(4,14, 14, 24)
(4,14, 18, 20)
(4,16,18,18)

(7,7,7,35)

(7,7,14,28)

(7,7,21,21)
(7,14, 14, 21)

(8,8, 10, 30)

(8,8,18,22)
(8,8,20,20)
(8,10, 10, 28)
(8,10, 14, 24)
(8,10, 18, 20)
(8,12,18,18)
(8,14, 14, 20)
(10, 10, 10, 26)
(10,10, 12, 24)
(10,10, 14, 22)
(10,10, 16, 20)
(10,10, 18, 18)
(10,12, 14, 20)
(10,14, 14, 18)
(14, 14,14, 14)

Table 4: Full 4-variable OD(56; 51, s3, s3, 56 —s; — $2—$3) constructed from
full designs presented in table 2.

87



51, 82,83 51,82,83 S1, 982,383 31,982,383 51, 82,83
(1,9,46) (4,15,37) (6,11,39) (8,13, 35) (11,12,33)
(1,23,32) (4,23,29) (6,16,34) (8,15,33) (11,13, 32)
(1,24,31) (5,6,45) (6,17,33) (8,17,31) (11,15, 30)
(2,5,49) (5,7,44) (6,21,29) (8,21,27) (11,16,29)
(2,7,47) (5,8,43) (6,23,27) (9,12, 35) (11,22,23)
(2,11,43) (5,9,42) (7,8,41) (9,14, 33) (12,13,31)
(2,23,31) (5,11,40) (7,9,40) (9,15,32) (12,15,29)
(3,4,49) (5,13,38) (7,10, 39) (9,16,31) (12,17,27)
(3,6,47) (5,14, 37) (7,15,34) (9,17,30) (13,16,27)
(3,7,46) (5,16, 35) (7,16,33) (9,21, 26) (13,19, 24)
(3,10,43) (5,17,34) (7,17,32) (9,23,24) (13,20,23)
(3,11,42) (5,19, 32) (7,19,30) (10,11, 35) (13,21,22)
(3,21,32) (5,20,31) (7,20,29) (10,13, 33) (15,17,24)
(8,22,31) (5,21,30) (7,22,27) (10,15, 31) (15,19, 22)
(3,24,29) (5,22,29) (7,23,26) (10,17,29) (16,17,23)
(4,5,47) (5,24,27) (8,9,39) (10,21, 25) (17,19, 20)
(4,11,41) (6,9,41)

Table 5: The existence of these 82 full OD(56; s;, 52,56 — s; — s2) is not
yet established.

3 Full designs with even parameters

We note that Seberry [8] showed that if all OD(n;z,y,n — T — y) exist
then all OD(2n;z,w,2n — z — w) exist for s > 0 an integer. In particu-
lar if all OD(2!p; z,y,2'p — = — y) exist, for some odd integer p, then all
OD(2tp; z,w, 2+ p — 2z — w) exist for s > 0 an integer we observe

Lemma 2 If all OD(2'p;2z,2y,2'p — 2z — 2y) ezist, for some odd integer
p, then all OD(2'p; 22,2w,2!%5p — 22 — 2w) exist for s > 0 an integer.

Corollary 2 If OD(56;6,16,34) ezist then all OD(2°%37;2z, 2w, 2537 —
2z — 2w) ezist for s > 0 an integer.

Proof. A search of full 0D(56; z,y, 36 — = — y) show only the parameters
indicated are as yet unsolved. 0

4 Summary

We have found new designs in order 56 and shown that of 1285 possi-
ble OD(56; sy, s2,83,56 — 81 — s2 — s3) 163 are known: of 261 possible
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0D(56; sy, s2,56 — 81 — s2) 179 are known; and all possible OD(56; s;, 56 —
1) are known.
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