No maximal partial spread of size 115
in PG(3,11)

Olof Heden

Abstract

It is proved that there is no maximal partial spread
of size 115 in PG(3,11).

1 Introduction

A mazimal partial spread in PG(3,q) is a set S of mutually
skew lines such that any line of PG(3, ¢) intersects at least one
of the lines of S. Maximal partial spreads were first studied
by Dale Mesner in 1967 [15). He observed that if you pick a
line ¢; in PG(3,q), and then a second line ¢, skew to the first
line, and then a third line ¢3 skew to these two lines, and so on,
then this process either terminates before a certain bound, or
can be continued until you get a spread. A spread is a set of
¢® + 1 mutually skew lines in PG(3,¢) which covers all points
of PG(3,q).

Aiden A. Bruen extended Mesners result. He showed in 1971
that for a maximal partial spread S in PG(3,q)

g+V3<|S|<¢*+1- /4.

He also constructed maximal partial spreads of the sizes g% —
g+1and ¢ — ¢+ 2in PG(3,q).

There have been several attempts to improve these results,
see [2]. The best upper bound for maximal partial spreads in
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PG(3,q) is now given by Aart Blockhuis. It follows from his
results on blocking sets [1] that for a maximal strictly partial
spread S in PG(3,p), p prime,
1
15| <p?+1— %.
In [13] we showed that this bound cannot be improved in
general. A maximal partial spread in PG(3, q) for ¢ = 7 of size
1
45=¢"—q+3= 2—%—
was introduced.
In the finite projective spaces PG(3,q), ¢ prime, the next
cases to settle are when g=11 and the possible sizes 113, 114 and
115. The aim of this paper is to prove the following theorem:

Theorem: There is no maximal partial spread of the size
115 in PG(3,11).

Let us also mention that Glynn proved in 1981 that no max-
imal partial spread in PG(3,q) has a size smaller than 2q [6]
and that several maximal partial spreads of size smaller than
¢*> — ¢+ 1 have been constructed, see [8], [9], [10], [11] and [12].

2 Preliminaries

For a general introduction to this subject see e.g. [14].

The deficiency § of a maximal partial spread in PG(3,q) of
size n is the integer § = g2+ 1 — n.

It was proved in [7] that to any partial spread in PG(3,q)
corresponds a 2-weight code C over the alphabet GF(q) and of
word length 6(g + 1). The words of C either have weight dq or
weight 6(g+1). This fact was used in [7] to give an upper bound
for the possible sizes of a maximal partial spread.

Blockhuis, Brower and Wilbrink translated this coding point
of view into geometry [3]. We will use their translation but not

140



their terminilogy. Instead of holes and non holes, rich and poor
planes, we will talk about white and black points respectively
white and black planes.

With this terminology we adopt the following results from
[7):

To any partial spread S of PG(3,q) of deficiency 4 corre-
sponds a coloring of the points and the planes of PG(3,¢q) in
the colors white and black such that:

(i) Any white plane contains § + ¢ white points;

- (ii) Any black plane contains § white points;

and dually

(iii) Any white point is contained in g + § white planes;

(iv) Any black point is contained in § white planes.

By simple counting arguments, see [7], it is easy to prove

(v) The number of white points is §(g + 1);

(vi) The number of white planes is §(¢q + 1).

A line with exactly a white points will be called a line of
weight o or an a-line. In [7] it was proved that

(vii) Any o-line is contained in exacly o white planes;

(viii) The weight « of a line either equals g+ 1 or is less then
or equal to J;

(ix) The partial spread S is maximal if and only if there is
no g + 1-line.

Let z, denote the number of (v + 1)-lines through a white
point. We will use the following two equations proved in [7):

Ty + 2z +3z3+ ... + gz, =0(¢g+1) - 1; (1)

22, + 62, + 1223+ ... +qg+ 1)z, =0+ q)(0+g—1). (2)

If z, denotes the number of (v + 1)-lines in a white plane
then the same equations will be true.

