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Abstract

In this short note using the method developed in [10]

and [11], we construct a highly symmetrical, non-simple, attractive
7-Venn diagram. This diagram has the minimum number of vertices,
21. The only similar two, published in [1] and [11], differ from ours in
many ways. One of them was found by computer search ([1]). Both
of them are "necklace” type Venn diagrams (see [14] for definition),
but ours is not.

Introduction

be found in more detail in [6], [7], [8], [2] and [10].

An n-Venn diagram consists of a family F of n simple closed Jordan curves
in the plane so that all possible intersections (2" many) of the interiors and

the exteriors of these curves are nonempty and connected.

We note that each of the 2" cells can be described by an n-tuple of zeros
and ones where the ith coordinate is 0 if X; is the unbounded exterior of

C;, otherwiseitis 1,1 =1,2,...,n.
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It is clear that there is a one-to-one correspondence between the 2" sets
of a Venn diagram and the vertices of the n-dimensional hypercube. If
A=X1NX2N...NXx is aset in a Venn diagram then the corresponding
n-tuple in the hypercube is the description of A.

A Venn diagram is simple if at most two curves intersect (transversely) at
any point in the plane. Among the nonsimple Venn diagrams, we will con-
sider only those in which any two curves meet (not necessarily transversely)
in isolated points and not in segments of curves.

With each Venn diagram one can associate two graphs. The Venn dia-
gram itself can be viewed as a planar graph V(F) where all the intersection
points of the curves in F are the vertices of V(F) and the segments of the
curves with vertices as end points are the edges of V(F). In proper context,
confusion rarely arises from also calling this graph a Venn diagram. In the
rest of this paper the notations F and V(F) are freely interchanged when
it is not important that the Venn diagram is a graph. The Venn diagram
V(F) may have multiple edges. The graph V(F) is a planar graph. Note
that the Venn diagram depends upon its drawing in the plane. The graph
dual of V(F) will be called the Venn graph, denoted by D(F).

Quite often we will consider the Venn graph D(F) to be superimposed on
the Venn diagram in the plane, and we will use descriptive statements such
as "the curve C of F intersects or crosses the edge e of D(F)”. (These
descriptive statements can be rigorously stated).

Several interesting properties of Venn diagrams and Venn graphs were de-
rived in [2]. Here we simply state those properties we need as remarks and
refer the reader to [2] for proofs.

Remark 1 The Venn graph D(F) of a Venn diagram V(F) is a
planar, spanning subgraph of the |F|-hypercube.

Remark 2 No two edges in a face in a Venn diagram belong to
the same curve.

Remark 3 A Venn graph D(F) is simple and 2-connected, but
the deletion of any pair of adjacent vertices does not disconnect
the graph.

Remark 4 If F forms a simple Venn diagram, then each face of
D(F) is a quadrilateral, and hence D(F) is a maximal bipartite
planar graph.

Remark 5 A simple Venn graph D(F) has connectivity 3.
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A Venn diagram with n curves is said to be symmetric if rotations through
360/n degrees map the family of curves into itself, so that the diagram is
not changed by the rotation.

Recently, considerable attention has been given to symmetric Venn dia-
grams. The concept was introduced by Henderson [13]. The simple Venn
diagrams with one, two, or three circles can obviously be represented as
symmetric Venn diagrams. Henderson provided two examples of non-simple
symmetric Venn diagrams with five curves, using five pentagons and five
triangles. He stated in [13] that a diagram with seven curves had been
found, but later he could not locate it.

2 Casep=1"T.

Griinbaum conjectured in [6] that symmetrical 7-Venn diagrams do not ex-
ist. He later disproved his own conjecture by giving an example of a simple,
symmetric Venn diagram of seven curves in [8]. He then conjectured that
symmetric p-Venn diagrams exist for all prime numbers p. Shortly thereafter
several others, Edwards [4] and [5], Ruskey [14], and Savage and Winkler
(the last authors have never published their example, but it appeared in
[14]), gave additional examples of such simple diagrams with seven curves.
Bultena et al. [1] published a so called "necklace” type, non-simple 7-Venn
diagram with the minimum number (21) of vertices, but it seems unlikely
that the “necklace” procedure will yield results for larger values of p. Re-
cently it was shown in [11] that there are symmetrical 7-Venn diagrams for
all possible size vertex sets.

In this note we construct another symmetrical, non-simple, highly attrac-
tive, 7-Venn diagram, having 21 vertices, the minimum possible. In [11] it is
shown that the possible numbers of vertices |V| for a symmetric 7-Venn di-
agram are |V| = 21, 28,35, 42, 49, 56,63, 70, 77, 84, 91, 98, 105, 112, 119, and
126. In the same paper a new approach is introduced. It starts with the
defining of a graph with special properties and with a labeling of its edges.
This graph is a modification of the Venn graph as defined above, but we
will still refer to it as the Venn graph of a Venn diagram. This definition
fits our purpose better.

Definition 1 A 2-connected, planar, spanning, labeled subgraph G* of the
n-hypercube together with an edge numbering N of the edges of G* is called
a Venn graph of a Venn diagram iff
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1. To each edge e of G* is assigned a unique number between 1 and
n (called the edge number) corresponding to the coordinate where
the descriptions of the two end-vertices of e differ;

2. Any two faces of G* share at most one edge with a given edge
number; and

3. An edge number that appears in a face of G* appears ezxactly
twice in that face.

In a case when each face of G* is a 4-face and the graph G* is 3-connected,
G* is the Venn graph of a simple Venn diagram.

