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Abstract

Motivated by the work of Granville, Moisiadis and Rees, we consider in
this paper complementary P;-packings of K,. We prove that a maximum
complementary Ps-packing of K, (with [%[3(°3—'11ij35) exists for all inte-
gers v > 4, except for v = 9 and possibly for v € {24, 27, 30, 33, 36, 39, 42, 57}.

1 Introduction

Let K, be the complete graph on v vertices, and Ps a path of length 3. A
P3-packing of K, is defined to be a family, F, of edge-disjoint P3s in K,. The
graph spanned by the edges which do not occur in any P of F is referred to as
the leave of the P3-packing.

A complementary P;-packing of K, is a Ps-packing of K, F, with the prop-
erty that upon taking the complement of each path in F one obtains a second
Ps-packing of Ky, F. Here the complement of the path abed is the path bdac,
that is, F = {bdac : abed € F}. In the particular case where the leaves of
both F and F are empty, a complementary Ps-packing of K, is nothing else
than a complementary P3-decomposition of K, which was first investigated by
Granville, Moisiadis and Rees [2]. They proved that

Theorem 1.1 There erists a complementary Ps-decomposition of K, if and
only if v = 1(mod 3).

If F is a complementary P3-packing of K,, then the set D = {{a,b,¢,d} :
abed € F) forms a standard (v, 4, 2) packing. Therefore, from Schénheim [5] we

have 0 1
P < 13128 = a2
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where |z] is the largest integer satisfying |z] < z.

In what follows, a complementary Ps-packing of Ky with 1 (v,4,2) Pss will
be called maximum. It is clear that Theorem 1.1 implies that a maximum
complementary Ps-packing of K, exists when v = 1(mod 3). The purpose of
this paper is to treat the cases where v = 0 or 2(mod 3). We will prove the
following.

Theorem 1.2 For all integers v > 4, a marimum complementary Ps-packing of
K, ezists, except for v =9 and in the set of possible ezceptions v € {24,27, 30, 36,
39,42,57}.

Throughout the remainder of this paper, a familiarity with the definitions
and notations for group divisible designs (GDDs) and transversal designs (TDs)is
presumed.

2 Recursive Constructions

In order to describe our recursive constructions, we need the notion of a holey
self-orthogonal Latin square, which we define below.

Let S be a finite set and H = {S1,S2,...,Sa} be a partition of S. A holey
Latin square having partition H is a |S| x |S| array L, indexed by S, satisfying
the following properties:

(1) every cell of L either contains an element of S or is empty,
(2) every element of S occurs at most once in any row or column of L,

(3) the subarrays indexed by S; x S; areempty for 1 <i<n (these subarrays
are referred to as holes),

(4) element s € S occurs in a row or column ¢t if and only if (s,t) € (S x
S)\ UlS‘S" (S,' X S,').

The order of L is |S|. The type of L is the multiset T = {|S;| : 1 < i < n}
and will be denoted by an “exponential” notation.

Two holey Latin squares on symbol set S and hole set H, say L; and Lo,
are said to be orthogonal if their superposition yields every ordered pair in
(S x S)\ V1<ign (Si x Si). A holey Latin square is said to be self-orthogonal if
it is orthogonal to its transpose. A self-orthogonal holey Latin square of type
T will be denoted by HSOLS (T').

The following existence result for HSOLSs is very useful to our problem
under consideration, which is taken from [6], [7] (also see [8]).

Lemma 2.1 Both an HSOLS (2"1') and an HSOLS (2") erist when n > 4;
and an HSOLS (2"u!) ezists ifn > 1+ u and u > 3.

We now give the recursive constructions used in the proof of our main the-
orem.
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Lemma 2.2 Let n > 4 be an integer. If a mazimum complementary P3-packing
K2 ezists, then so does a mazimum complementary Ps-packing of Ki2,. Fur-
thermore, a mazimum complementary P3-packing of Kianye ezists if a maxzi-
mum complementary Ps-packing of K¢ ezists.

Proof.
For given n, we have an HSOLS (2") and an HSOLS (2"1') from Lemma
2.1. We may assume that A = (a;;)2n is an HSOLS (2") on symbol set
S =1{1,2,...,2n}, and that its hole sets are H; = {j,j+1},/=1,3,...,2n-1.
Write B = (b;j)2n for the transpose of A.

Now we take the vertex set of K12, to be S x Zs. Consider the following
Pas in 1{12":

(i! 2)(aijn 3)(b|1) 0) (.71 2)m°d (—a 6)

(aij,0)(4,2) (4, 2) (bi;, 3)mod (—,6)

where {i,j} runs over all pairs from (S x S)\ Ui<icn (H: x Hy) satisfying
1 < i< j<2n. Note that since A and B = AT are orthogonal, each pair of dis-
tinct vertices not in the H;x Zg(j = 2t—1,1 < t < n) occurs in exactly one of the
above Pss and one of their complements. We then put a copy of a maximum com-
plementary Ps-packing of K2 on each vertex set H; x Zg(j = 2t —1,1 <t < n)
to obtain the required Ps-packing of Ki2,. To see that this construction sat-
isfies the number of paths required by the definition of maximality, we observe
that the number of paths constructed is (6)(2)(2n? — n), then subtracting the
number of paths (12n) based on the holes H; x Zg, and adding the 21n paths of
the maximum packings of K)2s we get the maximum required number of paths
by the bound:

12(4n* — n) — 12n + 21n = 24n? — 3n = ¢(12n,4,2)

For a maximum complementary of P3-packing of K12,46, we make use of an
HSOLS (2"1!). The procedure is similar to the above. [

Lemma 2.3 Let n > 4 be integer. Then
(1) a mazimum complementary Ps-packing of Ki2a43 ezists;

(2) a mazimum complementary Ps-packing of Kian421 exists if a mazimum
complementary Ps-packing of K2y exists.