A line through two points P and @ will be denoted by PQ.
A plane 7 is said to be a plane of the line | if 7 is one of the
g + 1 planes that contain the line [.
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Lemma 2.1: If an o-line and a S-line pass through the same
black point P then a4+ 8 < d + 1 where 4 is the deficiency of
the maximal partial spread.

Proof: There are, by (iv), § white planes that contain the
point P. There are by (vii) @ white planes of the a-line and
white planes of the f-line. As there are at most one common
white plane of the a-line and the $-line, the lemma follows.

Lemma 2.2: Assume that § = (g + 3)/2 is the deficiency
of a maximal partial spread and let 7 be a white plane of a
(6 — 1)-line !. Through any white point W of #, W & , there is
one and only one 2-line [y of 7 such that [ and [y intersect at
a black point.

Proof: Let B be a black point of I. There is by (iv) one and
only one white plane 7p not containing ¢ and intersecting ! at
the point B. The plane 7 intersects, by (vii), the plane 7 in at
least two white points. There are (¢+1)/2 black points of ! and
g + 1 white points of 7 \ /. Hence the lemma is proved when we
have showed that any white point of 7\ [ is contained in at most
one white plane not containing the plane 7 and intersecting [ at
a black point.

Assume that W is a white point of 7 \  contained in two
white planes 7, and m; not containing ¢ and intersecting ! at
black points. The planes m; and 7, must meet each of the black
planes of [ at a white point. There are (¢ + 1)/2 black planes
of the line [ and each of these planes contains exactly one white
point not on the line /. The intersection line of m; and w2 must
contain all these (g + 1)/2 white points. As the white point W
is a point of this intersection line, the weight of this line will
be at least (¢ + 1)/2 + 1. As this number equals §, we get by
(viii) and (ix) that this intersection line must be a é-line. We
conclude, by (vii), that there are exactly ¢ + 1 — ¢ black planes
of the intersection line of 7; and 7y. At least one of these black
planes must meet a white point of the line . This black plane
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will have more than § white points.
The following lemma, is well known:

Lemma 2.3: The set of white points of a white plane forms
a blocking set of the plane.

Proof: If there is a 0-line of the plane, then that line, by
(vii), cannot be contained in any white plane.

Lemma 2.4: Every é-line intersects every white plane at a
white point.

Proof: In PG(3,q) any line intersect any plane. Assume
that the intersection point of a d-line with a white plane 7 is a
black point P.

Any plane, white or black, of the 4-line intersects the white
plane at a line in 7 through P. By the previous lemma any line
through P in 7 contains at least one white point. Consequently,
any plane of the J-line will contain at least § + 1 white points.
This implies that there will be no black planes of the J-line.

3 The proof

A maximal partial spread of size 115 in PG(3,q), ¢ = 11, has
the deficiency 6 = 7. We show the non existence of such a
maximal partial spread, by showing that there cannot be any
set of (g + 1) = 84 white points satisfying the conditions of the
previous section.

The proof is divided into several steps. In the first of these
steps we show, that if there was such a set of white points, then
there will be no 5-lines. In the next step we show that there
will be no 4-lines. This will imply that there are either at least
four 6-lines, two 7-lines and one 6-lines or three 7-lines. Each of
these possibilities will then be excluded.
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Step 1: There is no 5-line.

Proof: Assume that £ is a 5-line and let 7 be one of the black
planes of £. We consider a white point P, of 7 \ .

To any black point @ of ¢ there is, by (vii) of Section 2, at
least one white plane containing the line P;Q. As the line ¢
contains seven black points, there will be at least seven white
planes my, 7o, ..., 7, containing the point P, and meeting only
black points of ¢.

Let 7' be another black plane of £ with the two white points
P/ and Pj of n' \ ¢. Again by (vii) of Section 2, each of the
white planes 7,7, ...,m7 meets at least one of the points P|
and P,. It follows that at least four of these white planes will
meet the same white point. We may assume that the white
planes my, 7y, 73 and 74 meet the point Pj.

