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Abstract: A graph is a unit interval graph (respectively, an 7A-graph) if we can
assign to each vertex an open interval of unit length (respectively, a set of n
consecutive integers) so that edges correspond to pairs of intervals (respectively,
of sets) that overlap. Sakai [14] and Troxell [18] provide a linear time algorithm
to find the smallest integer » so that a unit interval graph is an #-graph, for the
particular case of reduced connected graphs with chromatic number 3. This
work shows how to obtain such smallest » for arbitrary graphs, by establishing a
relationship with the work by Bogart and Stellpflug [1] in the theory of
semiorders.

1. Introduction

In Sakai [14] and Troxell [18], graph theoretical concepts were used to study
predicates that arise in attempting to describe the interrelation among perceived
stimuli in an environment. In particular, two classes of graphs play a major role
in the works above: unit interval graphs and 7i-graphs.

A graph? G is called interval graph (tespectively, Ai-graph) if there is a function f
assigning to each vertex in ¥ an open interval on the real line (respectively, a set
with n consecutive integers) so that for all x,yeV, with x=y,

{xy} €E & flx)nf(y)=D.

For an interval graph G, if the intervals can all be chosen with unit length, G is
called unit interval graph. There is a close relationship between the class of unit
interval graphs and the class of 7i-graphs as shown by the following result.

Theorem 1 [Roberts [13]] Every /i-graph is a unit interval graph. Moreover,
every unit interval graph is an 7i-graph for some positive integer n.
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2 Except as otherwise defined, we are going to use the graph-theoretical terminology of
Harary [6]; also in what follows, G is a simple graph with vertex set ¥ and edge set E.
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In view of Theorem 1, it is very natural to ask the following question:

If G is a unit interval graph, what is the smallest integer n so
that G is an fi-graph? We will denote this number by np,(G).

This question has been partially answered in Sakai [14] and Troxell [18] for
reduced connected graphs G with chromatic number 3, where a linear time
algorithm to find 7i(G) is provided. This algorithm is based on a
characterization of such graphs with a given nyi(G) in terms of excluded
induced subgraphs. We repeat here, for completeness, the definition of reduced
graphs, however this notion will not be used in the present work. Let us define
the following binary relation R on the vertices of G as follows. For all x,yeV,
(x)€R if and only if x=y or [{x,y} €E and for all ze ¥, {x,z} €E <>{y,z}€E]. It
is easy to see that R is an equivalence relation and we can define the graph G
whose vertices are the equivalence classes of ¥ under R, and with an edge
between two equivalence classes containing x and y, respectively, if and only if
{x.y} €E. We say that G is reduced if G is isomorphic to G

In the remaining sections, we will relate Graph Theory and the Theory of
Ordered Sets, and show that the question above can be completely answered
even for graphs that are not reduced and for graphs with arbitrary chromatic
number. The main tool in showing the preceding answer is the work by Bogart
and Stellpflug [1] in the theory of semiorders. A binary relation S on a finite set
A is called a semiorder if the following axioms are satisfied for all a,b,c,deA4:

Axiom 1: (a,a)gS
Axiom 2: [ (a,b)eS and (¢c,d)eS ]| = [ (a,d)eS or (c,b)eS ]
Axiom 3: [ (a,b)eS and (b,c)eS | = [ (a.d)eS or (d,c)eS]

In Section 2, we use the theory on comparability graphs to investigate the
uniqueness of transitive orientations of complements of unit interval graphs.
Section 3 establishes the connection between the question above and the work
by Bogart and Stellpflug [1].

2. Transitive Orientations of Complements of Unit Interval Graphs
We begin this section by recalling some definitions and results that are essential

in the proof of Theorem 6, where we show that the transitive orientation of the
complement of a unit interval graph is unique up to reversal.
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The complement of G, denoted by G°, is defined to be that graph with the same
vertex set as G, and for all x,ye V, with x=y, {x,y} is an edge in G° if and only if
{x.y} €E.

An orientation F for the graph G is an assignment of directions to the edges of
G. More specifically, F is a binary relation on V such that, for all x,yeV,
{x,y} €E if and only if F contains exactly one of the pairs (x,y) and (y,x). The
reversal of an orientation F, denoted by F ! is the orientation of G so that
(xy)eF " < (y,x)eF. An orientation F is said to be transitive if for all x,y,ze V,
with x=#z, if (x,y),(y.2)eF then (x,z)eF. Graphs with transitive orientations are
called comparability graphs or partially orderable graphs.

The following characterization relates interval graphs to comparability graphs.

Theorem 2 [Gilmore and Hoffman [4]] A graph G is an interval graph if and
only if G does not contain circuits of length four as induced subgraphs and G° is
a comparability graph.

The following Lemma is a straightforward consequence and will be used in the
sequel.

