Realizability of p-Point, g-Line Graphs with

Prescribed Minimum Degree and Line Connectivity

by D. Di Marco

New York City Technical College

Abstract

It is an established fact that some graph-theoretic extremal questions
play an important part in the investigation of communication network
vulnerability. Questions concerning the realizability of graph invariants are
generalizations of these extremal problems. We define a (p, q, A, 8) graph as a
graph having p points, q lines, line connectivity A and minimum degree §. An
arbitrary quadruple of integers (a, b, c, d) is called (p, q, A, §) realizable if there
isa(p, q, A, 8) graph with p=a, q=b, A = ¢, and § = d. Inequalities
representing necessary and sufficient conditions for a quadruple to be (p, g, A, 8)
realizable are derived. In recent papers, the author gave necessary and sufficient
conditions for (p, q, k, A), (p, q, A, A), (p, 9, 8, A) and (p, q, k, 8) realizability,
where A denotes the maximum degree for all points in a graph and k denotes the
point connectivity of a graph. Boesch and Suffel gave the solutions for (p, g, k),
(P, 9, A), (p, 9, 8), (p, A, 8, A) and (p, A, §, ) realizability in earlier manuscripts.

Introduction

Here we consider an undirected graph G = (V, X) with a finite point set
V and a set X whose elements, called lines, are two point subsets of V. The
number of points is denoted by p, and the number of lines | X| is denoted by
q(G) or q. This paper uses the notation and terminology of Harary [13]; however
a few basic concepts are now reproduced.
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The line connectivity of a graph G (denoted by A or A(G)) is the
minimum number of lines whose removal results in a disconnected graph. A
graph is called trivial if it has just one point. The point connectivity (denoted by
k(G) or k) is the minimum number of points whose removal results in a
disconnected or trivial graph. The number of lines connected to a point v of G is
the degree of that point, denoted by d (G) or d,. The minimum degree is denoted
by & or 8(G) and the maximum degree is denoted by A. If & = A, the graph is
called regular, A p point graph with 8 =p - 1 is called complete and is denoted
by K,. A set of A lines whose removal disconnects G is called a minimum line
disconnecting set.

It is an established fact that some graph-theoretic extremal questions
play an important part in the investigation of communication network
vulnerability [1-12,15]. Harary [14] found the maximum point connectivity
among all graphs with a given number of points and a given number of lines.
Questions concerning the realizability of graph invariants are generalizations of
these extremal problems. We define a (p, q, A, §) graph as a graph having p
points, q lines, line connectivity A and minimum degree 6. An arbitrary
quadruple of integers (a, b, ¢, d) is called (p, g, A, 8) realizable if there is a
(p, 9, A, 8) graph with p=a, q=b, A = c and § = d. Inequalities representing
necessary and sufficient conditions for a quadruple to be (p, q, A, 8) realizable
(or, more briefly, realizable) are derived. The author derived necessary and
sufficient conditions for (p, q, K, A), (p, g, A, A), (p, q, 8, A) and (p, q, K, 8)
realizability in recent papers [9-11]. In [1-3] the conditions for (p, q, ),

(p, 9, M), (p, q, 8), (p, A, 8, X) and (p, A, §, ) realizability were given by Boesch
and Suffel.

Preliminaries

We start by reviewing some known results that are pertinent to the
realizability question.

Lemma 1 [8): If 5 >| 2 pl, then A = 8.

Lemma 2 [14]: If 2 <8 < p - 1, then there is a graph on p points with
q=["2p&land A =8 = k. (This graph is a power of cycle and is usually called
the Harary graph on p points).

Lemma 3: If A <3, then after the removal of any minimum line disconnecting
set, each component must have at least § + 1 points.

This lemma follows from Chartrand's work concerning Lemma 1.

We now give some new results.
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Lemma 4: If A <, then
qQSA+%28(B+ 1)+ Va(p-6-1)p-8-2).

Proof: Let G be a graph with A <8, W be a minimum line disconnecting set and
A, B be the two components of G - W. Let |A|=N, thus |B|=p - N. We then
have q(G - W) < 2 N(N - 1) + %2(P - N)(P - N - 1). We wish to maximize the
right side of this inequality on § + 1 SN <p - § - 1 (recall Lemma 3). Since this
quantity is a quadratic in N with a leading term of N?, the maximum must take
place at one of the bounds of the interval. It is easily verified that the value of
the right side of the inequality is the same at each bound. Since

q(G) = q(G - W) + A the result follows easily.

Lemma 5: If =" p §]and A is odd, then & is odd.

Proof: Suppose there is a graph G with q = [2p 5], A odd and 6 even. Let W
denote a minimum line disconnecting set of G and let A be one of the two
components of G - W. As G is regular of degree & we have

Y.cadi(G - W) =8| Al - A, which is odd. Since A is a component of G - W, this
is impossible and the result is proven.

Lemma6:Ifp=28+2,q="pdand A isodd, then A =35.