We now consider the line P, P]. Let 7" be any of the other
five black planes of the 5-line £. The intersection line of 7" and
each of the white planes m;, 7, m3 and m4 all contain a white
point. As there are only two white points of 7" \ ¢, the only
possibility is, that the white point on the intersection line of
the planes 7y, 7o, m3 and 74 and the plane ", is the intersection
point of the line P, P{ with the plane 7”. As the line P, P| meets
seven black planes of £, we conclude that P, P{ must contain at
least seven white points. By (viii) of Section 2, as § = 7, we get
that the only possibility is that P, P is a 7-line.

We now consider the black planes of the 7-line P, P{. There
are five such black planes. As at least four of the seven white
planes of P P, the planes m, 7, m3 and 74, meet black points
of £, there will be at least two black planes of P, P that meet
white points of £. These black planes will contain more than
seven white points, which is impossible.

Step 2: There is no 4-line.

Proof. Assume there is a 4-line £. Let II denote the set of
white planes that does not contain any white point of £.
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Let m be any of the black planes of ¢ and let P be a white
point of 7 \ £. We first prove

(i) There is no line throught P contained in four of the planes
of II.

To prove this, assume that ¢ is a line contained in four of the
planes of II.

We first exclude the possibility that ¢’ is contained in one of
the black planes of ¢. If this had been the case, then ¢ would
intersect £ at a black point. By (vii) of Section 2, # has at least
four white points. As a black plane has seven white points, and
as £ and ¢ are both contained in the black plane 7, we get a
contradiction.

Any of the four planes of II that contain ¢ must meet the
black planes of ¢ at white points not on the line £. As for any
black plane of ¢, there are only three such white points, the only
possibility (compare the proof of Step 1) is that ¢’ meets all the
eight black planes of ¢ at white points. Hence, ¢ will have at
least eight white points, which is impossible by (ix).

Now we prove

(i) Let m,7n' and ©" be three black planes of £ and assume
that the three points P, P' and P", where P € n\ ¢, P' € 7'\ ¢
and P" € "\ ¢, are collinear.

If the line PP’ is contained in three planes of Il then any line
through P and a white point of ©' will intersect #" at a white
point.

To prove this we first note that any line through P and a
black point of £ is, by (vii) of section 2, contained in at least
one white plane of II. Hence there are at least eight white
planes of IT that contain the point P. We denote these planes
by m, 7, ..., g, and assume that 7,7, and w3 are the planes
containing the line PP'.
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Denote the three white points of 7'\ £ by P',Q’ and R'. Ac-
cording to (i) above, we may assume that 74, 75 and 7g contain
the point @' and 7; and 7g the point R'.

Let P”, Q" and R" denote the three white points of 7"\ £.

From (i) we get that none of the planes 74, 7s, ..., 7g contains
the point P”. Two of the planes 74, 75 and mg hence meet both
either the point R” or the point @”. Without loss of generality
we may assume that w4 and 75 contain the point Q”.

The intersection line of m4 and w5 will hence contain the
points P, @' and Q". As mg contains the line PQ’, this plane
will also contain the point Q”.

By (i), none of the planes 77 and g will contain the point
Q". Hence these two planes both contain the point R”. The
intersection line of 77 and g therefore contain the three white
points P,@" and R”. (ii) is proved.

Let W denote the set of those white points of the black planes
of the 4-line £ that are not a point of the line £.

Next we prove

(153) If a line ¢’ is contained in three of the planes of 11, then
¢ meets at most three of the white points of W.

To prove this, assume that there is a line ¢ which meets
four of the points of W. Denote these points by Py, P, P; and
Py, and the planes containing these points by m, s, 3 and my,
P, emfori=1,2,3 and 4.

Denote the white points of m;\£ by P;, P{ and P/ fori =1,2,3
and 4.