Since the hypercube is a bipartite graph, each cycle is an even cycle, so
each face of any 2-connected, spanning subgraph has an even number of
edges. Two edges that are adjacent in the cube cannot share the same edge
number, since that would correspond to changing one coordinate and then
reversing the change, thus resulting in parallel edges. Furthermore, any
curve of a Venn diagram F is not self-intersecting, thus two faces of the
Venn graph D(F) cannot share the same edge number twice.

Construction 2 If G* is the Venn graph of an n-Venn diagram and N s
an edge numbering with the above properties, then a planar diagram (multi-
graph) F can be constructed in the following way.

Step 1. Create a graph D*(G*) by placing a vertez xr in each face
F of G* and joining it to each edge of F by a simple Jordan arc, such
that

(i) The arcs inside in a face F meet only at the new vertez zr,
and

(ii) In every edge of G* the arcs (ezactly two of them) meet in
the same point.

Step 2. Assign to each simple Jordan arc the edge number of the
edge it meets. This identifies each simple closed Jordan curve in the
Venn diagram.

Step 3. Remove the Venn graph G* to obtain F.

It is easy to see that the diagram F thus obtained is a Venn diagram. It
is also clear that if D(F) is a Venn graph (in the usual sense) of a Venn
diagram F, that is, it is a subgraph of the n-hypercube, then using the
method described above starting with D(F) = G* the obtained multigraph
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F* is graph-isomorphic to the Venn diagram F.

Suppose that a symmetrical 7-Venn diagram has been constructed by rotat-
ing one simple Jordan curve through an angle of 360/7 degrees seven times
about an appropriate center. We observe that labeling the curves 1 — 7
clockwise, say, induces a unique labeling of each region by a binary 7-tuple
having 0 or 1 in the ith coordinate (i = 1,2,...,7) according to whether
the region is outside or inside curve . Letting a =< a,, as, ..., a7 >, where
a; is 0 or 1, we define a shift s of a by s(a) =< a7, 41,02, ...,8¢ >; a rotation
is a repeated shift.

Definition 3 Let B be a set of binary p-tuples. A binary p-tuple a (not
necessarily in B) is called independent from B iff a cannot be obtained by
a shift or a rotation of any other element of B. A set of binary p-tuples B
is called independent iff every element a of B is independent from B. The
weight w(a) of a binary p-tuple a is the number of 1’s in the tuple.

Definition 4 A generator G is a mazimal independent set of binary p-
tuples with
1<w(@a)<p-1

If p = 7, then in a generator G there are exactly
®
7
elements with weight k, for each 1 < k < 6, and thus, there are

6 7
5o
= 7
elements.
Now we choose a set of binary 7-tuples, a generator. It is not hard to check

that the set of 7-tuples in the following table satisfies the conditions of a
generator; each is numbered for use in Figure 1.

Next we construct a portion G of the Venn graph of the symmetric 7-Venn
diagram, where G is a planar subgraph of the 7-hypercube, together with
S = {31, s2,...,87}, a previously chosen 7-element sequence of transforma-
tions, (shifts and/or rotations) with the following properties:
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weight 1 | # | weight 2 | # | weight 3 | #
1000000 [ 1 | 1010000 | 2 | 1010010 | 5
0010010 | 3 | 0011010 | 6

1000001 | 4 | 0101100 | 7

1001001 | 8

1000011 | 9

weight 4 | # | weight 5 | # | weight 6 | #
0011110 | 10 | 0111110 | 15 | 1111101 | 18

0101110 | 11 | 1101101 | 16
0101101 | 12 | 0111101 | 17
1001101 | 13
1010011 | 14

Table 1: The generator

1. The set G of descriptions of the vertex set G is the generator set
shown in the table;

2. {s(a) |a€gG,seS}U{<0,0,...,0>,<1,1,...,1>} is a set
of descriptions of a spanning, 2-connected, planar subgraph of
the 7-hypercube;

3. Uges s(G) is a pairwise disjoint union;

4. Ifa € G, then for every 1 < j < 7, sj(a) = 81 038;1... 0 81(a),
where s, is a shift applied j times, 1 < j < 7; and

5. 37(G) =G.

The chosen transformations S = {s,,82,...,87} rotate this graph repeat-
edly through 360/7 degrees, creating a planar, spanning subgraph of the
T-hypercube.

Using the descriptions of the vertices of the graph created above, an edge
number is assigned to each edge following the process described in Defini-
tion 1. (In Figure 1 we show this only for the portion of the graph and not
for the whole graph.) It is not hard to check that we have created the Venn
graph of a symmetric 7-Venn diagram.

Following the process described in Construction 2, a non-simple, symmetric
7-Venn diagram is created with 21 vertices. Figure 2 shows the entire Venn
graph without labels (with the understanding that the dashed edges in the
exterior are all incident with the single vertex < 0,0,...,0 >). Figure 3
illustrates the rotational character of the construction.
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Figure 1: A portion of the Venn graph with the vertex labeling is given in
the first figure. The numbers correspond to the numbers in the table. In the
second figure the edges are labeled. The successive rotation of this portion
through an angle of 360/7 degrees creates the Venn graph of a symmetric
7-Venn diagram.

Figure 2: The first figure is the Venn graph. The second is the non-simple,
symmetric 7-Venn diagram created from this Venn graph. This Venn dia-
gram has a minimum vertex set, 21 vertices.
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Figure 3: The non-simple, symmetric 7-Venn diagram, and one of the Jor-
dan curves. The rotation of this curve through 360/7 degrees seven times
about the center creates the non-simple 7- Venn diagram.
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