Proof: We assume there is a graph withp=28+2,q="2p 8, A oddand A <$
and proceed as in the proof of Lemma 5. (Here we note that Lemma 3 implies
|Al=8+1).

The (p, q, ), ) realizability theorem

Theorem. A quadruple of non-negative integers (p, q, A, d) is realizable if and
only if exactly one of the following conditions holds:

m p<28+1,[v%ps]l <qs8+%(p-1)p-2),andA=8<p-1<q.

an p2238+2andifA>0thenq2p-1
(A) [apdl+1<q<8+Y(p-1)p-2),r<d andif L <, then
QSA+ R 8@G+ 1)+ Va(p-6-1)p-8-2).
®) q=[~psl
(a) A <dandAiseven.
(b) A <35, A and & both odd, and ifp=2 8 + 2, then L =3.

Proof: The conditions in (I) follow from Lemma 1 together with well known

facts concerning graphs. The conditions in (II) are a consequence of Lemmas 4,
5 and 6, and some obvious facts about graphs.
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We now provide constructions to prove sufficiency.
Case 1. Suppose that § 22, A=8 <p- 1,and[v2p81<q< 5+ %(p- D(p - 2).
Let H denote the Harary graph on p points with [ 2 p §]lines and A = §, and let
v denote one of the points in H. Adding q -[ %2 p 8] lines to H in such a way that
none of the added lines are incident to v yields the desired graph. Thus any
quadruple satisfying this case is realizable.
Case 2. Suppose that § 22,1 <8, A iseven, p=25+2and
[p8l<sqsh+v28(5+1)+%(p-5-1)p-85-2).
Let H, denote the Harary graph on p - & - 1 points with [ 2 (p-5-1)81 lines and
A(H,) = 8(H,) = &. Take the union of H, and K;. , to form a single graph. If
A=0,add q- [ p &1 lines to H, and we are done. If 1 > 0, denote the points in
H, by A and the points in K;, ; by B. We note that every graph with minimum
degree § has a path containing at least 3 + 1 points. Let P, be a path in H,
containing A points. Starting at one endpoint of P, travel along P, labeling the
points 1,2,3,..., A. In a like manner, take a path in K;, , containing A points and
denote these points by 1',2', 3',...,A". Add the lines {1, 1'}, {2, 2"}, {3, 3'},...,
{A, X'} and delete the lines {1, 2}, {3, 4}, {5, 6},..., {A-1,A}, {1',2'}, {3', 4'},
{5',6'},..., {(A-1)", 1'}. Adding q - [ p 81 lines, none of which join points in A
to points in B yields the desired graph. There is at least one point in B which is
not adjacent to a point in A, denote such a point by v,. Each line deleted from
H, can be replaced by a path containing v,. This, together with the fact that no
two lines deleted from K. , were adjacent shows that our graph has the desired
line connectivity and satisfies the needed conditions.
Case 3. Suppose that § 22,1 <§,Aisodd, p=2 8+ 2 and
YapSl+1<qsA+%8(B+ 1)+ (p-5-1)p-5-2).
First repeat the construction used in Case 2 with A - 1 in place of A and
q-[%p8]- 1inplace of q-[2p §]. Adding a line which joins a point in A to
a point in B finishes the construction.
Case 4. Suppose that § 22,1, <3, p>25+2,q=[%psland 2, pand § are all
odd.
Note that p > 28 + 3. Take the Harary graph on § + 2 points with
[v2 (5 + 2)5 ] lines and A = 3, and delete one of the lines incident to the point of
degree & + 1. Denote the resulting graph by C. Let H, denote the Harary graph
on p - § - 2 points with [ V2 (p - § - 2)5] lines and A(H,) = 8(H,) = 3. Take the
union of H, and C to form a single graph. There is a path in C which contains A
points and has, as an endpoint, the point of degree & - 1. As we did in Case 2, we
label the points in this path 1,2,3,..., A (with the point of degree § - 1 labeled 1).
We now take a path containing A points in H, and, in the usual manner, label its
points 1', 2, 3',...,\". Add the lines {1,1'}, {2,2'}, {3,3'},..., {A,\'} and delete the
lines {2,3}, {4,5}, {6,7},..., {(A-1,A}, {1'2'}, {3'4'}, {5',6'},..., {(A-2), (A-1)'}.
Each line deleted in C can be replaced by a path containing two points in H,,
and vice versa. We therefore have the desired line connectivity and this case is
finished.
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Case 5. Suppose that 5 >2,A <8, p228+2,q=[ " p 51, pis even and A and §
are both odd. Note that Lemma 6 implies p > 25 + 4. Let C be defined as it was
in Case 4. Take the Harary graph on p - & - 2 points with [ V2(p - & - 2)8] lines
and A = §, and delete one of the lines incident to the point of degree & + 1.
Denote the resulting graph by D. Forming the union of C and D and continuing
in a manner similar to that used in Case 4 will give us the desired graph (which
is regular of degree ).

Case 6. Suppose that é < 1. First, we consider the possibility that 8 =1 = 0 and
q< %2 (p- 1)(p - 2). Let G be the graph with p points and no lines and denote
one of the points in G by v,. Adding q lines to G, none of which are incident to
v,, finishes the construction.