We first show that the intersection of W with these four
planes are 12 white points, contained in the same white plane
7.

From (ii) we get that through any of the white points P,
i =1,2,3 and 4, there are three lines that intersect the planes
m, T, M3 and w4 at white points. Hence the three such lines
through P, are intersected by the three such lines through P;.
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Consequently these lines are lines of the same plane 7.

To the set of 12 points P;, P and P/, i = 1,2,3 and 4, we
add a point Q. @ is the intersection point of the plane n’ with
the line £. From what is proved above we deduce that these 13
points constitute, together with the lines between these points,
a projective plane of order 3 in PG(3,11). Now (%ii) is proved.

(iv) Let P be a white point of a black plane m of the 4-line
¢, P € w\ L. There are eight lines through P, each containing
three planes of I1, and four lines through P, each containing at
least two planes of I1.

We prove this by showing that there are only three lines
through P that meet only one further point of the set of white
points W.

Let 7, w9, ..., mg denote a set of eight white planes from II that
contain the point P. Assume there is a another black plane #’
of the line £ with a white point P’ € W N «’ such that the line
PP’ is contained in three of the planes m,ws,...,Ts and such
that PP’ does not meet any further white point of W.

Without loss of generality we may assume that the planes
71, T2 and w3 contain the line PP’. These three planes then
meet the remaining six black planes of the 4-line ¢ at distinct
white points. Let m; be any of the planes my,7s,...,ms. If m;
meets the plane 7; at only one of these white points, then 7;
will meet either m, or m3 at at least four white points. This
contradicts ().

Most trivial counting arguments now shows (iv).

We now have arrived to the final part of the proof of step 2.

Consider a white point P of 7 N W, where 7 is a black plane
of the 4-line £. There are eight white planes 7y, 7s, ..., mg of I1
containing the point P, and meeting distinct black points of the
4-line £. |

We will consider the intersection lines of the planes 7y, 7o, ..., g
with a plane 7’ of ¢, n’ # .
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With the same arguments as were used above, we may with-
out loss of generality assume that m;,m and 73 all contains a
point P; of 7', the planes w4, 75 and 7 a point P, of the same
plane 7' and the planes m; and mg the point P;. (These three
points don’t have to be white points.) Further, for i = 1,2,3
and j = 4,5,6 we denote by Pj; the intersection point of the
planes m;, 7; and =’

By counting pairs of intersections of planes, we get that the
12 intersections lines of the planes =y, 7, ..., mg described in (iv)
are the only, up to equivalence, possible intersection lines of
these planes . Hence the two planes 77 and g meet each of the
planes 7, m and w3 at their intersection line with one of the
planes 7y, 15 and mg. Without loss of generality we may assume
that 77 meets the points P;, P|,, Pjs, Pjg, and that g meets the
points P3, Pz, Pys, Ps,.

We will make some ”affine calculations” in 7’. To get to that
possibility we delete the line P|P; from ='.

We may assume that the intersection lines of 7’ with 7y, m
and 73 are the lines

la={(a,y) |y € GF(11)}
and the intersection lines of n’ with m4, 75 and wg are the lines
I ={(z,b) | z € GF(11)}.
We have to consider two cases.

Case 1: P ¢ P|P}. Without loss of generality we may assume
that Pj has the coordinates (0,0) and that m; intersects 7’ at the
line &7

As the plane 77 meets the points (0,0) and (1,1), we get that
the intersection line of 77 with the affine plane 7’ consists of the
points

{(z,z) | z € GF(11)}.
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Consequently, as this line contains the point on the intersec-
tion of my with 75 w3 with mg, we get that for the intersection
lines £, £%, ¢ and ¢% of these planes with 7', ¢ = c and b = d.

Further, as the points (0,0), Pjs, Py and P34 are collinear we
get that

1-0 a-0_b-0

a-0 b-0 1-0
which implies that a® = 1. @ = 1 is the only element a € GF(11)
satisfying this equation.