Lemma 3 Let G be an interval graph. Then G° has at most one connected
component containing at least one edge.

Proof: If G° has two connected components with at least one edge each, then the
vertices incident to these two edges form an induced circuit of length four in G,
contradicting Theorem 2. So, only one connected component of G° can have
more than one vertex and all the others are isolated vertices. B

Theorem 4 gives a necessary and sufficient forbidden structure condition for an
interval graph to be a unit interval graph. A claw is any graph isomorphic to the
graph with vertices a,b,¢,d and edges {a,b},{a,c}, and {a,d}.

Theorem 4 [Roberts [10}] Let G be an interval graph. Therefore G is a unit
interval graph if and only if G contains no claw as an induced subgraph.

A comparability graph G is called uniquely partially orderable if it has exactly
two transitive orientations, one being the reversal of the other. A
characterization of uniquely partially orderable graphs is provided by Theorem 5
below. We need some preliminary definitions.

A subset Y of ¥V is called partitive if for each xe V-Y either YNAdjg(x)=Bor Y ¢

Adjg(x), where Adjs(x) denotes the set of vertices adjacent to x in G. A partitive
subset Y is said to be nontrivial if it has more than one vertex and is not /.
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A subset W of V is called stable if whenever x,ye W, {x,y} &E.

Theorem 5 [Shevrin and Filippov [16]; Trotter et al. [17]] Let G be a
connected comparability graph. Therefore, G is uniquely partially orderable if
and only if every nontrivial partitive set of G is a stable set.

For more about uniquely partially orderable graphs we refer the reader to the
excellent book by Golumbic [5].

We are now ready to state the main result in this section. We should notice,
however, that Theorem 6 is essentially proved in Roberts [12] for reduced unit
interval graphs using a notion of compatibility between a graph and a simple
order. We prefer the more graph-theoretical approach given here since the
reduced assumption is not required and since it minimizes the introduction of
too much Ordered Set terminology.

Theorem 6 Let G be a connected unit interval graph. If G has at least one edge,
then G° is uniquely partially orderable.

Proof: By Theorem 2, G° is a comparability graph. In view of Lemma 3, let G,
be the connected component of G° with at least one edge (notice that all the
other connected components are isolated vertices). Clearly, G; is also a
comparability graph. We will show that every nontrivial partitive subset of G, is
stable (in G°). So, by Theorem 5, G; is uniquely partially orderable, and
consequently G° is uniquely partially orderable, by Lemma 3.

Let ¥, and E, be the vertex set and the edge set of G, respectively. Suppose by
contradiction that G, has a nontrivial partitive subset that is not stable. Let Ybea
maximal nontrivial partitive subset of G, that is not stable. By the definition of
partitive subsets, if ze V; -Y then either z is adjacent in G; to all vertices in Y, or z
is not adjacent in G, to any vertex in Y. Let x,yeY such that {x,y}€E,. Consider

Y,= {zeV,-Y: {zx}E}
Y,= {ZE V; -Y {Z,X} GE]}

Clearly Y, nY,= @ and Y, UY,=V;-Y. Also, if ze Y, and weY; then {z,w}€eE;
since otherwise w,x,y,z would induce a claw in G, contradicting Theorem 4. So,
if Y»# @ then Y LY, would be a partitive subset because z€ V,-(YVY)=Y,
implies Y UY; < Adjg(2). By the maximality of Y, we must have Y UY.= V.
Therefore we would have Y; = &, and consequently G; would be disconnected,
since every vertex in Y- is not adjacent in G; to any vertex in Y, a contradiction.
Hence Y= @. Since Y is nontrivial, ¥, # &. Let zeY,. Notice that V=V, since
otherwise there is a we V-V, and w,x,y,z would induce a claw in G, again
contradicting Theorem 4. But then G would be disconnected since every vertex
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in ¥, is adjacent in G; to all vertices in Y, and Y UY; =V, a contradiction. So,
every nontrivial partitive set of G, is stable. H

3. Unit Interval Graphs and Semiorders

Theorem 7 establishes the connection between unit interval graphs and
semiorders.

Theorem 7 [Roberts [11]] A graph G is a unit interval graph if and only if G* is
a comparability graph and every transitive orientation of G* is a semiorder.

Before we proceed, a more convenient equivalent definition of semiorders and
some notation will be introduced.

Theorem 8 Let S be a binary relation on a finite set A. The following statements
are equivalent.

i. Sisasemiorder on 4.

ii. There exists a function f from A4 to a set of equal length nonempty
open intervals of real numbers so that for all x,ye4, (x,y)€S if and
only if the interval f{x) is to the left of the interval f{y), that is, the
right-hand endpoint of f{x) is less than or equal to the left-hand
endpoint of f{y).

iii. For any positive number §, there exists a real-valued function g on 4
such that for all a,be4, (a,b)eS <> g(a)>g(b)+d.