Proof.

First, we construct a maximum complementary Ps-packing, F, of K15 such that
the leave of F and its complement contain a common triangle. This is done by
the following Pjss, by taking the vertex set of K5 as Zys:

159



9 011 1 114 6 8 2 4 713 11 7 3 6
0 25 6 113 4 5 214 510 4 610 14
12 0 3 4 110 212 21311 3 410 9 6
8 0 412 316 7 7 2 8 4 5 9 7 8
6 0 513 7 11210 3 5889 10 7 511
013 810 11 4 1 5 3 9 414 81211 6
01 23 12 6 2 9 8§ 31310 712 913
01011 9 14 811 2 512 3 14 11 14 12 13
1 91413

where the triangle is {0,7, 14}.

Now for conclusion (1), the construction is similar to that in the proof of
Theorem 2.2. Here we take a set T of 3 infinite points and then replace each set
(H; x Z6)UT(j =2t —1,1 <t < n) by a maximum complementary P3-packing
of K5 constructed above where the triangle is based on T'.

For conclusion (2), we start with an HSOLS (2"3!), A = (;;)2n+3, on symbol
set S = {1,2,...,2n + 3}. Suppose that the hole set is {H; = {j,j +1}: j =
2t —1,1<t<n}U{{2rn+1,2n+ 2,2n + 3}}. Then the construction can be
made as follows.

(1) A set of three infinite points and then replace (H; x Zg)UT(j =2t—1,1<
t < n) by a maximum complementary Ps-packing of K15 as above and
replace ({2n+1,2n+2,2n + 3}) x ZgUT by a maximum complementary
Ps-packing of K»;. ‘

(2) Take the following paths
(£,2)(ai;, 3)(bi5,0)(, 2)mod (-, 6)
(a'l'j ) 0) (11 2) (]) 2)(le ’ 3)m°d (_l 6)

where {7, j} ranges over all pairs of distinct points of S satisfying 1 <i <
j € 2n + 3 which are not in the same hole, and where (b;j)ans3 is the
transpose of A.

To see that this construction satisfies the number of paths required by the
definition of maximality, we observe that the number of paths constructed by
step (2) is (6)(2)(M¥“—+§)~), then subtracting the number of paths (12n+36)
based on the holes x Zg, adding the 33n paths of the maximum packings of K;ss,
and adding the 68 paths of the maximum packing of K2; we get the maximum
required number of paths by the bound:

12(2n% + 51 + 3] — (12n + 36) + 33n + 68 = 24n? + 81n + 68 = ¥(12n + 21,4,2)

It is readily checked that the above two steps produce a maximum comple-
mentary Ps-packing of K12n421, where the vertex set of Ky2n421 is (S x Zg)UT.
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3 The Proof of Theorem 1.2

Before giving a proof of Theorem 1.2, we require the direct construction of some
Ps-packings of K, with small values of v. We assume that the reader is familiar
with the notion of a standard (v, k, A) packing.

Lemma 3.1 Ifv € {6,8,11,12,17,18,21}, then there ezists a marimum com-
plementary P3-packing of K.

Proof.
For all stated values of v, we take the vertex set of K, as Z,. Then the following
paths form the desired P;-packing.

v=6
5031 20114 0423 3512
v=8
1235 3174 2034 0736
2416 1567 5260 4057
v=11 _
1423 8110 9 27108 6 83 0
1256 10 8 7 29 70 4105 7
10315 36 210 93 47 9 4610
1604 20 5 4 35 90 5 89 6
v=12
03 21 1048 5 9 110 4 9 211
0 9 3 6 2057 1 711 6 210 6 8
011 910 11137 310 8 2 3 410 7
4 7 010 4189 11 4 2 6 1 3 8 5
0 811 § 10516 9 7 2 5 3 5 6 4
9 6 7 8
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Proof.
The packing is obtained from a TD (4,11) in the following two steps:

(1) replace each block {a,b,c,d} of a TD (4,11) by two Pss: abed and bdac;

(2) add an infinite point to each group of the TD, and then construct a max-
imum complementary Ps-packing of K)a.

a

Lemma 3.3 There does not exist a marimum complementary Ps-packing of
Ky.

Proof.
The conclusion follows from the nonexistence of a (9, 4, 2) packing with | 5| 2]]
blocks, which was proved by Hartman [3]. O

Now we give the proof of Theorem 1.2, which is restated below.

Theorem 3.4 For all integers v > 4, there ezists a mazimum complementary
Ps-packing of K, except for v =9 and possibly for v € {24, 27, 30, 33, 36,
39,42,57}.

Proof.

The theorem is true for v = 1(mod 3) by Theorem 1.1. The theorem is also
true for v € {8,11,17} by Lemma 3.1. For v = 2(mod 3) and v ¢ {8,11,17}, it
was shown by Brouwer [1] that a (v, 4, 1)-packing with | 4|23 ] block exists.
Replacing each block {a,b,c,d} in such a packing by two Pss: abcd and bdac
gives a maximum complementary P3-packing of K,. Now for the case v =
0(mod 3), the result follows from Lemmas 3.1-3.2 when v € {6,12, 18,21, 45}.
A maximum complementary Ps-packing of K5 was given in the proof of Lemma
2.3. The remaining values of v = 0(mod 3) are all covered by Lemmas 2.2 and
2.3. '

This completes the proof. [
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