Case 2: P} € P|Pj. Without loss of generality we may assume
that the intersection lines of #’ with m,, 7 and 73 are the lines
23,28 and £ and the intersection lines of 7’ with my, 75 and mg
are the lines 22, £ and £}

As in the case 1, we conclude that ¢ = b and that the
points (1,0), (a,1) and (0,a) are collinear and parallell to the
line through (0,0) and (1,1). This implies that

1—0_1 a—1
a—1" 7" 0-a

The first of these two equalities implies that a = 2 and the
second that 2a = 1.

=1

Step 3: Any white plane contains either four 6-lines, two 7-
lines and one 6-line or three 7-lines.

Proof: We consider the two equations (1) and (2) of Section
2. From step I and step 2 we may assume that z3 = 0 and
z4 = 0. Thus we get the following two equations:

Ty + 229 + 55 + 6z = 83

2(131 + 6132 + 30z + 42976 = 306.

From these two equations follows that

151175 + 24%5 =57+ T 2 57.
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As there are only 18 white points on a white plane, the only
possible values of the integers z5 and zg are those stated above.

Step 4: No white plane contains four 6-lines.

Proof: Assume that there are four 6-lines ¢;, ¢y, ¢3 and ¢4 of
a white plane. As the number of white points in the plane is 18,
all these four 6-lines cannot pass through the same point of the
plane. Hence three of the lines form a triangle. Assume ¢,,4;
and ¢; form a triangle.

Let P, be a white point of ¢, and assume P, ¢ ¢; fori = 2,3,4.
By Lemma 2.2 of Section 2, there is only one 2-line through P;
which does not meet £3. There are three white points of ¢, that
do not belong to any of the lines ¢, /3 and ¢;. Hence, at least
two of the lines through P, and a white point of ¢, must meet
a white point of £5. As there is only one intersection point of £3
and /¢4, we get that at least one of these two lines meets ¢3 at
a white point W, W ¢ ¢,. By Lemma 2.1, this line £ meets £,
at a white point. As £ meets the lines ¢4;, 1 = 1,2,3 and 4, at
distinct white points, and as there are no more white points in
the plane than those of the lines ¢;,7 = 1,2, 3,4, we get that ¢
must be a 4-line.

Step 5: No white plane contains two 7-lines and one 6-line.

Proof: We first assume that the two 7-lines and the 6-line
form a triangle. Denote by P the only white point of the plane
that is not a point of any of these lines.

Let P’ and P” be two white points of the 6-line, and assume
that neither P’ nor P” are points of a 7-line.

By Lemma 2.1 of section 2, both lines PP’ and PP" meet
the 7-lines at distinct white points. Hence, one of these two
lines meets the two 7-lines at a white point, which is not the
intersection point of the two lines. That line must be a 4-line.

Assume now, that the two 7-lines and the 6-line meet at a
point P. By Lemma 2.1 of Section 2, P must be a white point.
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Let ¢; and ¢, denote the two 7-lines and let ¢3 denote the
6-line. Let P;, P, ..., P;s denote the black points of the line ¢;
for ¢ = 1,2. As the plane we consider is a white plane, any
line contains a white point, see Lemma 2.3. Further, all white
points are points of the lines 41, £; and {3. Hence, any line P; Py;,
1<i<5and 1< j<5, meets the line £3 at a white point. We
now show that this is impossible, by making calculations in the
affine plane that we get by letting ¢; be a line at infinity.

Without loss of generality we may assume the following:

(i) The black points of £y are the points Py = (v;,0), i =
1,2,3,4,5 where y; € GF(11).

(it) The five white points of €3 \ {P} are the points Py =
(%:,1),1=1,2,3,4,5 where z; € GF(11).

We may assume that the parrallell class of lines passing through
the point P;; consists of the lines

o ={(a,y) | y € GF(11)}.

Thus, as the lines Py, Py; for i = 1,2, 3,4, 5 all meet white points
of £3, we may also without loss of generality assume that z; = y;
fori=1,2,3,4,5.