Proof: For a proof for the equivalence i <> iii the reader is referred to Scott and
Suppes [15]. The proof for the implications ii = i and iii = ii are
straightforward and they are left to the reader. B

We will use the definition of semiorders given in item ii. of Theorem 8. In this
definition, the function f is called a representation of the semiorder. A
representation f is said to be discrete if all the intervals in the image of f have
integer endpoints. A semiorder is k-representable if it has a discrete
representation using intervals all of length k. It should be observed that if a
semiorder is k-representable, then it is also (k+1)-representable. (For a
constructive proof of this claim see Bogart and Stellpflug [1].) It makes sense to
have the following definition: a semiorder has representation length k if it is k-
representable but not (k-1)-representable.

The reversal of a semiorder S on 4, denoted by § I is the binary relation on 4 so
that for all x,yed, (xy)e S~ & (y.x)eS.
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Lemma 9 Let S be a semiorder on a finite set 4 and let & be a positive integer.
Therefore S is a semiorder on 4; furthermore S is k-representable if and only if
5! is k-representable.

Proof: The results follow by reversing the signs and the order of endpoints of
intervals in a representation of S obtaining a representation of S~/ ll

We are finally ready to state the result that will allow us to find 7,,;,(G), that is,
the smallest integer # so that a unit interval graph G is an 7i-graph.

Theorem 10 Let G be a connected unit interval graph. If G° has at least one
edge, then there exists a unique positive integer &{(G) so that every transitive
orientation of G° is a semiorder with representation length k(G). Moreover, (G)
= nmm(G)

Proof: By Theorem 6, G° is uniquely partially orderable. Let S and S be the
only two transitive orientations of G°. By Theorem 7, S and S*! are semiorders.

Let us show first that either S or S~/ is k-representable for some positive integer
k. Since G is a unit interval graph, Theorem 1 implies that there is a positive
integer n so that G is an 7i-graph. Let f be a function from V to a family of sets
of n consecutive integers so that for all x,yeV, with xy, {xy}eE &
J)NAy)=d. Define the function f* from V to a set of equal length nonempty
open intervals of real numbers, so that for each xeV, f(x) is the interval with
left-hand endpoint as the smallest integer in f{x) minus one, and right-hand
endpoint as the largest integer i /(x) It is not difficult to see that f” is a discrete
representation of either S or S ' using intervals all of length n. Therefore, by
Lemma 9, both S and S ' are k—representable for &=n. Choose k(G) to be the
smallest positive integer k so that S and S~/ are k-representable, and the result
holds.

It remains to be shown that k(G) = n,,,;,(G). Notice that, if n is chosen to be equal
t0 Myi(G), an argument similar to the one presented in the previous paragraph
shows that &(G) < nui(G). To show that A(G) 2 nyi(G), let £ be a discrete
representation of S using intervals of length 4(G). Define the function f° from V
to the family of sets of k(G) consecutive integers, so that for each xeV, f'(x) is
the set of consecutive integers starting with the left-hand endpoint of the interval
f(x) plus one and ending with the right-hand endpoint of f{x). It is not difficult to
see that for all x,yeV, with x=#y, {x,y}€E & f(x)f(y)2D. Therefore G is an #-
graph with n=k(G), and this shows that #(G) 2 ny;,(G). B

Theorem 10 is the key result in answering the question mentioned in Section 1.
Bogart and Stellpflug [1] find k so that a given semiorder has representation
length & by looking for certain forbidden structures in the semiorder. Therefore,
in view of Theorem 10, if G is a connected unit interval graph and G° has at least
one edge, we can find n,,;,(G) by looking at the semiorder given by a transitive
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orientation of G°, and finding k(G) such that the semiorder has representation
length k(G). On the other hand, if G° has no edges, then G is a complete graph
and it is easy to see that n,;,(G) = 1. We can finally find ny;,(G) if G is a unit
interval graph, not necessarily connected, by observing that n,,(G) is the largest
nmin(G;) over all connected components G; of G.

4. Further Research

There are several related works on semiorder representations besides the work
by Bogart and Stellpflug [1]. For example, Doignon [2,3] and Pirlot [8,9] use a
variant of the usual definition of semiorders and semiorder representations, and
establish the existence of a minimal representation. Mitas [7] provides an order-
theoretic proof of the same fact and present a linear time algorithm for
determining the representation length of a semiorder. A comprehensive
summary of previous results on semiorder representation as well as further
developments in the area can be found in Pirlot and Vincke [10].

One direction for further research would be to use the results on this paper to
bridge the works above on semiorder representations and the graph-theoretic
counterparts to look for alternative algorithms to find 7,;,(G) in terms of graph
theoretic features, and to obtain a better interpretation of 7,,;,(G).
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