Next we assume that =1, A =0, p >4 and
[apl<sqs1+% (p - 2)(p - 3). If p is even, let A be the graph composed of
Y2 (p - 2) copies of K,. However, if p is odd let A be the union of K, , and
Y2 (p - 5) copies of K,.

Take the union of A and K, and add q -[ %2 p1lines incident only to
points in A. The resulting graph has the desired properties.

On the other hand, it may be thatA=8=1, p2>2 and
p-1=<q<1+%(p-1)p-2). Consider a path on p points and denote one of its
endpoints by v;. Adding q - (p - 1) lines, none of which are incident to v,, yields
the desired graph and we are finished with Case 6.

We are done with our constructions and will now show sufficiency.
Case | shows the conditions of the theorem are sufficient if we also have § > 2
andA=3.If weassume §>2,A<8and[%Lpsl+1< q then Cases 2 and 3
show the sufficiency of the conditions in the theorem. Similarly, if we assume
822,A<8and[ % p&]=qthen Cases 2, 4 and 5 are adequate. Case 6 shows
the sufficiency of the conditions of the theorem for § < 2 and our proof is done.

Conclusion

The (p, q, A, d) realizability theorem in this paper solves several
extremal problems. If any three of the parameters p, g, A and 8 are given we can
find the range of values for the unknown parameter. Let max (p | q,1,5) denote
the maximum value of p among all (g,A,8) graphs and min (p | q,1,5) denote the
minimum value of p among all (q,A,5) graphs.

Corollary 1. For all (g,A,8) graphs the following results hold:

[ L(2q-2)/8], if & > 2 and one of the following holds:
| (@) & is even and A is odd, or

(1) max (plq,A,8) = { (b)Aisodd, A <and p=25+2
| q+1, ifé6=1
| oo, if6=0
( l_2q/6_] , otherwise.
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[ max (M,26+2,N), ifA<$
(2) min (plg,A,8) = { max (M, 5+ 1), ifA=8andq>$
l8+1, ifA=8=gq;

where M =[ [3 + (1 +8q - 85)"?)/2 Jand
N=[§+{3+[1+8q-8\-455+1)]"}21.

Proof: First we will prove equation (1). If § is even and & is odd, Lemma 5
implies p <| (2q-2)/6 J. From Lemma 6 we have if A is odd, A <& and -
p=25+2thenp <l (2q-2)/6 ]. To complete our list of upper bounds of P
note that p <|. 2¢/6 Jand if A > 0 then p < q + 1. If we assume & > 2, it follows
that| 2q/6 1< q+ 1. On the other hand, & = 1 implies | 2q/5 1= q + 1. The result
follows. We will now prove equation (2). From the realizability theorem
q<d+ % (p- 1)(p - 2) holds for all graphs. Therefore p?-3p+2(1 +8-q) >0
and, as a result, p 2 M if q > 8. If A < 8 then Lemma 4 states that

qsA+%3@+1)+%(p-8-1)p-56-2).
Thus

PP-(28+3)p+2(A+82+28+1-q)20

and, consequently, p 2 N or

p<l &+ {3-[1+8q-8A-45(5+1)]"}/2 ]
We denote the last quantity by Q. As a result of the realizability theorem we
havep 2§+ 1 and if A < § then p 2 25 + 2. We note that 2§ + 2 > Q and
therefore equation (2) holds.

Corollary 2. For all (p,q,A) graphs the following results hold:
(3) max (81 p.g.) = min (L 2¢/p ], max &, L (p - 202 1));
(4) min (3 p,g,\) =2 ‘

Proof: First we will prove equation (3). From Lemma 1 we see that if A < § then
8<| (p-2)2 ) Thus & <max (A, L (p-2)2 J). Other upper bounds for
include both | 2q/p | and p - 1. The result follows from the fact that
max (A, L P-221)< p - 1. Next we will prove equation (4). We note that
d2q-"(p- 1)p-2)and &= A In [3] it was shown that
qsA+v2(p-1)p-2). Thusi=q-2(p- 1)p - 2) and equation (4) has been
proven.

The following two corollaries are given without proof.

Corollary 3. For all (p,q,5) graphs the following results hold:
[0,ifg<p-1

max (A| p,g,8) = 4
l5,ifqzp-1.
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[8,ifp<25+10rq>8+%38(3+1)+%(p-5-1)p-5-2)
min Al p,g,8) = { .
[0, otherwise.

Corollary 4. For all (p,A,5) graphs the following results hold:

[A+128(6+1)+%(p-8-1)p-5-2), ifA<&
max (q| pA,8) =1
L6+%(p- )p-2), ifA=35.

([p8/21+ 1, if 2 2 and one of the following holds:
(a) 8 is even and ) is odd, or
min (q] p,A,8) = { (b)Lisodd, A<dand p=25+2
[p-1, if5=1
l I[’p8/2-| ,  otherwise.
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