The lines Py P;;,1 < i< 5and 1< j <5, only meet black
points of ¢;, and hence these 25 lines belong to five parallell
classes of lines. By considering one of these parallell classes,
we find, after a suitable numbering of the elements z,, 2, ..., zs,

that
To— T I3 — I

1-0  1-0
This implies that there is an element ¢ of GF(11) such that

To=2x1+1 T3=1x2-+1,

from which we get that z; = x; + kt for some integer k¥ < 5. As
GF(11) is a field, this is impossible.
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Now the statement in step 5 is proved.

As a consequence of what is proved above we get the following
statements:

(A) There are only 1-lines, 2-lines, 8-lines and 7-lines.
(B) Any white plane contains three 7-lines.

Further, by the use of the equations (1) and (2) of Section 2
we get, compare the proof of step 3, that

(C) Through any white point there are three 7-lines.
We are now ready for the final step.

Step 6: To any three 7-lines of a white plane there are another
three 7-lines such that these siz 7-lines constitute a tetrahedreon.

Proof: Let ¢,¢, and /3 be three 7-lines of a white plane .
As 7 only contains 18 white points, there is no point of 7 that
is contained in all of these three lines. Hence the three lines
£1,¢; and {3 constitute a triangle. The intersection point P,
1 <4< j <3 of the lines ¢; and ¢; must be a white point, see
Lemma 2.1 of Section 2.

Let £ denote the third 7-line through Py, ¢ ¢ =, see (C)
above. We first show

(1) All 7-lines through white points of £ will intersect the line
£3.

Let P be a white point of £ and assume P ¢ 7. Assume that
there is a 7-line ¢ # £ through P that does not meet the line /3.
By Lemma 2.4 of Section 2, # meets a white point of 7. Hence
¢ either intersects ¢; or £;. Without loss of generality we may
assume that ¢ intersects ¢,.

Let 7’ denote the plane containing the lines £ and ¢, and let
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7" denote the plane containing the lines £ and ¢;. As there are
three 7-lines in each white plane 7’ and #”, and as £ contains
seven white points, there must be at least four white points P’
of £ such that the two 7-lines from P', distinct from £, intersect
the line £3. Let 7" denote the plane containing the line ¢3 and
one such point P/. By Lemma 2.4, the line ¢, described in the
previous paragraph, intersects 7" at a white point. This white
point must be on a 7-line £” € 7" through P’. The intersection
point of ¢ and ¢ must, as £ € 7', be contained in the plane
n'. As P’ € n’ we get that the line £” € n’. As 7' only contains
three 7-lines, we get a contradiction, and the only possibility is
that the line ¢ contains the point Pj3.
Now (i) is proved.

(ii) There is a point P of £, P ¢ m, such that the two 7-lines
¢ and 2", distinct from £, through P intersects {3 at the points
Py3 and Poj respectively.

There are fourteen 7-lines, distinct from ¢, through the white
points of £. All these lines intersect, by (i), the line £3. Further
from (C), there are fourteen 7-lines that intersect the 7-line £s.
Hence all 7-lines intersecting #3 must intersect the line £. We
thus conclude that the third 7-line ¢, distinct from ¢; and 43,
through P,3 must intersect ¢ at a white point P of £.

A third 7-line ¢", distinct from £ and #, through P, intersects
by (i) the line £;. If we use (i) with (£, 45, £3) permutated to
(41, 3, £5) we may conclude that £” intersects 5.

Now (ii) is proved and thereby also step 6.

Now to the final step of the proof of the theorem.

By (B) above, if there is a maximal partial spread of size 115
in PG(3,11), then there must be a 7-line £. By (vii) of Section
2, there are seven white planes of this 7-line £. From step 6 we
deduce, that the white planes of this 7-line £ are paired together
two and two in order to produce distinct tetrahedreons. Finally,
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the integer seven is not divisible by the integer two.
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